PARAMETERIZED LMIS IN CONTROL THEORY
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Abstract. A wide variety of problems in control system theory fall within the class of parameterized Linear Matrix
Inequalities (LMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. Such problems,
though convex, involve an infinite set of LMI constraints, hence are inherently difficult to solve numerically.

This paper investigates relaxations of parameterized LMI problems into standard LMI problems using techniques relying
on directional convexity concepts. An in-depth discussion of the impacts of the proposed techniques in quadratic programming,
Lyapunov-based stability and performance analysis, u analysis and Linear Parameter Varying control is provided. Illustrative
examples are given to demonstrate the usefulness and practicality of the approach.
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1. Introduction. LMI techniques are now well-rooted as a unifying framework for formulating and
solving problems in control theory with a remarkable degree of simplicity. The main thrust of these techniques
is that certain complicated control problems can be solved very efficiently. Specifically, the interior-point
methods for semi-definite programming have worst-case polynomial complexity with respect to the problem
size. From a practical viewpoint, extensive experience shows that interior-point methods solve problems
in roughly less than a hundred iterations, independently of the problem size. Each elementary iteration
reduces to solving a least-square problem which incurs the main computational overhead. Recent and
thorough studies of interior-point techniques for semi-definite programming are, among others, Jarre [23],
Vandenberghe and Boyd [43], Rendl, Vanderbei and Wolkowicz [34] and the master book by Nesterov and
Nemirovski [28].

Basically, the simple feasibility problem of semidefinite programming consists in seeking a solution to
the LMI

(1) Fo+2F1+...+2.F. <0,

where the F;’s are given real symmetric matrices and the z;’s are the sought decision variables. A significantly
more complicated generalization of problem (1) is the feasibility problem

2) Fo(8) + 21 (0)FL(8) + ... + 2. (8) F(6) < 0,

where 0 := [0;,...,0n]T is an additional parameter allowed to take any value in a compact set H of RY,
typically a polytope. In contrast to problem (1) the problem data, F;(#), are now symmetric matrix-valued
functions of 6, and we are seeking (arbitrary) functions of €, z;(#) such that the LMI constraints (2) hold
for any admissible value of §. The complexity of problem (2) is twofold:

1. It is infinite-dimensional since the z;(.)’s are sought in the infinite-dimensional space of functions of
6.

2. This is an infinitely constrained LMI problem for which each constraint corresponds to a given point
in the range of 6.
A common and practical approach to overcome the difficulties arising from dimensionality, is to select a
finite basis of functions for the z;’s and reconsider the problem over the resulting spanned finite-dimensional
space. In such case, problem (2) simplifies to an LMI problem of the form

(3) Fo(0) + 1 Fi(0) + ... + % Fo(0) <0, Vo€ H
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where 21, ... , 2, are conventional scalar decision variables as in (1) and H is a compact set. Such problems
are referred to as robust semidefinite programming problems in [4] and are designated here as Parameterized
LMI (PLMI) problems to stress the connections with the LMI control theory literature.

For reasons raised above, PLMI feasibility problems have still high complexity and are even known to be
NP-hard [4]. The aim of this paper is to develop systematic relaxation techniques to turn, potentially con-
servatively, this problem into a standard LMI problem. A fruitful technique for turning PLMI problems into
conventional LMI problems is the well-known S-procedure [45, 14]. With this approach, scaling or multipliers
are utilized to eliminate the LMI parameter-dependence. The price to pay is the insuperable conservatism
of the resulting conditions and also the extra computational effort, often prohibiting, introduced by the
multiplier variables. This paper exploits competitive techniques invoking directional convexity concepts to
derive a finite set of LMI conditions. Generally speaking, the approach requires significantly less variables
than S-procedure techniques whilst producing more LMI constraints. Since the flop cost of interior-point
techniques is roughly linear with respect to the size of the LMI constraint but polynomial with respect to the
number of decision variables, the proposed techniques offer a valuable alternative to S-procedure techniques.
It is however difficult to draw definitive conclusions at this stage since the respective performance of each
technique is probably problem-dependent. As demonstrated in the body of the paper, the techniques therein
also offer possibilities for handling polytopic representations, that is when the parameter 8 designates poly-
topic coordinates, Efil 0; =1, 6; > 0. We also briefly discuss relaxations of linear objective minimization
problems subject to PLMI constraints and PLMI problems subject to algebraic constraints on the parameter

6.

The scope of applications of PLMISs is quite large and goes far beyond the area of robust control theory.
In [4, 5], Ben-Tal and Nemirovski lay the foundations of robust convex programming and investigate its the-
oretical tractability in conjunction with the analysis of some generic uncertain convex programs. The same
stream of ideas are applied to a truss topology design problem in [6]. In [29], the authors provide a thorough
study of the regularity properties of solutions to PLMIs using the S-procedure and discuss its implications for
a variety of topics: linear programming, polynomial interpolation, integer programming, ... Our contribution
is in line with that of [29] or what is called “Approximate robust counterpart” of an uncertain semidefinite
programming problem in [4]. The general instance of the problems is essentially intractable and we are
constructing relaxed forms, generally conservative, that are directly amenable to the use of interior-point
methods. Note also that alternative techniques to those considered here are developed in [40] using either
convex approximations or d.c (difference convex) representations.

This work is mostly control theory oriented, and special attention is paid to the following topics:

(i) Quadratic programming. It is shown that some neither convex nor concave quadratic programming
problems can be converted into boolean programming problems. The results so introduced constitute the
core of the subsequent derivations and have a direct impact for relaxing PLMI problems.

(ii) Lyapunov-based stability and performance analysis. A rich catalog of Lyapunov-based stability and
performance criteria for uncertain systems can be handled via PLMIs, thus providing generalizations of the
single quadratic Lyapunov function approach.

(iii) p-analysis. PLMIs have direct applications in the p-analysis context or robust non-singularity
analysis and can be utilized to refine the computation of upperbounds.

(iv) Linear Parameter-Varying (LPV) control synthesis. PLMIs and the concepts developed here are
also central in LPV control synthesis to overcome the difficulties arising from gridding phases and reduce
the computational efforts.

The paper is structured as follows. Section 3 discusses a variety of directional convexity concepts and
its implications in functional optimization. These results are then extended to PLMI problems in Section 4.
Important robust and LPV control issues mentioned above are investigated in Section 5. Numerical examples
illustrating the techniques and tools are given in Section 6.

2. Preliminaries. The following definitions and notations are used throughout the paper.
R and C denotes the sets of real and complex numbers, respectively. M7 is the transpose of the matrix
M, and M* denotes its complex-conjugate transpose. The notation Tr M stands for the trace of M. For
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Hermitian or symmetric matrices, M > N means that M — N is positive definite and M > N means that
M — N is positive semi-definite.

Let S be a convex subset of R™. A function f : S — R is quasi-convex if and only if for all u, v in §
and « in [0, 1],

flau+ (1 —a)v) < max{f(u), f(v)} .

Strict quasi-convexity is obtained when the inequality is strict for all 0 < a < 1. This notion is weaker than
convexity which requires

flau+ (1 - a)v) < af(u) + (1 - a)f(v).

The relative interior, the closure and the relative boundary of S are denoted as ri S, cl S and rbd S, respect-
ively. We then have rbd S = cl S\ ri S.
A polytope IT in R" is defined as the compact set

L L
II := {Zawilzai =1, a; 20, v ERH}

i=1 i=1

Equivalently, it is also the convex hull of the set V' = {v1,...,vr}, denoted coV. The notation vertII
designates the set of vertices of II, vert Il := V. The affine hull, aff S, of a set S is defined as the set of all
affine combinations of elements of S, i.e.

k k
aﬁS:z{Zaisi:siES, Z%':l}-
=1 =1

The direction space associated to aff S is defined as aff S — sg, where s¢ is any point of aff S. The notation
#S stands for the number of elements in a set S.

3. Extreme point results. This section introduces some useful tools that permit to convert the
maximization of a function over a polytope II into the combinatorial problem of maximizing f over vert II.
We begin with a general result which is the core of the subsequent derivations.

THEOREM 3.1 (Central result). Consider a polytope 11 and assume that for any x in I, there exists a
direction d in the direction space of aff I such that f is quasi-convex on the line segment

Lo(z):={z€ll: z=z+Ad, A€ R} .

Then, f has a maximum over II in rbd II.
Proof. Assume f has a maximum £ in rill. Consider a line segment Ly(#) where f is quasi-convex.
From this property, we infer that f has a maximum point in rbd I N L4(%), and therefore

f(@) < f@),

for some Z in rbd I N Ly(2). O

By virtue of Theorem 3.1, the search of a maximum point is reduced to exploring the relative boundary of
II. This result is analogous to the well-known mazimum principle for analytic functions of complex variables.
Although this constitutes an appealing result which might find applications, it is still hardly tractable for
our particular purpose. A stronger result is obtained by forcing the directions d to be parallel to the edges
of the polytope. The corollary below clarifies this fact.

COROLLARY 3.2 (Multi-quasi-convexity). Consider a polytope I and the directions di, .. .,d, determined
by the edges of II. Assume that for any z in I, the function f is quasi-convex on the line segments Ly, (x)
fori=1,...,q. Then, f has a mazimum over Il at a vertezx of II.

Proof. Tmmediate by application of Theorem 3.1 to II and to the (polytopic) faces and edges of II. O
An obvious consequence of Theorem 3.1 is the following.
COROLLARY 3.3. Under the hypotheses of Corollary 3.2, the following conditions are equivalent:

(i) f(z) <0, Vzell.
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(ii) f(z) <0, Vz € vertIl.

As claimed previously, the maximization problem in Corollary 3.2 and the sign verification problem in
Corollary 3.3 are turned into simpler combinatorial problems of lower complexity. This is a consequence of the
multi-quasi-convexity property defined in Corollary 3.2. Note that the term multi-quasi-convex emphasizes
the fact that f is separately quasi-convex along parallels to the edges of the polytope. This property is
attached to the function f, but is also intimately related to the particular geometry of the polytope.

Quasi-convexity is a less stringent requirement that usual convexity, the counterpart being the difficulty
of its verification even for differentiable functions. Alternative conditions that are more easily amenable to
numerical computation are derived by replacing quasi-convexity with convexity in Theorem 3.1, Corollaries
3.2 and 3.3. For twice continuously differentiable functions, Corollary 3.2 then becomes.

COROLLARY 3.4 (Multi-convexity). With the definitions in Corollary 3.2, f has a mazimum over I in
vert II whenever it holds that

2 .
O fla+2di) _

(4) — e =% Veell, i=1,...,q.

Affine functions are trivially multi-quasi-convex functions so that any of the above results is applicable.
It is instructive to consider the case where f is a quadratic function and II is a hyper-rectangle.

COROLLARY 3.5 (Quadratic functions). Consider a quadratic functions, f(z) = 27 Qz + ¢’z + a, and
assume II is a hyper-rectangle with edges paralleling the azes of coordinates, that is, x = [z1,...,z,]T with

azfﬂfzfﬂu l:].,,TL
Assume further that
(5) Qiizoa izla---;”

then, f has a maximum over II in vertII.

Proof. From Corollary 3.4, the conditions (5) express multi-convexity of the quadratic function. O

Clearly, the conditions (5) are less demanding than (global) convexity which requires @ > 0. When
such conditions hold, the maximization of f over the polytope II reduces to a boolean programming problem
[35] which is much simpler (though possibly costly) than the maximization of a general f. One possible
advantage is that some costly but practically useful concave minimization techniques such as simplicial and
conical partitioning (branch and bound) techniques such as those of Tuy and Thach might be used to find
a global optimal solution. The reader is referred to the book of Tuy [41] for a thorough treatment.

4. Relaxation of PLMIs. This section presents some applications of these results to PLMIs whose
coefficients are dependent on a parameter evolving in a polytopic set. To emphasize the fact that these
parameters might be interpreted as uncertainties or scheduled variables of robust control or LPV control
problems, the free variable x is denoted 6 or «, hereafter.

Before proceeding further, it is instructive to have in mind the following important facts from [4].
Consider the “robust counterpart” (parameterized convex program in our terminology) of a general uncertain
convex program :

minimize ¢”z,

(©6) subject to F(z,0) € K,V € H

where K is a closed convex cone, H is a generalized ellipsoidal set including as instances standard ellipsoids
but also ellipsoidal cylinders and polyhedras, F(z,0) is K-concave with respect to z. A key additional
assumption is that F(z,6) must be K-concave with respect to . With these assumptions in place, Ben-Tal
and Nemirovski established the following.

(i) The robust counterpart of an uncertain linear program is a conic quadratic program, thus is per-
fectly tractable.

(ii) The robust counterpart of an uncertain quadratically constrained convex quadratic program is a
semidefinite program, hence tractable, but is NP-hard for intersections of ellipsoidal uncertainty sets.
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(iii) The robust counterpart of an uncertain semidefinite program is generally NP-hard even for a single
ellipsoidal uncertainty set.

The problems examined in the sequel fall within the latter class, so that they are generally NP-hard.
They also generally fail to satisfy the K-concavity in §, mentioned above. By virtue of its inherent complexity,
one must, as a last resort, use relaxation techniques to end up with tractable “approximate ” programs. Again
with reference to [4], we take advantage of some directional K-concavity instead of complete K-concavity in
the uncertain parameter to derive such relaxations.

4.1. PLMIs with quadratic parameter dependence. We consider PLMIs in the class

L L
(7) L(z,0) == Mo(2) + D aiMi(2) + D i Mi(2) <0,

i=1 i,j=1

where z stands for the decision variable and My(.), M;(.) and M;;(.) are real symmetric matrix-valued and
linear functions of z. In addition, it is supposed that the parameter a = [, - .., az]T evolves in the simplex

() F:Z{a:Zaizl,aiZO}.

Note that the problem presented in (7) involves infinitely many LMIs associated with each value of the
parameter a and is known to be intractable [4]. By enforcing some constraints of geometric nature on
the functional dependence in «, it is however possible to reduce, potentially conservatively, the problem to
solving a finite number of LMIs. This is established in the next proposition.

PROPOSITION 4.1. The infinite set of LMIs (7) is feasible for some z whenever the finite set of LMIs

(9) M()(Z) + Mk(z) + Mkk(Z) < 0,
(10) Mii(2) + Mjj(2) — (Mi5(2) + Mji(2)) > 0,

where 1 <k <L and1<i<j <L, is feasible for some z.

Proof. Note first that the conditions (7) are equivalent to z7 L(z,a)x < 0, for all = # 0. For fixed = # 0,
consider z7 L(z,a)z as function of a. By virtue of Corollary 3.4, it is negative whenever it is multi-convex
along lines paralleling the edges of I' and furthermore is negative over vertI'. The remainder of the proof
follows from the fact that vert ' is composed of the canonical basis of R, and the directions of the edges
of T are determined by vectors with all but two zero coordinates, the non-zero coordinates having opposite
sign :

dy :=[1,-1,0,...,0]
dy :=[1,0,-1,0,...,0], ...

Repeating the reasoning for all x # 0, yields the condition (9) and (10), as desired. O
Remarks: By strengthening the conditions in (9), one can slightly relax the multi-convexity requirement
n (10). As an example, the solutions (z, Z;) to the LMI feasibility problem

L L L
Mo(2) + 3 aiMi(2) + Y. aiajMii(2) < =3 a2Z;, VYa €T
i=1 i,j=1 i=1

Z;>0, i=1,...,L,

give solutions z to the feasibility problem (7). Arguing as in proposition 4.1, associated sufficient solvability
conditions are easily obtained as

(11) Mo(2) + My (2) + Myx(2) < —Zy,
(12) Mii(2) + Mj;(2) — (Mij(2) + Mji(2)) > —(Z;i + Z;)
(13) Zy >0,

where 1 <k < L and 1 <i < j < L. Due to the strict nature of (11), the non-strict inequalities in (12) and
(13) can be changed into strict inequalities without any loss of generality. In the strict form, such problems
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are readily solved using interior-point semi-definite programming techniques as those in [8, 42, 27]. Note
also that the Z;’s can be chosen as general symmetric matrices whose size is that of the LMI condition (7).
Less costly characterizations are obtained by using instead diagonal or scalar matrices, that is,

Zi = diag /\i; or Zi = /\z I.

When T is a hyper-rectangle and the LMIs (7) are expressed in terms of the Cartesian coordinates of «
(as opposed to polytopic ones) the main result in [18] is recovered as a special case. Assume 8 := [0y, ...,0x]T
ranges over a hyper-rectangle, denoted H, that is,

(14) 6; <6; <6;,
then
N N
L(2,0) == Mo(2) + >_0:M;(2) + > 0:0;M;j(2) <0, V0 €H
i=1 i,j=1
whenever

L(z,0) <0, 0 € vertH
M;;i(z) >0, i = 1,...,N

As before, one can relax the multi-convexity requirement above by replacing these conditions with

N

(15) L(z,0) <= 6INI, 6€ vertH,
=1

(16) Mii(2) > =NI, i=1,...,N

More generally, any non-positive matrix-valued function of 8 is a good candidate for the right-hand side
of (15). More complicated polynomial functions lead naturally to more costly characterizations. From our
practical experience, a reasonable compromise between computational efficiency and tightness of the test is
obtained with non-homogeneous functions of the form —(Ag + Zil 62X)1.

4.2. Gridding techniques. The techniques developed in Sections 3 and 4 provide sufficient and com-
putationally simple conditions for checking the sign of a function or the feasibility of a PLMI problem. These
conditions may introduce conservatism though it turns out to be small from our practical experience. A
different technique which is guaranteed to provide a non-conservative answer but is potentially optimistic
and generally computationally intensive, is to use a fine gridding of the parameter range and solve a finite
set of LMIs corresponding to each point on the grid. Denoting the grid as G, the PLMI problem (7) is then
replaced with the finite set of LMIs

L L
Mo(z) + ZaiMi(z) + Z a0 M;5(2) <0, a€ed.
i=1 ij=1

Such a technique is currently used in stability analysis and LPV control. It is however limited to
problems of reasonable size, say less than 3 parameters. There is also the risk to miss a critical value of
the parameter, hence leading to overly optimistic answers. With the approaches presented earlier these
difficulties are inherently ruled out. These techniques can be mixed with gridding approaches hence offering
alternative possibilities. Indeed, instead of gridding the entire parameter range, there is only need to grid
a surface of lower dimension whenever the function is quasi-convex or convex along some direction. This is
an immediate consequence of Theorem 3.1. A simple illustration of this fact is given below. For the sake of
simplicity, we restrict the discussion to 2 parameters #; and 6, evolving in the normalized square
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and we consider the PLMI problem

(18) Mo(Z) + ZG@Mz(z) + Z GiejMij(z) <0.

3,j=1

A potential technique for checking the feasibility of this problem consists first in enforcing convexity in the
direction of ;. This is equivalent to the LMI constraint

(19) Mu(z) Z 0.
Thanks to this condition, it is then enough to grid the line segments
6==%1, |6:]<1,

to check the feasibility of (18).

Finally, let us note that the approaches presented in the previous subsections are also very useful for
developing a global optimization algorithm solving PLMIs. Indeed, the main difficulty in global optimization
is "the curse of dimensionality", i.e. the size of the space where the global search is performed. Thus
exploiting convexity properties such as directional convexity is very important for developing an efficient
global optimization algorithm (see e.g. [24, 41]) since it allows us to drastically simplify the problem by
limiting the global search to a restricted region of the feasible domain. For instance, with condition (19) it
is sufficient to perform a global search for (18) just on the line segment |62| < 1 instead on the square (17)
in R2.

4.3. PLMIs with polynomial parameter dependence . In this section, we are considering poly-
nomially §-dependent PLMIs of the form

(20) L£(0,2):=Y 6"M,(2) <0,

veJ

where the terms M, (z) denote symmetric matrix-valued functions of the decision variable z that are linear
in z. The notation [v] is the vector of partial degrees [v] = [v1,...,vnN] associated with the lexicographically
ordered term

ol =oroy .. 0%y,

with the convention 8l°) = 1. It is assumed that 6 ranges over an hyper-rectangle H as in (14). J is a set of
N-tuples of partial degrees describing the polynomial expansion (20). Exploiting again Corollary 3.4, it is
possible to reduce (conservatively) this problem to a finitely constrained LMI problem. The symbols dj, and
d designate the partial and total degrees in the matrix polynomial expansion.

LemMA 4.2. Consider the PLMI (20), where 0 ranges over a hyper-rectangle. Then the LMI conditions

(21) L(0,2) <0, V0 € H
hold for some z, whenever the finite family of LMI conditions:
(22) L(0,2) <0, VO € vert H

62m

2 Y [ | < H
(23) ( )59?1---69?m£(0’z)—0’ V6 € vert H

1<h<b<...<lp<N, 1<m<

N

2#{lj=k: je{l,....m}} <dp, k=1,2,...,N.
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are feasible for some z.
Proof. The proof is obtained by a repeated use of Corollary 3.4. O
As an example, consider the PLMI feasibility problem

[,(2,0) = Mo(z) + 0%92M112(Z) + 0§M222(z) < 0, |91| <1.
Replacing this problem with, for instance,
L(2,0) := Mo(2) + 6302 My12(2) + 05 Mazo(2) + Aol + MO T + M2631 < 0, 0] <1

and using Lemma 4.2, yields the LMI conditions:

L(z,60) <0, VO € vert H

—%I < Mii2(2) < %I, —%I < Maga(2) < %I, A1 >0, X2>0.

It is of interest to note that when PLMIs also involve full-matrix parameters A;, it is more appropriate
for computational reasons to take advantage of a combined use of directional convexity concepts and of the
S-procedure to formulate a feasibility test.

4.4. Algebraically constrained PLMI problems . PLMI problems with algebraic constraints are
described as

(24) L(z,0) <0, V0 € H
subject to
(25) 91(0)=0,...,9,0) =0,

where g;,... g, are polynomials in 6. Note that for consistency, the algebraic surface (25) should have a
non-void intersection with the hypercube H.
It is readily verified that solutions to the unconstrained PLMI problem

q

(26) L(z,0) <Y gi(0)>NI, VoeH
i=1

(27) >0, i=1,...,q

also solves (24)-(25). Recast as the sufficient conditions (26)-(27), the hard problem (24)-(25) can be handled
with the technical machinery developed in Section 4 and is therefore amenable to a conventional LMI problem.
Once again, there is some practically useful flexibility for selecting the right-hand side of the first inequality
in (26).

4.5. Linear objective minimization under PLMI constraints . The directional convexity con-
cepts introduced previously are applicable with minor changes to linear objective minimization problems
subject to PLMI constraints. This means problems of the form

minimize ¢z

(28) subject to £(2,0) <0, 6€ H,

where c is a given vector and the inequalities constitute a PLMI constraint. It is also possible to handle
min-max problems of the form

minimize maxc(0)? 2
0cH

(29)
subject to £(2,0) <0, 0€ H,
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using standard manipulations [4, 29]. Defining

~ 2] ~_ 10| ==, _ [£L(206) 0
z_[A]aC—[l]aﬁ(zae)_[ 0 C(Q)TZ—)\ ’
problem (29) is equivalently formulated as
minimize ¢! 2

(30) subject to E(E, ) <0, 6eH,

which has a form similar to problem (28).

In this form and provided that the parameter dependence is polynomial, such problems are easily con-
verted into standard LMI problems using directional convexity concepts. This is left to the reader. Finally,
we note that since these concepts amounts to shrinking the z-feasible set, the optimal value of the relaxed
LMI optimization problem is an upper bound for problems (28) or (29).

5. Applications in Control Theory . The techniques and tools presented in Sections 3 and 4 enjoy
a wide scope of applications. They are useful for the analysis of both the stability and the performance
of uncertain systems. Potentially, all Lyapunov-based stability and performance measures can be handled
with the proposed techniques which are more general and less conservative than single quadratic function
approaches [7, 3]. They also have implications in the context of p analysis where some upper bounds can be
refined into less conservative upper bounds. Another important domain of application concerns LPV control
techniques. For brevity, we only report a few of these applications.

5.1. Robust stability. We consider the linear uncertain system
(31) = A(a)z, Ala) == a1A1 + ...+ ar AL,

where « is a fixed uncertain parameter evolving in the simplex (8). It follows that the uncertain matrix A(a)
ranges over a matrix polytope

A(a) €co {Ay,..., AL}
We are seeking a quadratic parameter-dependent Lyapunov function with similar structure
V(z,a) =z (a1 X1 +...+arXp)x

establishing stability of the uncertain system for all admissible dynamics. If we explicitate the Lyapunov
conditions for stability

V(z,a) >0, %V(w,a) <0, Ve #0,
we obtain

aXi+...+a Xy > 0
A(a)T(a1X1+...+aLXL)+(a1X1+...+aLXL)A(a) < 0,

which constitutes a PLMI problem. Thus, Proposition 4.1 can be used to convert the problem into a finite
number of LMI feasibility conditions, the following sufficient test for robust stability is derived.
PROPOSITION 5.1. Assume one of the A;’s is stable. Then, the uncertain system (31) is stable whenever

there exist symmetric matrices Xy, ... , Xp and scalars Ay, ..., A such that the following LMI conditions
hold
A’]{Xk + XA < =M1,
A;T”Xi-i-XiAi-i‘A‘r{Xj +XJ'A]' - (AzTX] +Xin+Ain+XiAj) > -\ +)\j)I
)‘k Z 0 )

fork=1,...,Land1<i<j<L.

In such case the Lyapunov function V(z,a) establishes stability of the uncertain system (31).

Proof. The above conditions ensure that %V(a:,a) < 0 for all admissible values of the parameter.
Moreover, V(z,a) is a candidate Lyapunov function since at least one the A;’s is stable and since a; X; +
...+ ar Xy, cannot be singular, we infer that ay X1 + ...+ ar Xy > 0 for all « in the simplex (8). O
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5.2. Robust performance. As claimed earlier, the proposed techniques are potentially applicable to
any Lyapunov-based performance measure. We illustrate this claim with the Hy performance criterion. See
[9] for a Lyapunov characterization of the Hs norm.

Consider the uncertain system

(32)
where
13 0] <ol 2] [ 4]}

By virtue of Proposition 4.1, and paralleling the argument in Proposition 5.1, we deduce that the Hs norm
from w to z of the uncertain system (32) is bounded by v for all values of « in the simplex (8) whenever

there exist symmetric matrices X1, ... , X1, @ and scalars Ay, ..., Ar, such that the following LMI conditions
hold
Ue(Xk) < =N
Vi(Xs) + Vi(X;) — (ViT(Xj) +Vi(X:) > i+ M)I
P, C
> k
A >0, [Ck Q]>O, TrQ < v

fork=1,...,Land 1 <i < j < L, with the definitions

ATX; + X;4; X;B; ATX; + X;4; X;B;
Ui(Xj) :=|: 1 _BJ,TXJ,] 1 iIZ:|7 V;(XJ) ::|: (] éTXj] 1 Joz
(] K3

Extensions and reformulations for time-varying uncertain parameters, pole clustering in LMI regions,
H, and passivity constraints, and many others are straightforward. When the dependence on the parameter
is polynomial the same line of attack is still valid with the assistance of Lemma 4.2.

5.3. 4 analysis. The structured singular value (SSV) or p is an important linear algebra tool to study a
class of matrix perturbation problems [11, 12, 36]. Since many robust stability /performance problems can be
recast as one of computing p with respect to an appropriate block-diagonal structure, it is also particularly
useful in control theory and practice. The computation of y involves an optimization problem which is not
convex and known to be NP-complete [32], so that it is difficult to compute u exactly. Fortunately, it is
possible to compute lower and upper bounds for u with reasonable computational effort [13, 46]. This is the
approach considered in this section.

The computation of u can be formulated as computing the smallest norm perturbation for which the
matrix I — AM becomes singular, where M denotes the plant’s transfer function at some given frequency
and A stands for uncertainties which are generally assumed to have a specific block-diagonal structure. In
this section, we assume without loss of generality that uncertainties are real, A;; € R, and range over a
polytope

A€co{A,....,Ar}.

Extensions to mixed real/complex uncertainties are readily derived.

Our goal is to determine sufficient conditions for which I — AM remains non-singular for all admissible
uncertainties. Qur approach is inspired by the work in [15, 26] and goes as follows. A necessary and sufficient
condition for the non-singularity of (I — AM) is the existence of a parameter-dependent matrix F'(A), such
that

(33) F(A)(I — AM) + (I — AM)*F(A)* <0.

The awkward condition (33) is simplified by restricting the search of F/(A) matrices to those having the form

L
F(A):= ) oiF;,
i=1
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where the a;’s are the coordinates of A in the convex decomposition

L
A= Z Oéz'Ai .
i=1

With these restrictions, it is not difficult to see that inequality (33) takes a form similar to (7), that is, a
PLMI feasibility problem. Therefore, by a direct application of Proposition 4.1 or its refined version (11)-
(13), sufficient conditions for the non-singularity of I — AM express as the existence of suitably dimensioned
complex matrices Fi, F5, ... F such that

Fk—FF]: —(FkAkM+(FkAkM)*) < —Akl
(FiAiM + FjA; M) — (F;A; M + FjAM) + ()" < (A + M)
A > 0.
This new upper bound for u reduces to the upper bound proposed by M. Fu and N. Barabanov in [15]
when F'= F; = ... = Fp, thus is less conservative but also more costly. It is also less conservative than the
more classical upper bound in [13], as is easily proved by choosing F = F} = ... = F, = —=D — jM*G. A

similar approach though somewhat more conservative has been proposed by Chen and Sugie in [10].

5.4. Linear Parameter-Varying Control. In this section, we more thoroughly investigate how the
concepts and tools introduced can be utilized in the context of LPV control. For clarity, we recall the general
statement of the problem.

We are considering an LPV plant with state-space realization

2 = A(0)x+ B1(8)w + B2(0)u
(34) z = Ci1(0)x+ D11(0)w + D12(0)u
y = (s (0)(12' + Doy (0)w s

A€ Rnxn7 Dq5 € R”lme,and Dy € RP2xm1

define the problem dimension. It is assumed that

(A1) the state-space data A(6), B1(6), ... are bounded continuous functions of 6,

(A2) the time-varying parameter 6(t) := [0;(t),---,0n(t)]7 and its rate of variation 8(t), defined at all
times and continuous, evolve in hyper-rectangles H and Hy, that is,

(35) 6;(t) € [6,,65], Vt>0,

(36) 0:(t) € [v;, 73], Vt>0.

The assumptions (A1) and (A2) are general. They secure existence and uniqueness of the solutions to (34)
for given initial conditions and also specify the parameter trajectories under consideration.

With these assumptions in place, the general LPV control problem with guaranteed L,-gain performance
consists of finding a dynamic LPV controller with state-space equations

Ak (8,60)xk + Bk (8,0)y
CK(9,0)$K + DK(G,Q)y ,

(37) "

which ensures internal stability and a guaranteed Ls-gain bound « for the closed-loop operator (34)-(37)
from the disturbance signal w to the error signal z, that is,

T T
/ 2Tzdr < 72/ wlwdr, YT >0
0 0

for all admissible parameter trajectories 6(t).
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Sufficient solvability conditions for this problem can be derived using a suitable extension of the Bounded
Real Lemma [44], and by confining the search of (Lyapunov) variables to some finite-dimensional subspace
of functions of §. The next theorem provides such a set of conditions for the general LPV control problem.
An alternative approach, based on polytopic covering techniques, is proposed by Yu and Sideris in [47]. For
technical reasons that are clarified in the proof, we also assume that

(A38) the matrices [BY(0) D%L,(0)], [C2(0) D21(8)] have full row-rank over H.
Note that the dependence of data and variables on 6, or 8 is generally dropped for simplicity.

THEOREM 5.2. With the assumptions (A1)-(A3) in force, the following conditions are equivalent:

(i) The Bounded Real Lemma conditions with Lo-gain performance level v hold for some quadratic
Lyapunov function

V(z,zk,60) = [ . ]TP(Q) [ N ] ,

TK TK

where P(0) is continuously differentiable, and for some LPV controller (37).
(i) There exist continuously differentiable parameter-dependent symmetric matrices X (6) and Y (0)
such that the following PLMI problem is feasible :

T X+XA+ATX XB, cr ;
(38) [AGX ? ] BI'X I | DT, [%% <0
Ci Dy I ] .
[ -Y4+YAT +AY vCT By ]
(39) [/\gy 2] CLY —~I Dy [Agy % <0
BT Dfy | —TI | -
X I]
(40) [ I v > 0.

for all (9,9) on H x Hg, and where Nx and Ny designate any bases of the nullspaces of [Co D] and
[BI DZL,), respectively.

(iii) There exist continuously differentiable parameter-dependent symmetric matrices X () and Y ()
and a scalar o solving the PLMI problem:

X+XA+ATX XxB, cCf oF

(41) BlTX —’yI D?l -0 Dg} [02 Doy 0] <0
Cl D11 —’7_[ 0
Y +YAT +AY YOT B B,

(42) Y —yI Dy | -0 |Dp|[BY DI 0]<o0,
BT DL I 0

X I
(43) HHEC

for all (6,6) on H x Hy.

Proof. See Appendix. O

Equipped with Theorem 5.2, it is relatively straightforward to show how multi-convexity concepts can
be used to reduce complexity in LPV control problems with polynomial parameter-dependence.

For simplicity of the presentation, it is first assumed the the state-space data in (34) and the Lyapunov
variables are affine functions of the parameter 6, that is,

N N
(A4) A(0) = Ag + Z 0;A;, B (0) := Big + E 0;B1; ...
i=1 i=1

THEOREM 5.3. With the as_sumptions (A1)-(A4) abo;e, there exists an LPV controller (87) solution to
the LPV control problem with guaranteed Lo-gain performance with level v whenever there exist symmetric
matrices Xo, X1, ... ,Xn and Yo, Y1, ....,YN and scalars Ao, A1,... AN, Wo, p1,--- pn and o such that
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X+XA+ATX XB, CF cr N

(44) BI'x —I Df | —o |DE|[Ca Da 0]<—(o+ Y 6iN)I
Cl D11 —’)’I 0 3
Y +YAT+AY YO B B,
(45) C1Y —yI Dy | -0 | Dy |[Bf DL 0]<—(umo+ Y 6iu)l
BT DT, —4I 0 =
X I

(46) [I Y] >0

for (6,8) € vert H x vert Hy and

X;A; + AT X; XB1 ] [ CLCy  CLDosy; ]
47 143 1 7 [ 2 1 i >\ T
47 [ Bsz'X' 7 D21102z D211D2lz B '
YAT+AY YCT] [Bz By, DT, ]
48 14 124 g 121 > — .I’
( ) |: Cll i D121 g; D121D12l = THi
(49) Ao >0, Ai>0, po>0, p>0.

fori=1,..., N with the notations

N N
X = X0+20,»X,~, Y = Y0+20,~Y;.

i=1 i=1

Proof. The proof is a direct consequence of Theorem 5.2 combined with an application of Proposition
4.1 or Lemma 4.2 to the particular case where data and variables are affine with respect to 6. O

Remarks: 'The conditions in Theorem 5.3 constitute a standard semi-definite programming problem.
The linear objective v should be minimized subject to a finite number of LMI constraints, and a number of
softwares are available for this purpose. The characterization is easily modified to encompass any polynomial
parameter dependence for both the state-space data and the variables X () and Y () by direct application
of Lemma 4.2. The multi-convexity requirements in equations (47) and (48) can be relaxed using the simple
techniques in Section 4. When either the multi-convexity approach is too conservative or brute force gridding
of the parameter range is too costly (more than two parameters), it might be appropriate to enforce multi-
convexity along some direction and to grid a surface of lower dimension. See the examples in Section 6 for
illustrations.

5.4.1. LPV controller construction. The PLMI conditions (i) and (i) in Theorem 5.2 are equi-
valent and provide lossless solvability conditions for problem (%). The characterization in Theorem 5.3 may
be conservative but give tractable conditions for solving the same problem. Clearly, when any of the latter
problems is feasible, the state-space data (37) of an LPV controller solving the problem can be constructed
for any pair (,6) in H x H, from any solutions X (6) , Y () and ¢ by the very same algebraic formulae. For
completeness, we provide the following sequential scheme:

(i) compute Dk solution to

(50) (D11 + D12Dk D) < 7,

and set D¢ := D11 + D12 DgDo;.
(ii) compute B and Cx solutions to the linear matrix equations

0 D21 0 T ~T 02
(51) h —r o ||Bx|--| x|
0 Do —~I] * C1 + D12 Dk Cs
0 DL 0 g BT
(52) D12 —’YI DcZ *K:| = — Cly

0 DI —I (By + B2Dg Dyy)T
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(iii) compute

Ax = —(A+ ByDkCy)T+

(53) —I D}, ]1 [(31 + B2DK1221)T

[XBi + BxDy (Cy + D1DkC5)"] [D ¢ —I C1Y + D15Cxk

(iv) solve for N, M, the factorization problem
I-XYy=NMT.
(v) finally, compute Ax, Bk and Ck with the help of

Ag = N"Y (XY + NMT + Ag — X(A — ByDkC,)Y

(54) —BxCY — XB,Cx)M T
(55) Bk = N"Y(Bg — XB,Dk)
(56) Ck = (Cx —DCyY)M™T.

The reader might consult [17, 16, 22, 37, 1] for details on this construction.

6. Numerical examples . In this section, the concepts and tools developed above are illustrated by
some numerical examples. All LMI-related computations were performed on a ULTRA 1 SUN station using
the LMI Control Toolbox [19].

6.1. Stability analysis. We consider the following example from [39]. The A matrix of the uncertain
system is given in the form:

—2+01 O —1+01
A(01,02) = 0 —3 + 02 0
-146, —-14+60, —-4+6,

We are seeking the maximum rectangle in the (61, 62)- space for which stability is guaranteed. In this context,
Proposition 5.1 is directly applicable to the polytope of extreme values of the parameters §; and 3. The
uncertain system is found stable for all values of 6; and 62 in the rectangle

—1e6 < 6; < 1.7499,  —1e6 <, < 2.99.

This result is consistent with the true domain of stability (6; < 1.75, 62 < 3), and is markedly superior to
existing results [39].

6.2. LPV synthesis example. The following example provides an illustration of the proposed LPV
control synthesis techniques. The discussion emphasizes the complexity and cost associated with various LPV
synthesis strategies. The problem setup comes from [33]. It has been slightly complicated to incorporate
two time-varying parameters for illustration purpose, while retaining the same design specifications.

The LPV model of the longitudinal dynamics of the missile are given as:

& _ [ -089 1]« 0 —0.89] [we, —0.119
_q'] = 1426 ][q]+[178.25 0 ][w92]+[—130.8] Ofin
[wg,] _ [6 0][-1 0] e

| wg, | |0 62 1 0]|gq

X _ [-152 0] [«

| q 10 1| |gq
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where a, g, 7. and dg,, denote the angle of attack, the pitch rate, the vertical accelerometer measurement,
the fin deflection, respectively; and 61, > are two time-varying parameters, measured in real time, resulting
from changes in missile aerodynamic conditions (angle of attack from 0 up to 20 degrees). The synthesis
structure used in this problem is depicted in Figure 1.

e u
A A [91 0 ] _
W, W, 0 6,
"]c%o = 2+0';06 £ [
— Ko G
o dfin L m
N missile

Fia. 1. Synthesis structure

The problem specifications are as follows:

(i) A settling time of 0.2 second with minimal overshoot and zero steady-state error for the vertical
acceleration 7, in response to a step command 7.

(ii) The controller must achieve an adequate high-frequency roll-off for noise attenuation and to with-
stand neglected dynamics and flexible modes. Magnitude constraints of 2 are also imposed to the control
signal dg,,.

Moreover, those specifications must be met for all parameter values:

61 <1, 2] < 1.

An integrator has been introduced on the acceleration channel to ensure zero steady-state error. It turns
out that the resulting LPV controller K is obtained as the composition of the operators Ky and

240.06 s 0
R

The weighting functions W, and W,, were chosen to be

_0.001s* 4 0.035% +0.3s + 1
“ " le-5s + 3e-252 + 305 -+ 10000 °

W, = 0.8,

The design synthesis consists in the computation of a parameter-dependent controller, K¢ (61,62) such
that all specifications above are met. For simplicity of the discussion, we assume that the LPV model can
be considered as a parameterized family of linear time-varying models. Similar conclusions can be drawn
with time-varying parameters with bounded rates of variation. The synthesis problem is attacked via three
different strategies with increasing conservatism and decreasing computational effort:

(i) The full gridding approach makes use of a 6 x 6 point gridding of the parameter range of (6;,65).
(ii) The mixed strategy uses a grid in the 2 direction and enforces multi-convexity along the 6;
direction.

(iii) The multi-convexity approach enforces multi-convexity in both directions 6; and 6.

Results and numerical features of each technique are collected in Table 1.
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# of gridding points | # of LMIs cputime achieved perf. level
full gridding 36 108 17 min. 24 sec. 0.1265
mixed strategy 12 30 6 min. 20 sec. 0.1282
multi-convexity 0 16 3 min. 12 sec. 0.1293
TaBLE 1

Numerical comparisons of LPV synthesis techniques

It is instructive to see that all techniques provide about the same performance level. This indicates that
there is no significant growth of conservatism when using multi-convexity concepts to reduce or eradicate
the gridding points. This is confirmed by the time-domain simulations in Figures 2-4 which correspond,
for each derived LPV controller, to parameter values at the vertices and the center of the (61,62)-range.
Performance specs. as well as the roll-off property of the controllers have been checked to be satisfactory
for each technique. In spite of the consistency in the results, it must be bore in mind that the multi-
convex synthesis is the only one to provide theoretical stability and performance guarantees at any operating
condition of the parameter range. The full-gridding technique gives similar guarantees solely at the grid
points and the achieved performance + is necessarily a lower bound of the actual performance. The situation
is slightly more embarrassing for the mixed strategy since the performance level is over-estimated in the
direction of #, and under-estimated in the direction of #;. So that we cannot decide whether the result is
conservative or optimistic on the whole parameter range. Nevertheless, the approach is of practical interest
for computational reasons. It appears clearly in Table 1 that LPV syntheses exploiting either partial or
complete multi-convexity are significantly cheaper than full-gridding techniques. This difference is likely to
be even more dramatic for problems involving more than two parameters for which full gridding is practically
prohibited. This is a direct consequence of the exponential growth of the number of LMIs in the full-gridding
approach. Note that we do not account for scalar dimensional constraints of the type A;, u; > 0 in Table 1,
as they negligibly affect the overall computational time.

Any of the LPV synthesis techniques considered in this section turns out to be less conservative than LFT
(Linear Fractional Transformation) gain-scheduling techniques [30, 2, 20, 38] which disregard the parameter
variation rates. About 10 percents degradation of the performance level has been observed in this simple
application. Finally, the techniques behave as theoretically expected and provide valuable LPV synthesis
alternatives.
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Fic. 2. Time domain responses - LPV controller #1
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7. Conclusion. A general framework for relaxing PLMI problems into conventional LMI problems has
been introduced. The techniques are simple and exploit or enforce directional convexity properties of PLMI
problems. A non-exhaustive list of implications of the proposed techniques in control theory have been
examined with a particular focus on LPV synthesis, a most important emerging technique in the recent
years.

This work raises some open questions some of which might be beyond reach but also suggests some
directions for future research:

(i) For affine PLMI problems, directional convexity concepts are less conservative than the S-procedure
but a theoretical comparison is still lacking in the general case. From the viewpoint of computational
efforts, one can hardly draw definitive conclusions but the proposed approach is better exploited by using
primal SDP interior-point techniques since it involves less decision variables than the S-procedure. We note
experimentally that the multi-convexity approach is more efficient for problems with significantly more states
than parameters which is a common situation in control applications.

(ii) An unsolved issue is the following. Is it possible to exploit directional quasi-convexity instead of
directional convexity for some classes of PLMI problems ?

(iii) Other topics not examined in this paper and for which the proposed techniques might prove useful
are robust least-squares and robust interpolation and approximation. The relaxation of some intractable
generic robust convex programs is also of interest.

Appendix. Proof of Theorem 5.2. Following [44], the LPV control problem with guaranteed Lo-
gain performance < is solvable whenever one can find a LPV controller such that a suitable extension of the
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Bounded Real Lemma is satisfied with a quadratic parameter-dependent Lyapunov function, continuously
differentiable with respect to 8. This is nothing else than statement (i) of the theorem.

In turn, the latter conditions are equivalent to the existence of continuously parameter-dependent sym-
metric matrices X (0) and Y (6) such that LMI conditions (38)-(40) hold for all (6,0) on H x Hy. This
assertion is a slight extension of the main result in [44, 17, 22]. Assume a (closed-loop) Lyapunov function
establishing L,-gain performance is

TK K
where
[x N L Y M
el o=l Y]

It trivially holds that

Then, defining

v I I x
My := [MT 0]’ Tx := [0 NT]

yields the identities PIIy = IIx, and
vd
Yt
which is the only additional term with respect to the customary H, control problem in [17]. This establishes
statement (7). .

To prove assertion (%4), we first note that the rates of variation 6; are involved linearly in (38) and (39),
and thus it suffices to assess feasibility of these LMIs over H x vert Hy. By virtue of Finsler’s Lemma [31, 22,
the LMIs (38)-(39) with (6, 8) ranging over H X vert H, are feasible if and only if there exist a function o(.)
of 6 such that

II

Pl — [_ -y —(XY +.NMT)T]

(XY + NMT) X

X+XA+ATX XB, CT ct
(57) BTX —I DL | —o@®) | DL |[Ca Dy 0]<0
Cl D11 —"YI 0
Y +YAT+ AY YCT B B,
(58) Cly —’)/I D11 - 0'(0) D12 [BzT ‘DTZ 0] <0.
BT DL —4I 0

Therefore, we end up with an infinite set of LMIs whose members are all of the form
(59) T(0) —o(@)RORBG)T <0, HeH.

Denote R, a continuous basis of the nullspace of RT. This is always possible [21, 25] by virtue of assumption
(A3). It follows that [R(#) R (#)] is a continuous invertible matrix over H. With the proviso that the
LMIs (59) are feasible, it is not difficult to see using Schur complements that admissible o are described as

60)  o(8) >1(0) :=X{(R"YR - (R"UR,)(RTTR,) "(R"YR,)")(R"RR"R) '}, e H

where A(.) stands for the maximum eigenvalue of a matrix. From the continuity of both the plant’s state-
space data (assumption (A1)) and the variables X (f) and Y (6), we deduce that [(6) in (60) is also continuous
with respect to §. Now since H is a compact set, the choice
a(0) := o > supl(H)
9cH
is again a valid choice for o. It follows that the LMIs (57) and (58) are feasible if and only if this is so for a
constant sufficiently large o. This completes the proof of the theorem. O
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