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Linear Matrix Inequalities and SDP
Tricks to reformulate into LMIs
System concepts via LMIs
Multi-channel/objective with LMIs
Uncertain systems analysis
Gain-scheduling and LPV synthesis
Hard non-LMI problems
Conclusions, perspectives.



Definitions, manipulations

Schur’'s complements
Classes of convex optimization problems

Semi- Definite Programming
Algorithms to solve SDP, duality, complexity

Software, links.



an LMI Is a constraint on a vectarc R":
Flx) =F+xFi+...+x,F, =0,
wherefy, Fi, ..., F, are symmetric matrices

>~ 1S Inequality on symmetric matrix cone
LMI equivalent toA,,i, (F(z)) > 0

F(z) = 0iff ' F(x)n > 0, Vn

F(x) = 0iff det {ppal mat} > 0

F(zx) = 0iff F(x)n>0,Vn+#0



an LMI de fine a
convex set

FAz+(1-X)y) = AF(x)+(1- ) F(y) = 0

whenevert'(x) > 0,
F(y) = 0

set with non
necessarily smooth
boundary (corners)

describe wide variety
of constraints

LMI

plane and curved faces



LMI constraints

are equivalent to single LMI constraint

_F1($)

0

Fi(z) = 0,...,F/(x) =0

~ 0

LMI 2

LMI 3

LMI 1



finite set of scalar linear (affine) constraints
ax <bj,i=1...,m
can be represented as LMI(z) < 0, with

F(x) =diagdjxz —b1,...,a, x —b,,)

polyhedral
LMI




partitioned symmetric matrix

[P P
P {PZ, PB]

S = P; — PyP ' P, is the Schur complement @ in
P (providedP; invertible)

Schur complement lemmas
P>=0ifandonlyif P, = 0andS = 0
if P, > 0,thenP > 0ifandonlyifS > 0



complicate constraint in variable
Pg(a’i) — PQ(CL’),Pl(ZL’)_lpg(ZL’) > 0

IS turned into simpler one

Do BT

provided thatP; (x) > 0.



an ellipsoid can be described in different ways
as||Azx + b|| < 1, iff

I Az + b
{(A:z;qtb)’ 1 } =

as(x—xo)W(x—mxy) <
1, with W > 0 iff

[ B



consider fractional constraints

(dx)? -
d'x =t
Ar+b > 0

(assumel’z > 0, wheneverdx + b > 0)
can be represented as

t  dx
cdr dux

Ax + b > 0

Y
-



Convex quadratic constraints can be rewritten
(Az +0)'(Az +0b) —cx —d <0
has the LMI representation

I Az + D
(Ax + ) dx+d =0

can be used to show that convex quadratic
programming can be solved via SDP



linear prog. (LP)
minimizecdz, Ax <b

(componentwise)
convex quadratic prog. (CQRE), = 0

minimize z’'Qox + byx + ¢
st.x'Qux+bx+c; <0

All (and others) are generalized by SDP !



with P variable
Lyapunov inequality  pick a basis(F;); of the
symmetric matrices,

AP+ PA=<0
can be represented In P= szPZ
canonical form !

hence recover the canoni-

Iy + Z 7, F < 0 cal form with
- Fy=0, F=AP+PA



Any (symmetric) linear constraints in the variables
X,Y
AYB+ (AYB) + X +... 20

can be represented in the canonical form

by appropriate selection of thé’s.



guadratic matrix inequality i#
AP+ PA+ PBR 'BP+Q =<0

whereRR > 0, Is equivalent to LMI

AP+ PA+Q PB]
B'P _r| =Y

(proof by Schur complements)
Riccati-based control method can be solved via LMIs



| feasibility problem:
findx : Fo+x1F1+...+x,F, <0
Il linear objective minimization subject to LMIs
minimizec'z, st. Fy + o1 F + ... +x,F, <0
lll generalized eigenvalue minimization
minimize A
subjectto A(z) — AB(z) =0, B(x) = 0, C(x) =0

(A, B, C affine symmetric expressions:i



much work and progress since 1990 !

primal interior-point method (method of centers)

primal-dual interior-point method

non-differentiable methods (bundle, ...)
Primal-dual methods very efficient.

other fast algorithms under development (aug.
Lagrangian)



because of structure and convexity
algorithms are guaranteed to find global solutions !



Ideas:

instead of working in primal space, formulate
problem in “primal-dual”’ space

target objective Is duality gap, and is zero at
optimum

try to solve (Lagrange) optimality conditions



primal dual

mincdx st F(z) =0  max— Tr (FpZ2)
s.tZ -0, Tr F;,Z = ¢
optimality cond. if(x, Z) is primal-dual feasible
>0

z "
de =Y a/Tr ZF; =Tv ZF(x) —Tr ZFy > —Tr ZF

1=1

hence global optimality pairs:, ) such that

Tr ZF(x) = 0 since primal and dual obj. coincide at solution



solve Tr ZF(x) =0
subjectto  Fy+ >, x;F;i =0
Z =0, TrF;Z=c,1=1,...,n
Actually, one tries to solvdr Z F'(x) = ul for
decreasing value of (x — 0)

Newton steps for the linearization @f 7 F'(z).
superlinear convergence can be guaranteed

|zke1 — zoptll < |z — zoptll?s ¢ > 1

very efficient in practice !



MATLAB LMI toolbox

DSDP
SDPpack

SeDuMi
Imitool-2.0
Cutting plane methods



ftp addresses, codes, papers, courses on SDP
Nttp://orion.math.uwaterloo.ca:80/ hwolkowi/hennfta@re/readme.htn
nttp://www.zib.de/helmberg/semidef.html
nttp://rutcor.rutgers.edu/ alizadeh/sdp.html




Schur’s complements (see previous)
LMIs and quadratic forms
multi-convexity, monotonicity, etc.
Finsler's lemmas

Projection lemmas

changes of variables

augmentation by slack



S-Procedure transforms quadratic problems into
LMIs(possibly conservative)

given();’s symmetric or hermitian matrices, define
Fo(z) = 2'Qox, Fi(x) = 2'Qux, ..., Fr(z) = 2'Qpx,

Fy(x) < Oovertheset Fi(z) <O0,...,Fr(z) <0
whenever ds; > 0,..., sy > 0 (slacks), such that

L

L
Z ) <0 orlMI Qg — » Qi X0

1=1



converts checking the sign of a quadratic form over
a subspace into solving an LMI problem

7'Qr <0,V #0, Mz =0
If and only there exists a scalarsuch that
Q—ocMM =<0

Mx = 0 can also be formulated asM'Mx = 0
proof via convexity of numerical ranges



convert family of constrained quadratic inequalities

Into an LMI feasibility problem
() = ()’ andM given, and a compact subset of real

matricesU
we have the equivalenceforall U € U,

7' Qr <0, Vo #0with UMz = 0,
Iff there existsO s.t.

Q+ MOM <0
N(’]@NU ~ 0, VU € U

whereMN; is basis of nullspace df



given a functionf (41, ...,0x)

It IS multi-convex function If separately convex
along each direction

multi-convexity is weaker than convexity

e convexity Iff e Mmulti-convexity Iff
0? 0? |

Turn parameter-dependent LMIs into finite set of
LMIs.



givenV¥ = ¥’ ¢ R"™™, P, () of column dim.m
find X such that

U+ PX'Q+QXP <0

let columns ofNp, Ny form bases of the null spaces
of P and(

Inequality is solvable foX If and only If
Np U Np<0 NV NG =<0
(Gahinet& Apkarian 1993)



Stability

Ly gain orH,, horm
Hs norm

Pole clustering



Equilibrium points

& = f(z)

are defined as the solutions of

0= f(x").

system has trajectory(t) = «*, vVt > 0 if initialized
atx”
From now on, we assume = 0.



stablility (simple)
VR>0,3r > 0,||z(0)|| <r=Vt>0,|z(t)|] < R

asymptotic stability
If It Is stable and

dr > 0, ||lz(0)|| <r = z(t) — 0, ast — o

exponentially stable
If 3a > 0and\ > 0s. t.

vt >0, [[z(t)]] < oz (0)[e

INn some ball.)\ rate of conv.



AssumeD Is open region containing* = 0.
A functionV (x) from R" into R is positive
semi-definite on a domaip If

(1) V(0) =0
(2) V() >0, Ve e D

A functionV (x) from R" into R is positive
definite on a domaib If

(1) V(0) =0
(2) V(z) >0, Vx e D, x #0



Cz < Co < (1
Typical level curves of positive-definite functions



if « is state of systemr = f(x), thenV (z) is
implicitly a function of time. Its time derivative Is

o dV(z) oV aV
Vo) == = a: ¥~ g, /@)

sincez is constrained to satisty = f(x).
It Is referred to as derivative of along the system
trajectories (also Lyapunov’s derivative).



V(z) is a Lyapunov function of the system
T = f(x)if
it is C! with respect tor on D
It IS positive definite (see earlier) an

Its derivative on the system trajectories Is negative
semi-definite, that is,

V(z) <0, onD

as a function of.



If In a ball around the origin=£ z*), there exists
V(z) in C! such that

V (x) is positive definite

V(z) is negative semi-definite

then the equilibrium point* = 0 Is (loc.) stable. Itis
asymptotically stable it/ (z) is negative definite, i. e.,

V(z) <0, Vo # 0, x € ball

as a function of:.
global stability if ball= R".



V(z) <0

angle between derivatives is greater than Y0 deg.



the system
d

—x = Ax

dt
IS exponentially stable if and only if there exists

with
X =0, AX+XA<0
why ?
V(r)=2'Xux

IS a quadratic Lyapunov function



perturb Lyapunov LMI to
AX+XA+eX <0

for any state trajectory(t), we infer
(1) (A'X + XA)x(t) +ex(t) Xa(t) <0

and thus

%x(t)’Xx(t) +ex(t) Xx(t) <0



IS

note that solution of

%x(t)’Xﬂ?(t) +ex(t) Xa(t) = 2(t) with z(t) <0

Viz(t)) = 2(0) Xx(0)e +/ e T 2 (1) dr



we have, with initial conditior:(0) yields
(1) Xx(t) < 2(0) Xx(0)e
finally, using

Auin(X) [[2]]* < 2/ X2 < Ayax (X) |2

Jo(t)] < x<o>\/ e fort =

system Is exponentially stable !



AssumeA is stable(Re A\;(A) < 0) and consider for
Q) > 0, the (well-defined) integral

—(Q) = /:O%(eAtheAt)dt

— / (A Qe + eAtQeA A)dt
0

0

= AP+ PAwith P := / eAtQeAtdt -
0



finally, we have
AP+PA=-Q <0, P>0.

LMI problem has a solution whenevéris stable.

condition is iff « for linear systems quadratic
Lyapunov functions are rich enough



Energy gain not larger than with w € L, and
z(0) = 0, every trajectory of

%x = Az + Bw
z = (o + Dw

should satisfy
|zllz < yllwll2,  Vw € Ly

or



stable and thé, gainw — z i1s smaller thany If
and only if there existx > 0

TAX+ XA XB O
B'X —~I D" | <0
i C D —~1

freq. domain||C(sI — A)~' + D|| < 7 via KYP.
similarly, H, norm, LQ, LQG, many others ...



necessity call for general LQ theory.
we shall only prove sufficiency.



e Note first that the1, 1) block of the LMI implies
that A Is stable

e By Schur complement, LMI is rewritten

AX + XA XB} NS {C’

BX -4l D’} C DI=0

eft- and right-multiply with {i((?)} yields ...



d

—V

dt
r———— —
' (AX +XA)x + 2’ XBw+wB X

—yw'w + 122 <0



integrate ovef0, T'] and exploitz(0) = 0:
T
oTYX(T)+ [ (0] = Al Pt < 0
0
Recall X = 0 and takeél’ — oo (w € L»).

/’wwwﬁsffwm@sto
0 0

Can perturby to v — ¢ to get strict inequality



Forw € R, left- and right multiply with

(Jw — A)_lB
1
to get
YT (jw) T(jw) =4I <0
hence

ITGw)l| <v, VweR
From the right-lower block, we also get

—~I D
{g _7[}<0 or || D|| <~



finally,
|T(jw)|| <~ forw e RU {oo}
hence,

Tl = sup [IT(w)] <.
weRU{oo}



H> norm of T’ defined as

1 > . .
T2:¢%ﬂ/'ﬂwmwmm

In the time domain (via Parseval)

| T2 := \// Tr (CedtB)' (CeAtB) dt
0



Easily computed by solving linear equation

APy+ RA'+BB =0 = ||T|3=Tr(CPC"
AQy+ QuA+C'C=0 = ||T|}=Tr(B'QyB)

Why ? see stabllity notes.
note thatD = 0 for H, norm to be well defined.



w white noiseg = Az + Bw, z(0) =0, z = Cx.
Recall: with solution of

P(t) = AP(t) + P(t)A' + BB, P(0)=0
we haveFE (z(t)z(t)) = P(t).

Hence
lim E(z(8)'2(t)) = lim E(x(t)C"Ca(t))
= tLIgOTrE(Cx() z(t)' C")

)
= Tr (CRC") = |13

asymptotic variance of output of system.



let z; be impulse response 8e;d(¢) with standard
unit vectore; of

= Ax, x(0) =x9, 2 =Cx

/ 2i(t) 2 (t) dt = / B;eA”fC’OeA’fBj dt
0 0

v'v = Tr (vv') and) ;. B;B; = BB" implies

3 / ()P dt = | T3
j 0



With A stable, it is easy to see that

Tr (CPy)C") < v* for APy + PyA' + BB =0
If and only If there existsX with

Tr (CXC") < ~*andAX + XA + BB <0.

for <= take difference of Lyapunov conditions



for = since trace inequality Is strict and by
continuity there exists > 0 and.X such that

AX + XA+ BB +eI =0, Tr(CX(C <
Note thatAX + XA’ + BB’ < 0 and

X = / "(BB' +el)ettdt = P,

Hence,

|C(sI—A) "Bz, :=Tr (CPC) < Tr (CXC') <



& Alis stable and/T'||3 < v ifand only if Y = 0 with
Tr (CYC <~, AY +YA +BB <0

or if and only iIf X = 0 with
Tr(B'XB)<~, AX+XA+C'C<0



to shape transient responses of closed-loop system

damping, settling time, rise time related to location
of poles

useful regions: vertical strips, disks, conic sectors,
etc

An LMl region 'R Is defined as
R={2€C:U+22V+zV' <0}.



a large variety of regions can be represented this
way
Intersections of LMI regions are LMI regions




Characterization

LMI Regions
. ()_[—a—i—%(z—{—i) 0 }
Bl 1 RS 0 ~ 1z +72)
— 1 S [e—3G-2 0 ]
B fR()_[ 0 B+ 4(z—2)
<]
r 2y — —r q-+ =z
m fr(2) [q+5 —T']

__[sin0(z+2) cosf(z — %)
Ir(2) = [cos 0(z —z) sinf(z + z) ]



System%x = Ax has all its poles in LMI regioiR

Iff there existsX > 0 s. t.
URX+VeAX)+V' @ (XA) <0.

Is an LMI with respect toX.
(® is Kronecker product @ B := ((4;;5)))

classical Lyapunov theoremwith =0,V =1
Intersection by diagonal augmentationlof V.

other specs. can be combined by just merging LMI
constraints



condition Is
X =0, U X+VeAX)+V' ®(XA) <0.

pick an eigenpair ofd, (A, v), Av = Av, and pre- and
post-multiply inequality by ® v*, I ® v, gives
>0

—"—

(V' X0) (U+ XNV +AV) <0
Hence,

U+ XNV + AV <0.

Implies \*, A are InR.



formulation

linearizing change of variables
state-feedback synthesis
output-feedback synthesis
projected form.



synthesis structure

Rl =

given P(s), find K (s) to achieve a set of

specifications for channels;, — 21, wy — 29, ...



min HTw%<—zé”2

HTwéo<—ZC1>OHOO < M1, |’Tw§<—z§”2 < 72

poles in LMI regionk .



synthesis interconnection

4y = Av+ Biw+ By, AeR™"
P(S) Z — Chz + Dyyw + D1su
Yy — CQZL’ T D21w

Stabllity, Perfo..H.,, H,, pole plac. on various
channels



compute closed-loop data

write stability/performance (ineg.) conditions in
closed loop

apply congruence transformations
use suitable linearizing transformations




e turns out to be very simple problem

r = Ax+ Byw + Byu, Ae R™"
CllE -+ DHUJ + Dlgu
y = x <«— measurable state vector

P(s)

and
uw = Kx <+— state-feedback

closed-loop data are

z = (C1+ DppK)x + Djjw



characterization i >~ 0 and

B1X —~I < 0
C1+ DK Dy =l

perform congruence transformation
diagY = X!, I,1)togetY = 0 and

(A4 BoK)Y +Y(A+ BoK) % X
(Cl —+ Dng)Y —’7] X
Bi D’11 —1

<0,



noteY is invertible perform change of variable
W =KYtoget LMI!'Y = 0 and

_AY —+ Y A’ 4+ BQW -+ (BQW), >k *
CY + DpW —I x| <0.
B; Dy 1

note change of variable is without loss (NSC)
when solved, deduce (state-feedback) controller
using
K=WYy!.



< (Y, KY) solution— (Y, W) easy

= (Y, W) solution— (Y, KY)
note that termB, W is B,WY ~1Y hence

(Y, K = WY 1) is a solution.



similar derivation
characterization

(A + BQK)/X + *x + (Ol -+ Dng)/(Cl -+ Dng) < 0,
Tr (B, XB,) < 1

become via Schur complements

(A+BQK)/X+* *k <0
(Cl —+ Dng) —/

{Z B

5 Xﬁ}jogn2<n2
1



perform congruence transformations
diagY = X1, I) and diag/, Y) to get

AY + BoKY + % % ~0
CY + DpKY -1

Z BY
YB, Y

}zoyH2<n2



change of variablél’ = KY yields LMIs!

AY + BoW + % % ~0
CiY + Do W —1 ’

with
{ 7 BY

2
vE, v }zo, Tt Z < n



similarly Y >~ 0 and
URQY +VR(A+BK)Y+V'Y(A+ByK) < 0.
change of variablél’ = K'Y leads to LMI!:

Y >0
URY +V R (AY + BBW)+ V'@ (AY + B W) < 0.



theY’s are not the same for all perfs.

hard problem is relaxed by taking a singidor all
perfs.

technique is constantly refined to exploit different
Y’s by spec. (active area).



A | B 0 I

= 0O O 0 + I 0

AK B
Ckx Dg

]'Ao B, | [ 0 B

0
Doy ’

C1 | Du Co 0

i Cl 0 Dll i i 0 D12 i

Above analysis condition must be satisfied In
closed-loop. Synthesis conditionsdrsteps

1- introduce a single variablB common
specification/channel (conservative step),

2- perform adequate congruence transformations,

3- use linearizing changes of variables to end up with
LMI synthesis conditions.



Introduce notation

X N » Y M
,P — 9 ,P —
N % M %
FromPP~! = [ infer
_ Y || I X
Plly =1Ix with IIy = , IIx =
M 0 0 N’

Define change of variable (wloly, M are invertible)

A = NAgM' + NBgCoY+ XBoCrM' + X(A + BaD C)Y,
(1)

AN

By = NBg + XBsDy, Cx :=CxgM' + DiC5Y, Dy = Dy

and, perform congruence transformations to get

linear terms in the new variablex, Y, ﬁK, EK, CAJK, f)K !



L1 Al + (A+ Bo Dy Cy) «

A\K—'—(A—'—BQﬁKCQ)/ Loo *
(B1 4+ Ba Dy Do)’ (XB1 + B Do) —~I
C1Y + D12Ck C1 + D1oDgCo D11 + D12Dg Doy
where

*

*

*

_ﬂ}/I |

<0

Li1 ;=AY + YA’ + BQ@K + (BQC\’K)/, Los = A/X—|— XA + EKCQ + (EKCQ)/ .

similarly for H, and LMI region specs.

for multi- channel/objective just stack together

various LMI specs.



[ AY + YA’ + ByCk + (B2Ck)’ x

Ai + (A+ BoDgCy) A’ X+ XA+ By Co + (BgCs)
i C1Y + D12Ck C1 + D12 Dk Co
i Y I Bi + B2Dg Doy |
I X XB; + By D2
| (B1+ BoDgD21)  (XBi + BgDa1) Q |

Tr(Q) < v, D11 + D12Dg Dy = 0.

- 0

Y
I

.
X




congruence digdly, ..., Ily) yields

()\jk { f ;} + Lk { AY}TCK ;izgjgj } + *) < 0.
S

~ 0
I X




again for multiple constraints take the sarxieY’
andAyx By, ... for all LMIs.

controller construction: just reverse the change of
variables



For a single objective, LMI can be simplified,
Projection Lemmayields

Ny‘O
0 |1
Nx |0
0 |1

i

[ AY+ YA YO, | B
C1Y —vI | D11

B! D, | =4I
 A'X+ XA XB, | C]
B/ X —~I | D,

Cq Dy | =1

Ny andNx null spaces oi{ B, D, ]and[ C> D2y ]




very general wrt DGKF, no assumptions required
singular problems

admits similar discrete-time counterpart
has educational value for students (shorter proofs)

Seehttp://www.cert.fr/dcsd/cdin/apkariarior
detalils

SeemMatriLas LMI Control Toolbox for codes.



Lyapunov technique
Time-invariant and time-varying parameters
Parameter-dependent Lyapunov functions.



Consider the uncertain system

d
%x(t) = A(d) x(t); z(0) = xg
6 =[01,...,0r] € RF uncertain and possibly

time-varying real parameters
A(5) — Ay +01A1+ ...+ 07 AL

AL

/ S(t " t) ]
S ;

IS the system stable for all admissiblg) ?




The system is Affinely Quadratically Stable Adf
V(I, 5) = I’/P(5)I, P((S) — By+o1Pi+.. . +or Py

S. 1. Vix,d) >0, dV/dt < 0 along all
admissible parameter trajectories.
Lyapunov theory=- (exponential) stability.

P(5) I:PO—|—51P1—|—...—|-5LPL > (

L(6, §0) = A(8YP(5) + P(8)A(s) + £ < 0

turned into LMIs=- multi-convexity, S-procedure ,...
!




cases extensions components
Time-Ilnvariant [, H,, LMl LFT uncertain-

Parameters regions,... ties

Arbitrary rate of nonlinear com-

variation ponents

(quad. stab.) (IQC  theory,
(Rantzer &
Megretsky)

1 analysis



motivations and concepts
classes of LPV system
synthesis conditions for LFT systems



handle full operating range

gain-scheduled controllers exploit knowledge on
the plant’s dynamics in real time

knowledge on plant

|

measurement signal controller control signal
dynamics [~

controller mechanism is changed during operation



Gain-Scheduling techniques are applicable to
e Linear Parameter-Varying Systems (LPV):

4y = A(O)z+ B(O)u,
y = C(0)r+ DO

wheref := 6(t) is an exogenous variable.
e “ Quasi-Linear” Systems:

Lt T A(Ysche)T + B(Ysche ) U
Yy = C(Ysche)T + D(Yscne ) u-

wherey..,. 1S @ sub-vector of the plant’s outpuit



to get higher performance

some LPV system are not stablilizable via a fixed
LTI controller

bypass critical phases of pointwise interpolation
and switching

engineering insight is preserved (freeze scheduled
variable for analysis).

nonlinear models can be handled by immersion
iInto an LPV plant.



Aeronautics (longitudinal motion of aircratft)

A It s ) PN o P i |

whereZ,, m, andmg are functions of speed, altitude and
angle of attack.

Robotics (flexible two-link manipulator)
M(62)4(t) + Dq(t) + Kq(t) = Fu(l),

wheref, Is the scheduled variable (conf. &1id beam).

and many others



example: different control principles
e K P(O)—
T Robust control
l 0
() P(O)| -
T LPV control
Yy
Y Output

_,T—»K(y) Ply) 1~ gain-scheduling

97



LPV systems

t = A(f)xr+ B(0)u,
y = C(@)x+ D(0)u.

are characterized by

the functional dependence %fég 58 ond,

the operating domai® of the system trajectories,
0(t) € O,

the rate of variations df(¢) (if available) in the
form of bound9);(t) € [6;; 6,].

-1




LPV  9(t) e ©
VIS §
freeze parameter select trajectory
=% (1) = 6°(1)
LTI & - LTV

freeze the time
= 1y



LTI and LTV systems are off-line systems, the
state-space daté4, B,... andA(t), B(t),... must be
known In advance.

LPV systems are on-line systems since the
dynamics depend on the trajectdiy)
experienced by the plant 8.



r = A(@)x + B(0)u, 0(t) € ©
y = C(0)x+ D(0)u.

6 may be subject to various assumptions:
¢(t) is uncertain— robust control problem,

¢(t) is known in real-time— Gain-scheduling
problem,

O(t) = (1) , whered; is known and), is
by (1)

uncertain— mixed problem



e stability over a domain
LTI Stability : Re\;(A(0)) < 0, VO € O,

LPV Stability : ®4(¢t) — 0, fort — oo, for all
trajectoryd(t) in ©.

e Intuitive conjectures like

LTI stability = LPV stability,
LPV stablility = LTI stabillity,

are FALSE |



e Conjecture#1

j71 o —1 + CLQ% 1+ a9192 I1

o | | =14 ab,0s —1—|—&9% To |’
with trajectoried); := cos(t) andf,(t) := sin(t) is

LTI stable (fora < 2) but LPV unstable.
e Conjecture#2

$.1 o —1—59192 1—59% L1
To| | —14502 —1+5010,| |x2]|’

with trajectoried); := cos(t) andfy(t) := sin(t) is
LTI unstable (poles+-1 and—3) but LPV stable.



consider the autonomous LPV system:
i+ wi(t)r =0,

where we are allowed to switch between two valuesndws.

AL2 system
trajectories
switch
Wi
; _ X1
W2

unstable behavior



e Sufficient stability cond. e Sufficient instability cond.

(1) Re);(A(0)) < 0, (1) Re\(A(M) < 0
(2) [|0]| < a, with a sufficiently: = 1,... .k
small, (2) Re\;(A(0)) > 0,

= LPV stability (Rosen. 63) i=k+1,....n
(3) stable and unstable eigen-
values do not mix
(4) 1|0 < o, with « sufficiently
small,

= LPV instability (Skoog 72)



LPV stability can be inferred from LTI stability for slowly
varying parameters (but not constructive conditions).



—| diag(6;1,,)

A B, B1/|
y Co Dgg Doye u
 C De D |

{Aw) B(@)l::{f‘ B}+{§.€9]@(I‘D99@>_1[CG Dga ],

where



A(0) B ; ;
0 € O, O Polytope { () (9)}€C0V{{Az Bl} v e=1,2,..., 7’}

% C(6) D) C; D




A(0), B(6), C(0), D(0) are arbitrary but continuous
matrix-valued function o#.

far more difficult to handle but of great practical
Interest since they capture arbitrary nonlinearities



- —_——— — —_— —_— —_— —_— —_— —_ -

gain—scheduled controller



find LPV controllerF;(K (s),O(t)) s.t.
closed-loop stabillity,

the Lo-induced norm of the operat@i,_. .
satisfies|T,,..(O)| <~

for all admissible trajectory(t).



"Dog Do Dg2] [Co]
P(S) = Dlg D11 D12 —+ Cl (S]—A)_l [Bg Bl BQ} ,
_D29 D21 D22_ _02_

Assumptions( A, By, () stabilizable and detectabl®,, = 0.

N TG - Dgy D
Notations:B; = [B@ By ], Cl = [ 9] , D11 = [ 7 91] ,
Dl@ Dll

Ch
Ny :=Ker[B! D), D{, 0],
NX = Ker[CQ DQQ D21 O}



synthesis structure synthesis structure
with parameter augmentation

o(t)
<0 we
O(t) 0
y4 P W B
O — o ¢ r 0o OM® |z
y u : ] }tz_g ______ w ﬂ:
. Z P(s) -
K(s) | '~
<~ |L i _\ ________ e :Pa(s)
Z0 We | y u




redraw the control configuration into a robust
control problem with repeated uncertainty,

formulate the Bounded Real Lemma with scalings
for the closed-loop system,

apply the Projection Lemma to derive the LMI
characterization.



- AY + Y AT * * * *x
CoY + Fng —Xi3 + Fnge — DygglI's * * *
Y —DqgI'3 —~1 * * Ny <0,
23Bg1 ESDgG 23Dr'f9 —23 *
! BT D}, D, 0 —~I.
- ATX + XA * * * *x
BgX +T3Cy —S3+1T3Dgg — DgeT3 * * *
Bl X —D} T3 —I % * | Nx <0,
3309 SgDQQ S3Dgl —53 *
_ C1 D¢ D11 0 —1
{Y I} <0
I X |~

S3 >0, X3 > 0; T3, I'3 skew — symmetric.



e Symmetric

Se :=1{S:5 >0, 50 =068}

e Symmetric augmented

S1 9

S@@@ — {[ST g ] : Sl, Sy € Se andsS,0 = @SQ,\V/@ c @}
2 3

e skew-symmetric

Ty s

T T ] Ty, Ty € Tg andT,0 = OT,,V0 € O},
— 15 3

Tege :{[



) AQXCE =+ XCEACK
BCZEXCg + TCu
CC€

where

XCEBCE =+ Cg;TT
—S+TD. + D(‘QTT
Dcﬁ

Aq, B, ... closed-loop data

S, T'scalings for® ® ® ® A, andA fictitious
performance block.

T -
CCE

T
D cl

g1

<0



Can be rewritten
U+ QxQP +POMQx <0,
where

CATX 4+ XA XuB + Tt
U= | B'X,+T7TC, —-S+TDy+DyT?
C; Dy

P=[C, Dy 0], QX:[BQTXCZ D, T*




A B
C1 D11
Co D2

and

e LMI characterization follows from ex

B2
D12
QT

B = [By

|

A 0 0 By B 0 By O .

0O O 0O O 0 I 0 0

0 0 0O O 0 0O O 1

Coy O 0 Dgy Dgy 0 Dy O

Ci O 0 D19 D11 0 Di2 O

0 I 0 0 0 AL ck, CL,

Co O 0 D29 D2 Biey Di11 Dig

0 0 I 0 0 Bis Diip Digy -
~ C ~ [ D D

Bil, Cl:{cﬂ’ D= Dy Duy

plicit computation of

projections and using matrix completion Lemmas.



Testing solvability falls within the scope of convex
semi-definite programming

A gain-scheduled controller is easily constructed
from the quadrupleéY’, X, L3, Js3) by solving a
scaled Bounded Real Lemma LMI condition.

Ax Bgrgi1i Brke |
Crk1 Dgrgi1i1 Dkie

Cro Dro1 DKool

o(t)




polytopic LPV systems

general LPV systems (capture slow variations of
parameters)

LFT systems ang generalized scalings
multi-objective/channel LPV synthesis

see webpageéittp://www.cert.fr/dcsd/cdin/apkarian/



most analysis problems reduce to LMIs

some synthesis problems reduce to LMIs but

many practical problems do not reduce to
LMI/SDP (synthesis)

reduced- and fixed-order synthesis (P, etc.)
structured and decentralized synthesis problems

general robust control with uncertain and/or
nonlinear components

simultaneous model/controller design, multimodel
control

unrelaxed LTI and LPV multi-objective
combinations of the above



new algorithms needed ! good research direction



stabilize has characterization

= Ax + Bu NLA'X + XANe < 0
Yy = Cx é/(YA/ AY)NB/ < 0
. . X 1
with v = Ky (K static) {] Y} > 0
XY =1 =0

constraintsX'Y — I = 0 leads to hard problems
LMI + nonlinear equality constraints



with g(x) = 0 equ. constraints and(z) < 0 LMI,
replace the difficult program by the more convenient

minimize cz 4 Ng(x) + %HQ(I)H2
subjectto A(xz) <0

(PML)

pis penalty,x, — x* wheny — 0

for good estimates\ (Lagrange multiplier),

solution of(P, ,,) is close to solution of original
problem

use first-order update rule to improve estimate
solve (P, ,) by a succession of SDPs



B. Fares and P. Apkarian and D. Noll, 1JC, 2001

B. Fares and D. Noll and P. Apkarian , SIAM
Cont. Optim. 2002

P, Apkarian and D. Noll and H. D. Tuan, 2002,
JRNC to appear.

D. Noll and M. Torki and P. Apkarian, working
paper, 2002




A single framework for a great variety of methods

LMI technigues extend the scope of classical
techniques

LPV control is a very successful example
(industrial)

Analysis meth. immediately applicable for
validation

Have educational merits
seehttp://www.cert.fr/dcsd/cdin/apkariarior
course plan

not discussed: robust filtering and estimation,
combinatorial optimization, graphs, etc.



Analysis robustness evaluation of controllers for:
ARIANE Launcher
satellites
long flexible civil aircraft (structural modes)
SynthesisPreliminary tests show that LPV

controllers are competitive for launcher control in
atmospheric flight

Synthesiscontrol of the landing phase for civil
aircraft under study with multiobjective LMI
methods

SynthesisMissiles ? still on paper



GRAZIE MILLE !
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