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2Seminar Outline

♦ Linear Matrix Inequalities and SDP
♦ Tricks to reformulate into LMIs
♦ System concepts via LMIs
♦ Multi-channel/objective with LMIs
♦ Uncertain systems analysis
♦ Gain-scheduling and LPV synthesis
♦ Hard non-LMI problems
♦ Conclusions, perspectives.
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3Linear Matrix Inequalities and SDP

• Definitions, manipulations
• Schur’s complements
• Classes of convex optimization problems
• Semi- Definite Programming
• Algorithms to solve SDP, duality, complexity
• Software, links.
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4linear matrix inequalities

an LMI is a constraint on a vectorx ∈ R
n:

F (x) := F0 + x1F1 + . . . + xnFn � 0,

whereF0, F1, . . . , Fn are symmetric matrices

➠ � is inequality on symmetric matrix cone

➠ LMI equivalent toλmin(F (x)) ≥ 0

➠ F (x) � 0 iff η′F (x)η ≥ 0, ∀η

➠ F (x) � 0 iff det {ppal mat.} ≥ 0

➠ F (x) ≻ 0 iff η′F (x)η > 0, ∀η 6= 0

– p. 4/129



5geometry of LMIs

➠ an LMI de fine a
convex set

F (λx+(1−λ)y) = λF (x)+(1−λ)F (y) � 0

wheneverF (x) � 0,
F (y) � 0

➠ set with non
necessarily smooth
boundary (corners)

➠ describe wide variety
of constraints

plane and curved faces

LMI
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6LMI - diagonal augmentation

LMI constraints

F1(x) � 0, . . . , Fq(x) � 0

are equivalent to single LMI constraint




F1(x) 0 . . .

0 .. . 0
... 0 Fq(x)



 � 0 LMI 1

LMI 3

LMI 2
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7linear constraints

finite set of scalar linear (affine) constraints

a′ix ≤ bi, i = 1, . . . ,m

can be represented as LMIF (x) � 0, with

F (x) = diag(a′1x− b1, . . . , a
′
mx− bm)

LMI
polyhedral
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8Schur complements

partitioned symmetric matrix

P :=

[
P1 P2

P ′2 P3

]

S = P3 − P ′2P
−1
1 P2 is the Schur complement ofP1 in

P (providedP1 invertible)

Schur complement lemmas

➠ P ≻ 0 if and only if P1 ≻ 0 andS ≻ 0

➠ if P1 ≻ 0, thenP � 0 if and only if S � 0
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9Schur complement consequence

complicate constraint in variablex

P3(x)− P2(x)′P1(x)−1P2(x) ≻ 0

is turned into simpler one
[

P1(x) P2(x)
P2(x)′ P3(x)

]
≻ 0 .

provided thatP1(x) ≻ 0.
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10ellipsoidal constraints

an ellipsoid can be described in different ways
• as‖Ax + b‖ ≤ 1, iff
[

I Ax + b
(Ax + b)′ 1

]
� 0

• as(x−x0)
′W (x−x0) ≤

1, with W > 0 iff
[

1 (x− x0)
′

(x− x0) W−1

]
� 0

LMI
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11fractional constraints

consider fractional constraints

(c′x)2

d′x
≤ t

Ax + b ≥ 0

(assumed′x > 0, wheneverAx + b ≥ 0)
can be represented as

[
t c′x

c′x d′x

]
� 0

Ax + b ≥ 0
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12convex quadratic constraints

Convex quadratic constraints can be rewritten

(Ax + b)′(Ax + b)− c′x− d ≤ 0

has the LMI representation
[

I Ax + b
(Ax + b)′ c′x + d

]
� 0

• can be used to show that convex quadratic
programming can be solved via SDP

– p. 12/129



13classes of convex optimization problems

• linear prog. (LP)

minimizec′x, Ax � b

(componentwise)
• convex quadratic prog. (CQP)Qj � 0

minimizex′Q0x + b′0x + c0

s.t.x′Qix + b′ix + ci ≤ 0

All (and others) are generalized by SDP !:
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14LMIs in control

with P variable
• Lyapunov inequality

A′P + PA ≺ 0

can be represented in
canonical form

F0 +
n∑

i=1

xiFi ≺ 0

pick a basis(Pi)i of the
symmetric matrices,

P =
∑

i

xiPi

hence recover the canoni-
cal form with

F0 = 0, Fi = A′Pi+PiA
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15symmetric matrix expressions are LMIs

• Any (symmetric) linear constraints in the variables
X, Y

AY B + (AY B)′ + X + . . . � 0

can be represented in the canonical form

F (x) = F0 + x1F1 + . . . + xnFn � 0

by appropriate selection of theFi’s.
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16Riccati and quadratic matrix inequality

quadratic matrix inequality inP

A′P + PA + PBR−1B′P + Q � 0

whereR > 0, is equivalent to LMI
[

A′P + PA + Q PB
B′P −R

]
� 0

(proof by Schur complements)
Riccati-based control method can be solved via LMIs
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17classes of semidefinite programs

• I feasibility problem:

find x : F0 + x1F1 + . . . + xnFn � 0

• II linear objective minimization subject to LMIs

minimizec′x, s.t.F0 + x1F1 + . . . + xnFn � 0

• III generalized eigenvalue minimization

minimize λ

subject to A(x)− λB(x) � 0, B(x) � 0, C(x) � 0

(A, B, C affine symmetric expressions inx)
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18solving LMI - a rich set of algorithms

much work and progress since 1990 !

➠ primal interior-point method (method of centers)

➠ primal-dual interior-point method

➠ non-differentiable methods (bundle, ...)

Primal-dual methods very efficient.
other fast algorithms under development (aug.
Lagrangian)
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19central property

because of structure and convexity
algorithms are guaranteed to find global solutions !
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20primal-dual IPMs

ideas:

➠ instead of working in primal space, formulate
problem in “primal-dual” space

➠ target objective is duality gap, and is zero at
optimum

➠ try to solve (Lagrange) optimality conditions
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21SDP duality

• primal

min c′x s.t.F (x) � 0

• dual

max− Tr (F0Z)

s. t.Z ≻ 0, Tr FiZ = ci

• optimality cond. if(x, Z) is primal-dual feasible

c′x =
n∑

i=1

xiTr ZFi =

≥0︷ ︸︸ ︷
Tr ZF (x) −Tr ZF0 ≥ −Tr ZF0

hence global optimality pairs(x, Z) such that

Tr ZF (x) = 0 since primal and dual obj. coincide at solution
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22mechanisms of primal-dual algorithms

solve Tr ZF (x) = 0

subject to F0 +
∑n

i=1 xiFi � 0

Z ≻ 0, Tr FiZ = ci, i = 1, . . . , n

• Actually, one tries to solveTrZF (x) = µI for
decreasing value ofµ (µ −→ 0)
• Newton steps for the linearization ofTr ZF (x).
• superlinear convergence can be guaranteed

‖xk+1 − xopt‖ ≤ ‖xk − xopt‖
q, q > 1

very efficient in practice !

– p. 22/129



23SDP software

➠ MATLAB LMI toolbox by Gahinet, Chilali, Laub,
Nemirovski

➠ DSDPby Benson, Ye

➠ SDPpackby Alizadeh, Haeberly,
Nayakkankuppam, Overton

➠ SeDuMiby Sturm

➠ Imitool-2.0by Boyd et al.

➠ Cutting plane methodsby Helmberg, Oustry,
Kiwiel, etc.

➠ Many others ...
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24ftp addresses for SDP

• ftp addresses, codes, papers, courses on SDP
http://orion.math.uwaterloo.ca:80/ hwolkowi/henry/software/readme.html#combopt

http://www.zib.de/helmberg/semidef.html
http://rutcor.rutgers.edu/ alizadeh/sdp.html
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25tricks to turn hard problems into LMIs

• Schur’s complements (see previous)
• LMIs and quadratic forms
• multi-convexity, monotonicity, etc.
• Finsler’s lemmas
• Projection lemmas
• changes of variables
• augmentation by slack
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26S-Procedure and quadratic inequalities

➠ S-Procedure transforms quadratic problems into
LMIs(possibly conservative)

givenQi’s symmetric or hermitian matrices, define

F0(x) = x′Q0x, F1(x) = x′Q1x, . . . , FL(x) = x′QLx,

F0(x) < 0 over the set F1(x) ≤ 0, . . . , FL(x) ≤ 0
whenever ∃s1 ≥ 0, . . . , sL ≥ 0 (slacks), such that

F0(x)−
L∑

i=1

siFi(x) < 0 or LMI Q0 −
L∑

i=1

siQi � 0
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27Finsler’s Lemma

• converts checking the sign of a quadratic form over
a subspace into solving an LMI problem

x′Qx < 0,∀x 6= 0, Mx = 0

if and only there exists a scalarσ such that

Q− σM ′M ≺ 0

Mx = 0 can also be formulated asx′M ′Mx = 0
• proof via convexity of numerical ranges
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28generalized Finsler’s Lemma

• convert family of constrained quadratic inequalities
into an LMI feasibility problem
Q = Q′ andM given, and a compact subset of real
matricesU
we have the equivalence• for all U ∈ U,

x′Qx < 0, ∀x 6= 0 with UMx = 0,

iff there existsΘ s.t.

Q + M ′ΘM ≺ 0

N ′UΘNU � 0, ∀U ∈ U

whereNU is basis of nullspace ofU
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29multi-convexity

given a functionf(δ1, . . . , δK)
• it is multi-convex function if separately convex
along each directionδi

• multi-convexity is weaker than convexity
• convexity iff

[
∂2

∂δiδj
f(δ)]1≤i,j≤K � 0

• multi-convexity iff

∂2

∂δ2
i

f(δ) ≥ 0, i = 1, . . . ,K

Turn parameter-dependent LMIs into finite set of
LMIs.
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30projection Lemma - two-Sided

givenΨ = Ψ′ ∈ R
m×m, P, Q of column dim.m

find X such that

Ψ + P ′X ′Q + Q′XP ≺ 0

let columns ofNP ,NQ form bases of the null spaces
of P andQ
inequality is solvable forX if and only if

N ′P Ψ NP ≺ 0 N ′Q Ψ NQ ≺ 0

(Gahinet& Apkarian 1993)
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31System concepts via LMIs

• Stability
• L2 gain orH∞ norm
• H2 norm
• Pole clustering
• . . .
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32stability & equilibria

• Equilibrium points

ẋ = f(x)

are defined as the solutionsx∗ of

0 = f(x∗).

system has trajectoryx(t) = x∗, ∀t ≥ 0 if initialized
atx∗

From now on, we assumex∗ = 0.
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33types of stability

• stability (simple)

∀R > 0,∃r > 0, ‖x(0)‖ < r ⇒ ∀t ≥ 0, ‖x(t)‖ < R

• asymptotic stability
if it is stable and

∃r > 0, ‖x(0)‖ < r ⇒ x(t)→ 0, ast→∞

• exponentially stable
if ∃ α > 0 andλ > 0 s. t.

∀t > 0, ‖x(t)‖ ≤ α‖x(0)‖e−λt

in some ball.λ rate of conv.
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34positive-definite functions of the state

AssumeD is open region containingx∗ = 0.
• A functionV (x) from R

n into R is positive
semi-definite on a domainD if

(1) V (0) = 0

(2) V (x) ≥ 0, ∀x ∈ D

• A functionV (x) from R
n into R is positive

definite on a domainD if

(1) V (0) = 0

(2) V (x) > 0, ∀x ∈ D, x 6= 0
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35postive-definite functions: level curves

Typical level curves of positive-definite functions

V (x) = c2

V (x) = c3
x1

x2

c3 < c2 < c1

V (x) = c1

O
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36Lyapunov derivatives

• if x is state of systeṁx = f(x), thenV (x) is
implicitly a function of time. Its time derivative is

V̇ (x) =
dV (x)

dt
=

∂V

∂x

′

ẋ =
∂V

∂x

′

f(x)

sincex is constrained to satisfẏx = f(x).
• it is referred to as derivative ofV along the system
trajectories (also Lyapunov’s derivative).
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37Lyapunov function: definition

• V (x) is a Lyapunov function of the system
ẋ = f(x) if

➠ it is C1 with respect tox onD

➠ it is positive definite (see earlier) onD

➠ its derivative on the system trajectories is negative
semi-definite, that is,

V̇ (x) ≤ 0, onD

as a function ofx.
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38Lyapunov theorem for local stability

• if in a ball around the origin (= x∗), there exists
V (x) in C1 such that

➠ V (x) is positive definite

➠ V̇ (x) is negative semi-definite

then the equilibrium pointx∗ = 0 is (loc.) stable. It is
asymptotically stable ifV (x) is negative definite, i. e.,

V̇ (x) < 0, ∀x 6= 0, x ∈ ball

as a function ofx.
• global stability if ball= R

n.
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39Lyapunov geometry

∂V (x)
∂x

x(t)

angle between derivatives is greater than 90 deg.
V̇ (x) < 0

0

˙x(t)
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40stability for linear systems

the system
d

dt
x = Ax

is exponentially stable if and only if there existsX
with

X ≻ 0, A′X + XA ≺ 0

why ?

V (x) = x′Xx

is a quadratic Lyapunov function
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41proof of exponential stability

perturb Lyapunov LMI to

A′X + XA + εX ≺ 0

for any state trajectoryx(t), we infer

x(t)′(A′X + XA)x(t) + εx(t)′Xx(t) ≤ 0

and thus

d

dt
x(t)′Xx(t) + εx(t)′Xx(t) ≤ 0

– p. 41/129



42trick !

• note that solution of

d

dt
x(t)′Xx(t) + εx(t)′Xx(t) = z(t) with z(t) ≤ 0

is

V (x(t)) = x(0)′Xx(0)e−εt +

∫ t

0

e−ε(t−τ)z(τ)dτ

hence

x(t)′Xx(t) ≤ x(0)′Xx(0)e−εt, ∀t ≥ 0 .
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43proof of exponential stability - continued

we have, with initial conditionx(0) yields

x(t)′Xx(t) ≤ x(0)′Xx(0)e−εt

finally, using

λmin(X)‖x‖2 ≤ x′Xx ≤ λmax(X)‖x‖2

gives

‖x(t)‖ ≤ ‖x(0)‖

√
λmax(X)

λmin(X)
e−εt/2 for t ≥ 0

system is exponentially stable !
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44necessity of Lyapunov inequalities

AssumeA is stable(Re λi(A) < 0) and consider for
Q ≻ 0, the (well-defined) integral

−Q =

∫ ∞

0

d
dt

(eA′tQeAt)dt

=

∫ ∞

0

(A′eA′tQeAt + eA′tQeAtA)dt

= A′P + PA with P :=

∫ ∞

0

eA′tQeAtdt ≻ 0
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45necessity continued

finally, we have

A′P + PA = −Q ≺ 0, P ≻ 0 .

LMI problem has a solution wheneverA is stable.

• condition is iff• for linear systems quadratic
Lyapunov functions are rich enough
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46energy gain orL2 gain

Energy gain not larger thanγ: with w ∈ L2 and
x(0) = 0, every trajectory of

d
dt

x = Ax + Bw

z = Cx + Dw

should satisfy

‖z‖2 ≤ γ‖w‖2, ∀w ∈ L2

or ∫ ∞

0

z(t)′z(t) dt ≤ γ2

∫ ∞

0

w(t)′w(t) dt
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47H∞ norm

• stable and theL2 gainw −→ z is smaller thanγ if
and only if there existsX ≻ 0

[
A′X + XA XB C ′

B′X −γI D′

C D −γI

]
≺ 0

• freq. domain‖C(sI − A)−1 + D‖∞ < γ via KYP.
• similarly, H2 norm, LQ, LQG, many others ...
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48H∞ norm

• necessity call for general LQ theory.
• we shall only prove sufficiency.
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49proof of sufficiency

• Note first that the(1, 1) block of the LMI implies
thatA is stable

• By Schur complement, LMI is rewritten
[

A′X + XA XB
B′X −γI

]
+ γ−1

[
C ′

D′

]
[C D ] ≺ 0

Left- and right-multiply with

[
x(t)
w(t)

]
yields ...
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50proof of sufficiency cont.

d

dt
V

︷ ︸︸ ︷
x′(A′X + XA)x + x′XBw + w′B′Xx

−γw′w + γ−1z′z ≤ 0
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51proof of sufficiency cont.

integrate over[0, T ] and exploitx(0) = 0:

x(T )′Xx(T ) +

∫ T

0

γ−1‖z(t)‖2 − γ‖w(t)‖2dt ≤ 0

RecallX ≻ 0 and takeT →∞ (w ∈ L2):
∫ ∞

0

‖z(t)‖2 dt ≤ γ2

∫ ∞

0

‖w(t)‖2 dt ≤ 0

Can perturbγ to γ − ε to get strict inequality
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52relation to frequency domain

Forω ∈ R, left- and right multiply with
[

(jω − A)−1B
I

]

to get
γ−1T (jω)∗T (jω)− γI ≺ 0

hence
‖T (jω)‖ < γ, ∀ω ∈ R

From the right-lower block, we also get
[
−γI D′

D −γI

]
≺ 0 or ‖D‖ < γ
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53relation to frequency domain

finally,

‖T (jω)‖ < γ for ω ∈ R ∪ {∞}

hence,

‖T‖∞ := sup
ω∈R∪{∞}

‖T (jω)‖ < γ.
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54H2 performance

• H2 norm ofT defined as

‖T‖2 :=

√
1

2π
Tr

∫ ∞

−∞

T (jω)∗T (jω) dω

• in the time domain (via Parseval)

‖T‖2 :=

√∫ ∞

0

Tr (CeAtB)′(CeAtB) dt
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55H2 performance computation

Easily computed by solving linear equation

AP0 + P0A
′ + BB′ = 0 ⇒ ‖T‖22 = Tr (CP0C

′)

A′Q0 + Q0A + C ′C = 0 ⇒ ‖T‖22 = Tr (B′Q0B)

Why ? see stability notes.
• note thatD = 0 for H2 norm to be well defined.
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56stochastic interpretation ofH2 norm

w white noise,ẋ = Ax + Bw, x(0) = 0, z = Cx.
Recall: with solution of

Ṗ (t) = AP (t) + P (t)A′ + BB′, P (0) = 0

we haveE(x(t)x(t)′) = P (t).
Hence

lim
t→∞

E(z(t)′z(t)) = lim
t→∞

E(x(t)′C ′Cx(t))

= lim
t→∞

TrE(Cx(t)x(t)′C ′)

= Tr (CP0C
′) = ‖T‖22

• asymptotic variance of output of system.
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57deterministic interpretation of H2 norm

let zj be impulse response toBejδ(t) with standard
unit vectorej of

ẋ = Ax, x(0) = x0, z = Cx

∫ ∞

0

zj(t)
′zj(t) dt =

∫ ∞

0

B′je
A′tC ′CeAtBj dt

v′v = Tr (vv′) and
∑

j BjB
′
j = BB′ implies

∑

j

∫ ∞

0

‖zj(t)‖
2 dt = ‖T‖22 .

• response energy to do impulse inputs or non-zero
– p. 57/129



58How to get LMI characterization ?

With A stable, it is easy to see that

Tr (CP0C
′) < γ2 for AP0 + P0A

′ + BB′ = 0

if and only if there existsX with

Tr (CXC ′) < γ2 andAX + XA′ + BB′ ≺ 0 .

• for⇐ take difference of Lyapunov conditions
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59How to get LMI characterization ?

• for⇒ since trace inequality is strict and by
continuity there existsε > 0 andX such that

AX + XA′ + BB′ + εI = 0, Tr (CXC ′) < γ2 .

Note thatAX + XA′ + BB′ ≺ 0 and

X =

∫ ∞

0

eAt(BB′ + εI)eA′t dt ≻ P0

Hence,

‖C(sI−A)−1B‖2H2
:= Tr (CP0C

′) < Tr (CXC ′) < γ2 .
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60LMI characterization for H2 norm

♦ A is stable and‖T‖22 < γ if and only if Y ≻ 0 with

Tr (CY C ′) < γ, AY + Y A′ + BB′ ≺ 0

or if and only ifX ≻ 0 with

Tr (B′XB) < γ, A′X + XA + C ′C ≺ 0
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61regional pole constraints

• to shape transient responses of closed-loop system
• damping, settling time, rise time related to location
of poles
• useful regions: vertical strips, disks, conic sectors,
etc

• An LMI regionR is defined as

R = {z ∈ C : U + zV + z̄V ′ ≺ 0} .
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62LMI region intersections

• a large variety of regions can be represented this
way
• intersections of LMI regions are LMI regions
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63a short catalog of useful LMI regions

α

β

r

−q

θ

LMI Regions Characterization

αβ

fR(z) =

»

−r q + z

q + z̄ −r

–

fR(z) =

"

−α + 1

2
(z + z̄) 0

0 β −
1

2
(z + z̄)

#

fR(z) =

»

sin θ(z + z̄) cos θ(z − z̄)

cos θ(z̄ − z) sin θ(z + z̄)

–

fR(z) =

"

−α −
i

2
(z − z̄) 0

0 β + i

2
(z − z̄)

#
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64Lyapunov theorem for LMI regions

• Systemd
dt

x = Ax has all its poles in LMI regionR
iff there existsX ≻ 0 s. t.

U ⊗X + V ⊗ (A′X) + V ′ ⊗ (XA) ≺ 0 .

is an LMI with respect toX.
(⊗ is Kronecker productA⊗B := ((AijB)))

➠ classical Lyapunov theorem withU = 0, V = 1

➠ intersection by diagonal augmentation ofU , V .

other specs. can be combined by just merging LMI
constraints
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65LMI regions- proof of sufficiency

condition is

X ≻ 0, U ⊗X + V ⊗ (A′X) + V ′ ⊗ (XA) ≺ 0 .

pick an eigenpair ofA, (λ, v), Av = λv, and pre- and
post-multiply inequality byI ⊗ v∗, I ⊗ v, gives

>0︷ ︸︸ ︷
(v∗Xv) (U + λ∗V + λV ′) < 0

Hence,
U + λ∗V + λV ′ < 0.

Impliesλ∗, λ are inR.
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66multi-objective/channel controller synthesis

• formulation
• linearizing change of variables
• state-feedback synthesis
• output-feedback synthesis
• projected form.
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67controller synthesis

• synthesis structure

K

P...

y u

...
w2

w1
z1

z2

• givenP (s), find K(s) to achieve a set of
specifications for channelsw1 → z1, w2 → z2, ...
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68example of multi-channel/objective problem

min ‖Tw1

2
←z1

2
‖2

‖Tw1
∞
←z1

∞
‖∞ < γ1, ‖Tw2

2
←z2

2
‖2 < γ2

poles in LMI regionR .
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69controller synthesis - data

• synthesis interconnection

P (s)






d
dt

x = Ax + B1w + B2u, A ∈ R
n×n

z = C1x + D11w + D12u

y = C2x + D21w

• controller

K(s)

{
d
dt

xK = AKxK + BKy, AK ∈ R
n×n

u = CKxK + DKy

• Stability, Perfo.:H∞, H2, pole plac. on various
channels
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70derivation

➠ compute closed-loop data

➠ write stability/performance (ineq.) conditions in
closed loop

➠ apply congruence transformations

➠ use suitable linearizing transformations
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71controller synthesis - state-feedback

• turns out to be very simple problem

P (s)






ẋ = Ax + B1w + B2u, A ∈ R
n×n

z = C1x + D11w + D12u

y = x ←− measurable state vector

and
u = Kx ←− state-feedback

closed-loop data are

ẋ = (A + B2K)x + B1w

z = (C1 + D12K)x + D11w
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72state-feedbackH∞ synthesis

• characterization isX ≻ 0 and



(A + B2K)′X + ∗ ∗ ∗

B′1X −γI ∗
C1 + D12K D11 −γI



 ≺ 0

perform congruence transformation
diag(Y = X−1, I, I) to getY ≻ 0 and



(A + B2K)Y + Y (A + B2K)′ ∗ ∗

(C1 + D12K)Y −γI ∗
B′1 D′11 −γI



 ≺ 0,
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73state-feedbackH∞ synthesis continued

noteY is invertible perform change of variable
W = KY to get LMI !: Y ≻ 0 and



AY + Y A′ + B2W + (B2W )′ ∗ ∗

C1Y + D12W −γI ∗
B′1 D′11 −γI



 ≺ 0 .

• note change of variable is without loss (NSC)
• when solved, deduce (state-feedback) controller
using

K = WY −1 .
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74trick

• ⇐ (Y,KY ) solution→ (Y,W ) easy

• ⇒ (Y,W ) solution→ (Y,KY )
note that termB2W is B2WY −1Y hence

(Y,K = WY −1) is a solution.
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75state-feedbackH2 synthesis

• similar derivation
• characterization

(A + B2K)′X + ∗+ (C1 + D12K)′(C1 + D12K) ≺ 0,

Tr (B′1XB1) < η2

become via Schur complements
[

(A + B2K)′X + ∗ ∗
(C1 + D12K) −I

]
≺ 0

[
Z B′1
B1 X−1

]
� 0, Tr Z < η2
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76state-feedbackH2 synthesis

• perform congruence transformations
diag(Y = X−1, I) and diag(I, Y ) to get

[
AY + B2KY + ∗ ∗
C1Y + D12KY −I

]
≺ 0

[
Z B′1Y

Y B1 Y

]
� 0, Tr Z < η2
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77state-feedbackH2 synthesis

• change of variableW = KY yields LMIs !
[

AY + B2W + ∗ ∗
C1Y + D12W −I

]
≺ 0,

with [
Z B′1Y

Y B1 Y

]
� 0, Tr Z < η2
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78state-feedback pole clustering

• similarly Y ≻ 0 and

U ⊗Y +V ⊗ (A+B2K)Y +V ′⊗Y (A+B2K)′ ≺ 0 .

change of variableW = KY leads to LMI!:

Y ≻ 0

U ⊗ Y + V ⊗ (AY + B2W ) + V ′ ⊗ (AY + B2W )′ ≺ 0 .
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79multiple constraints

• theY ’s are not the same for all perfs.
• hard problem is relaxed by taking a singleY for all
perfs.
• technique is constantly refined to exploit different
Y ’s by spec. (active area).
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80output feedback case - closed-loop data

•

2
4 A B1

C1 D11

3
5 :=

2
664

A 0

0 0

B1

0

C1 0 D11

3
775+

2
664

0 B2

I 0

0 D12

3
775

»
AK BK

CK DK

– 2
4 0 I

C2 0

0

D21

3
5 ,

• Above analysis condition must be satisfied in
closed-loop. Synthesis conditions in3 steps

1- introduce a single variableP common
specification/channel (conservative step),

2- perform adequate congruence transformations,

3- use linearizing changes of variables to end up with
LMI synthesis conditions.
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81linearizing change of variable

Introduce notation

P =

2
4 X N

N ′ ⋆

3
5 , P−1 =

2
4 Y M

M ′ ⋆

3
5

FromPP−1 = I infer

PΠY = ΠX with ΠY :=

2
4 Y I

M ′ 0

3
5 , ΠX :=

2
4 I X

0 N ′

3
5 .

Define change of variable (wlogN , M are invertible)

8
<
:

bAK := NAKM ′ + NBKC2Y + XB2CKM ′ + X(A + B2DKC2)Y,

bBK := NBK + XB2DK , bCK := CKM ′ + DKC2Y, bDK := DK .
(1)

and, perform congruence transformations to get

linear terms in the new variablesX, Y, bAK , bBK , bCK , bDK !
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82LMI for H∞ specification

2
666664

L11
bA′

K + (A + B2
bDKC2) ∗ ∗

bAK + (A + B2
bDKC2)′ L22 ∗ ∗

(B1 + B2
bDKD21)′ (XB1 + bBKD21)′ −γI ∗

C1Y + D12
bCK C1 + D12

bDKC2 D11 + D12
bDKD21 −γI

3
777775

≺ 0

where

L11 := AY + YA′ + B2
bCK + (B2

bCK)′, L22 := A′
X+ XA + bBKC2 + ( bBKC2)′ .

• similarly for H2 and LMI region specs.
• for multi- channel/objective just stack together
various LMI specs.
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83LMI for H2 specification

2
664

AY + YA′ + B2
bCK + (B2

bCK)′ ∗ ∗

bAK + (A + B2
bDKC2)′ A′X+ XA + bBKC2 + ( bBKC2)′ ∗

C1Y + D12
bCK C1 + D12

bDKC2 −I

3
775 ≺ 0,

2
664

Y I B1 + B2
bDKD21

I X XB1 + bBKD21

(B1 + B2
bDKD21)′ (XB1 + bBKD21)′ Q

3
775 ≻ 0,

Tr (Q) < ν, D11 + D12
bDKD21 = 0.

[
Y I

I X

]
≻ 0
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84LMI region constraint specification

• congruence diag(ΠY , . . . ,ΠY ) yields
(
λjk

[
Y I

I X

]
+ µjk

[
AY+B2

bCK A+B2
bDKC2

bAK XA+ bBKC2

]
+ ∗

)
≺ 0.

[
Y I

I X

]
≻ 0
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85multiple constraints

• again for multiple constraints take the sameX, Y

andÂK B̂K , . . . for all LMIs.

• controller construction: just reverse the change of
variables
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86pure H∞ synthesis: projected characterization

For a single objective, LMI can be simplified,
Projection Lemmayields

2
4 NY 0

0 I

3
5
′

2
664

AY + YA′ YC′

1 B1

C1Y −γI D11

B′

1 D′

11 −γI

3
775

2
4 NY 0

0 I

3
5 ≺ 0

2
4 NX 0

0 I

3
5
′

2
664

A′X+ XA XB1 C′

1

B′

1X −γI D′

11

C1 D11 −γI

3
775

2
4 NX 0

0 I

3
5 ≺ 0

2
4 Y I

I X

3
5 ≻ 0 .

NY andNX null spaces of
h

B′

2 D′

12

i
and

h
C2 D21

i
,
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87avantages of LMI formulations

➠ very general wrt DGKF, no assumptions required

➠ singular problems

➠ admits similar discrete-time counterpart

➠ has educational value for students (shorter proofs)

➠ Seehttp://www.cert.fr/dcsd/cdin/apkarian/for
details

➠ SeeMATLAB LMI Control Toolbox for codes.
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88uncertain systems analysis

• Lyapunov technique
• Time-invariant and time-varying parameters
• Parameter-dependent Lyapunov functions.
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89analysis of uncertain systems - example

Consider the uncertain system

d

dt
x(t) = A(δ) x(t); x(0) = x0

➠ δ = [δ1, . . . , δL]′ ∈ R
L uncertain and possibly

time-varying real parameters

➠ A(δ) = A0 + δ1A1 + . . . + δLAL

δ̇(t)δ(t)

is the system stable for all admissibleδ(t) ?
– p. 89/129



90Affine Quadratic Stability ( AQS)

The system is Affinely Quadratically Stable, if∃

V (x, δ) := x′P (δ)x, P (δ) = P0+δ1P1+. . .+δLPL

s. t. V (x, δ) > 0, dV/dt < 0 along all
admissible parameter trajectories.
• Lyapunov theory⇒ (exponential) stability.

P (δ) := P0 + δ1P1 + . . . + δLPL > 0

L(δ, d
dt

δ) := A(δ)′P (δ) + P (δ)A(δ) + dP (δ)
dt < 0

• turned into LMIs⇒ multi-convexity, S-procedure ,...
!
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91analysis - continued

• cases
Time-Invariant
Parameters
Arbitrary rate of
variation
(quad. stab.)

• extensions
H∞, H2, LMI
regions,...

• components
LFT uncertain-
ties
nonlinear com-
ponents
(IQC theory,
(Rantzer &
Megretsky)
µ analysis
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92gain-scheduling and LPV control

• motivations and concepts
• classes of LPV system
• synthesis conditions for LFT systems
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93motivations #1

➠ handle full operating range

➠ gain-scheduled controllers exploit knowledge on
the plant’s dynamics in real time

measurement signal

knowledge on plant

controller
dynamics

control signal

controller mechanism is changed during operation
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94motivations #2

Gain-Scheduling techniques are applicable to
• Linear Parameter-Varying Systems (LPV):

d
dt

x = A(θ)x + B(θ)u ,

y = C(θ)x + D(θ)u.

whereθ := θ(t) is an exogenous variable.
• “ Quasi-Linear” Systems:

d
dt

x = A(ysche)x + B(ysche)u ,

y = C(ysche)x + D(ysche)u.

whereysche is a sub-vector of the plant’s outputy.
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95motivations #3

➠ to get higher performance

➠ some LPV system are not stabilizable via a fixed
LTI controller

➠ bypass critical phases of pointwise interpolation
and switching

➠ engineering insight is preserved (freeze scheduled
variable for analysis).

➠ nonlinear models can be handled by immersion
into an LPV plant.
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96LPV systems in practice

➠ Aeronautics (longitudinal motion of aircraft)
[

α̇

q̇

]
=

[
−Zα 0

−mα 0

] [
α

q

]
+

[
0

mδ

]
δ,

[
az

q

]
=

[
−ZαV 0

0 1

] [
α

q

]
,

whereZα, mα andmδ are functions of speed, altitude and

angle of attack.

➠ Robotics (flexible two-link manipulator)

M(θ2)q̈(t) + Dq̇(t) + Kq(t) = Fu(t),

whereθ2 is the scheduled variable (conf. of2nd beam).

➠ and many others
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97example: different control principles

Robust control

y

6
- d - K - P (θ) -

LPV control

y

6
- d - K(θ) - P (θ) -

?
θ

Output
gain-scheduling

?
y

d

y

6
- d - K(y) - P (y) -
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98description of LPV systems

• LPV systems

ẋ = A(θ)x + B(θ)u ,

y = C(θ)x + D(θ)u.

are characterized by

➠ the functional dependence of

[
A() B()
C() D()

]
onθ,

➠ the operating domainΘ of the system trajectories,
θ(t) ∈ Θ,

➠ the rate of variations ofθ(t) (if available) in the
form of boundsθ̇i(t) ∈ [θi; θ̄i].
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99LPV / LTV / LTI systems

freeze parameter

freeze the time

LTI LTV

LPV

θ(t) = θ∗(t)

t = t0

θ(t) ∈ Θ
∀t ≥ 0

θ = θ0

select trajectory
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100LPV / LTV / LTI - off-line vs. on-line

➠ LTI and LTV systems are off-line systems, the
state-space dataA, B,... andA(t), B(t),... must be
known in advance.

➠ LPV systems are on-line systems since the
dynamics depend on the trajectoryθ(t)
experienced by the plant inΘ.

θ(t)

Θ

– p. 100/129



101LPV systems interpretations

ẋ = A(θ)x + B(θ)u, θ(t) ∈ Θ

y = C(θ)x + D(θ)u.

• θ may be subject to various assumptions:

➠ θ(t) is uncertain→ robust control problem,

➠ θ(t) is known in real-time→ Gain-scheduling
problem,

➠ θ(t) :=

[
θ1(t)
θ2(t)

]
, whereθ1 is known andθ2 is

uncertain→ mixed problem
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102LPV pathologies - LPV/LTI stabilities

• stability over a domain

➠ LTI Stability : Reλi(A(θ)) < 0, ∀θ ∈ Θ,

➠ LPV Stability : Φθ(t)→ 0, for t→∞, for all
trajectoryθ(t) in Θ.

• intuitive conjectures like

➠ LTI stability⇒ LPV stability,

➠ LPV stability⇒ LTI stability,

are FALSE !
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103LPV vs. LTI Stability

• Conjecture#1
[

ẋ1

ẋ2

]
=

[
−1 + aθ2

1 1 + aθ1θ2

−1 + aθ1θ2 −1 + aθ2
2

] [
x1

x2

]
,

with trajectoriesθ1 := cos(t) andθ2(t) := sin(t) is
LTI stable (fora < 2) but LPV unstable.
• Conjecture#2

[
ẋ1

ẋ2

]
=

[
−1− 5θ1θ2 1− 5θ2

1

−1 + 5θ2
2 −1 + 5θ1θ2

] [
x1

x2

]
,

with trajectoriesθ1 := cos(t) andθ2(t) := sin(t) is
LTI unstable (poles+1 and−3) but LPV stable.
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104creating an LPV stability

consider the autonomous LPV system:

ẍ + ω2(t)x = 0 ,

where we are allowed to switch between two valuesω1 andω2.

unstable behavior

trajectories
system 

switch

x1

x2

ω2

ω1
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105Slowly Varying LPV Systemsẋ = A(θ)x

• Sufficient stability cond.

(1) Reλi(A(θ)) < 0,

(2) ‖θ̇‖ < α, with α sufficiently

small,

⇒ LPV stability (Rosen. 63)

• Sufficient instability cond.

(1) Reλi(A(θ)) < 0,

i = 1, . . . , k

(2) Reλi(A(θ)) > 0,

i = k + 1, . . . , n

(3) stable and unstable eigen-

values do not mix

(4) ‖θ̇‖ < α, with α sufficiently

small,

⇒ LPV instability (Skoog 72)
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106slowly varying parameters

LPV stability can be inferred from LTI stability for slowly
varying parameters (but not constructive conditions).
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107LPV systems in the LFT class

uy

diag(θiIri
)




A Bθ B

Cθ Dθθ Dθ•

C D•θ D





»
A(θ) B(θ)

C(θ) D(θ)

–
:=

»
A B

C D

–
+

»
Bθ

D•θ

–
Θ(I − DθθΘ)−1 [ Cθ Dθ• ] ,

where – p. 107/129



108LPV systems in the polytopic class

y u

θ(t)

θ ∈ Θ , Θ Polytope

»
A1 B1

C1 D1

–

»
A2 B2

C2 D2

–

»
Ai Bi

Ci Di

–

»
A(θ) B(θ)

C(θ) D(θ)

–
∈ Cov

»
Ai Bi

Ci Di

–
, i = 1, 2, . . . , r

ff
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109general LPV systems

A(θ), B(θ), C(θ), D(θ) are arbitrary but continuous
matrix-valued function ofθ.

• far more difficult to handle but of great practical
interest since they capture arbitrary nonlinearities
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110formulation of synthesis problem: LFT

wz

uy

gain−scheduled controller

P (s)

K(s)

Θ

Θ
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111formulation of synthesis problem: LFT

find LPV controllerFl(K(s),Θ(t)) s.t.

➠ closed-loop stability,

➠ theL2-induced norm of the operatorTw→z

satisfies‖Tw→z(Θ)‖ < γ

for all admissible trajectoryθ(t).
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112LPV-LFT systems: notations

•

P (s) =




Dθθ Dθ1 Dθ2

D1θ D11 D12

D2θ D21 D22



+




Cθ

C1

C2



 (sI−A)−1 [Bθ B1 B2 ] ,

Assumptions:(A,B2, C2) stabilizable and detectable,D22 = 0.

Notations:B̂1 = [ Bθ B1 ], Ĉ1 =

[
Cθ

C1

]
, D̂11 =

[
Dθθ Dθ1

D1θ D11

]
,

NY := Ker [ BT
2 DT

θ2 DT
12 0 ],

NX := Ker [ C2 D2θ D21 0 ].
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113LPV-LFT systems - proof scheme

with parameter augmentation
synthesis structuresynthesis structure

K(s)

P(s)

Θ(t)

Θ(t)

Θ(t)

Θ(t)

K(s)

P(s)

z̃θ w̃θ

u

z w

wθzθ

y

ỹ ũ

uy

Pa(s)

w

zθ

z̃θ

0

z

wθ

0
w̃θ
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114LPV-LFT systems - proof scheme

➠ redraw the control configuration into a robust
control problem with repeated uncertainty,

➠ formulate the Bounded Real Lemma with scalings
for the closed-loop system,

➠ apply the Projection Lemma to derive the LMI
characterization.

– p. 114/129



115LMI characterization

NT
Y

2
66664

AY + Y AT ⋆ ⋆ ⋆ ⋆

CθY + Γ3BT
θ

−Σ3 + Γ3DT
θθ

− DθθΓ3 ⋆ ⋆ ⋆

C1Y −D1θΓ3 −γI ⋆ ⋆

Σ3BT
θ

Σ3DT
θθ

Σ3DT
1θ

−Σ3 ⋆

BT
1 DT

θ1 DT
11 0 −γI

3
77775
NY ≺ 0,

NT
X

2
66664

AT X + XA ⋆ ⋆ ⋆ ⋆

BT
θ

X + T3Cθ −S3 + T3Dθθ − DT
θθ

T3 ⋆ ⋆ ⋆

BT
1 X −DT

θ1T3 −γI ⋆ ⋆

S3Cθ S3Dθθ S3DT
θ1 −S3 ⋆

C1 D1θ D11 0 −γI

3
77775
NX ≺ 0,

»
Y I

I X

–
� 0

S3 ≻ 0, Σ3 > 0; T3, Γ3 skew − symmetric .
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116scaling sets asso. with structureΘ⊕Θ

• symmetric

SΘ := {S : S > 0, SΘ = ΘS}

• symmetric augmented

SΘ⊕Θ = {

[
S1 S2

ST
2 S3

]
: S1, S2 ∈ SΘ andS2Θ = ΘS2,∀Θ ∈ Θ}.

• skew-symmetric

TΘ⊕Θ = {

[
T1 T2

−T T
2 T3

]
: T1, T2 ∈ TΘ andT2Θ = ΘT2,∀Θ ∈ Θ}.
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117robust synthesis condition




AT

cℓXcℓ + XcℓAcℓ XcℓBcℓ + CT
cℓT

T CT
cℓ

BT
cℓXcℓ + TCcℓ −S + TDcℓ + DT

cℓT
T DT

cℓ

Ccℓ Dcℓ −S−1



 ≺ 0

where

➠ Acℓ, Bcℓ, . . . closed-loop data

➠ S, T scalings forΘ⊗Θ⊗∆, and∆ fictitious
performance block.
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118cast in Projection Lemma form

Can be rewritten

Ψ + QT
XΩP + P TΩTQX ≺ 0,

where

Ψ =




ATXcℓ + XcℓA XcℓB1 + CT

1 T T CT
1

BT
1 Xcℓ + TC1 −S + TD11 + D11T

T DT
11

C1 D11 −S−1



 ,

P = [ C2 D21 0 ] , QX =
[
BT

2 Xcℓ DT
12T

T DT
12

]
.
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119cast in Projection Lemma form continued

2
4

A B1 B2

C1 D11 D12

C2 D21 ΩT

3
5 =

2
6666666666666664

A 0

0 0

0 Bθ B1

0 0 0

0 B2 0

I 0 0

0 0

Cθ 0

C1 0

0 0 0

0 Dθθ Dθ1

0 D1θ D11

0 0 I

0 Dθ2 0

0 D12 0

0 I

C2 0

0 0

0 0 0

0 D2θ D21

I 0 0

AT
K

CT
K1 CT

Kθ

BT
K1 DT

K11 DT
Kθ1

BT
Kθ

DT
K1θ

DT
Kθθ

3
7777777777777775

and

bB1 = [ Bθ B1 ] , bC1 =

»
Cθ

C1

–
, bD11 =

»
Dθθ Dθ1

D1θ D11

–
.

• LMI characterization follows from explicit computation of
projections and using matrix completion Lemmas.
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120LPV-LFT systems - controller Construction

➠ Testing solvability falls within the scope of convex
semi-definite programming

➠ A gain-scheduled controller is easily constructed
from the quadruple(Y,X,L3, J3) by solving a
scaled Bounded Real Lemma LMI condition.

yu

Θ(t)

2

4

AK BK1 BKθ

CK1 DK11 DK1θ

CKθ DKθ1 DKθθ

3

5
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121other variants of this technique

➠ polytopic LPV systems

➠ general LPV systems (capture slow variations of
parameters)

➠ LFT systems ang generalized scalings

➠ multi-objective/channel LPV synthesis

see webpage:http://www.cert.fr/dcsd/cdin/apkarian/
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122hard non-LMI problems

• most analysis problems reduce to LMIs
• some synthesis problems reduce to LMIs but
• many practical problems do not reduce to
LMI/SDP (synthesis)

➠ reduced- and fixed-order synthesis (PIDH∞, etc.)

➠ structured and decentralized synthesis problems

➠ general robust control with uncertain and/or
nonlinear components

➠ simultaneous model/controller design, multimodel
control

➠ unrelaxed LTI and LPV multi-objective

➠ combinations of the above
– p. 122/129



123new algorithms for hard problems

new algorithms needed ! good research direction
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124example: synthesis of static controller

stabilize

ẋ = Ax + Bu

y = Cx

with u = Ky (K static)

has characterization

N ′C(A′X + XA)NC < 0

N ′B′(Y A′ + AY )NB′ < 0[
X I
I Y

]
> 0

XY − I = 0

constraintsXY − I = 0 leads to hard problems
LMI + nonlinear equality constraints
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125augmented Lagrangian method

with g(x) = 0 equ. constraints andA(x) ≺ 0 LMI,
replace the difficult program by the more convenient

(Pλ,µ)
minimize c′x + λ′g(x) + 1

µ‖g(x)‖2

subject to A(x) � 0

➠ µ is penalty,xµ → x∗ whenµ→ 0

➠ for good estimatesλ (Lagrange multiplier),
solution of(Pλ,µ) is close to solution of original
problem

➠ use first-order update rule to improve estimateλ

➠ solve(Pλ,µ) by a succession of SDPs
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126augmented Lagrangian method

➠ B. Fares and P. Apkarian and D. Noll, IJC, 2001

➠ B. Fares and D. Noll and P. Apkarian , SIAM
Cont. Optim. 2002

➠ P. Apkarian and D. Noll and H. D. Tuan, 2002,
IJRNC to appear.

➠ D. Noll and M. Torki and P. Apkarian, working
paper, 2002
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127conclusions, perspectives

➠ A single framework for a great variety of methods

➠ LMI techniques extend the scope of classical
techniques

➠ LPV control is a very successful example
(industrial)

➠ Analysis meth. immediately applicable for
validation

➠ Have educational merits
seehttp://www.cert.fr/dcsd/cdin/apkarian/for
course plan

➠ not discussed: robust filtering and estimation,
combinatorial optimization, graphs, etc.
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128recent concrete control applications

➠ Analysis robustness evaluation of controllers for:
➟ ARIANE Launcher
➟ satellites
➟ long flexible civil aircraft (structural modes)

➠ SynthesisPreliminary tests show that LPV
controllers are competitive for launcher control in
atmospheric flight

➠ Synthesiscontrol of the landing phase for civil
aircraft under study with multiobjective LMI
methods

➠ SynthesisMissiles ? still on paper
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129The End

GRAZIE MILLE !
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