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Abstract

Robust filtering for uncertain discrete systems has been
intensively studied in literature in recent years. Non-
linear fractional transformation (NFT) is an attractive
tool, which effectively exploits partial linear structures
of nonlinear systems. The paper gives viable linear ma-
trix inequality (LMI) optimization formulations for un-
certain NFT discrete systems with performance crite-
ria based on generalized H2 and H∞ norm constraints.
This is verified by thorough computer simulations and
comparisons.

1 Introduction

In recent years, robust filtering has been intensively
studied in the literature [6, 7, 8, 10, 11, 12, 13, 14, 16].
This is due to the introduction [3, 4] of linear matrix
inequality (LMI) as the main tool toward effective so-
lutions of robust control and filtering. Indeed, LMI
setting is really fit to handle the robust optimization
and estimation because most realistic uncertainty con-
straints can be adequately and accurately expressed by
LMIs. Usually, the uncertain systems are assumed lin-
ear in uncertain parameters [6, 10, 13, 16]. When un-
certain parameters enter continuous systems in nonlin-
ear way, robust filtering have been addressed in [10, 14].
The result of [10] is given as matrix inequalities, which
are still nonlinear in all scaling vector variables, while
the result of [14] is given by completely LMIs. As
shown by [14], it is crucial to express nonlinear param-
eter dependence of a system in a tractable form, which
allows exploiting its partial linear structures that can
be maximally used for LMI derivation. Nonlinear Frac-
tional Transformation introduced in [14] seems to be
the appropriate model for this purpose.
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aim of this paper is to extend the result of [14] to
case of discrete systems, that is the robust filtering
discrete uncertain linear system in the nonlinear
tional transformation (NFT) form

(k + 1)
y(k)

z∆(k)
z(k)


 =


 A(α) B∆(α) B(α)

C(α) D∆(α) D(α)
C∆(α) D∆z(α) Dz(α)
L(α) D∆∆(α) M(α)



[

x(k)
w∆(k)
w(k)

]
,

w∆(k) = ∆(α)z∆(k),
(1)

re A(α) ∈ Rn×n, B∆(α) ∈ Rn×m∆ , B(α) ∈
m, D(α) ∈ Rp×m, C∆(α) ∈ Rm∆×n, L(α) ∈
n and x ∈ Rn is the state, y ∈ Rp is the mea-
d output, z ∈ Rq is the output to be estimated
w ∈ Rm is noise, w∆ ∈ Rm∆ and z∆ ∈ Rm∆ help
age the uncertainty component of the system. The
rtain parameter α is supposed to be in the unit
lex Γ:

Γ := {(α1, ..., αs) :

s∑
j=1

αj = 1, αj ≥ 0} .

the state-space matrix data in (1) are such that

(α) B∆(α) B(α)
(α) D∆(α) D(α)
(α) D∆z(α) Dz(α)

(α) D∆∆(α) M(α)
0 ∆(α) 0


 =

s∑
j=1

αj




Aj B∆j Bj

Cj D∆j Dj

C∆j D∆zj Dzj

Lj D∆∆j Mj

0 ∆j 0




(2)

n short, they are linear in parameter α.

NFT has been introduced in [14] as a tool for
esenting uncertain continuous systems. The NFT
esentation (1) covers the linear fractional transfor-
ion (LFT) representation [17] in which only ∆(α)
ncertain and the polytopic representation with
) = 0 as two particular classes. Though it is well
n that LFT can be applied to almost all the uncer-
systems, the advantages of NFT compared to LFT
at it results in substantial reduction in term of sys-
dimensions and solutions to polytopic and LFT

ems can be easily inferred from those to the NFT



ones. Dimension reduction by NFT can lead to dra-
matically better analysis and synthesis whereas LFT
may lead to performance deterioration. This will be
clearly demonstrated in section 4.

On the other hand, it is obvious that the structure of
the used filter class has much influence on the filter
performance. The customary used filters [6, 8, 10, 13,
14, 16] usually take the strictly proper form[

xF (k + 1)
zF (k)

]
=

[
AF BF

LF 0

][
xF (k)
y(k)

]
, (3)

While strictly proper filters work well for continuous
systems [10, 13, 14], they may not be the best candi-
date for discrete systems. This is due to the fact that
according to (3), at each time instant k, one estimates
the output z(k) of system (1) based on information of
the measured output y available up only to time k−1.
Thus, naturally, the filtering performance can be essen-
tially improved by using the following proper structure
introduced in the paper[

xF (k + 1)
zF (k)

]
=

[
AF BF

LF DF

][
xF (k)
y(k)

]
,

AF ∈ Rn×n,LF ∈ Rq×n

(4)

which obviously updates the estimation zF (k) for the
output z(k) based on information on all states of the
measured output y(k) up to present instant k. Fur-
thermore, the estimation criterion of filters is based on
the mixed generalized H2/H∞ criterion

max
α∈Γ

[ρ||z − zF ||2pk + (1 − ρ)||z − zF ||22] → min, (5)

where ||.||pk and ||.||2 denote signal norms inducing
the discrete generalized H2 and H∞ norms respectively
corresponding to the generalized H2 norm and the H∞
norm of continuous systems. Like their counterparts
for continuous systems, the generalized H2 norm con-
straint introduced in section 2 is the peak error am-
plitude criterion and H∞ norm constraint is the error
energy criterion so (5) makes a compromise between
the two conflicting constraints with trade-off constant
ρ (0 ≤ ρ ≤ 1). So, solutions to the generalized H2 and
H∞ filtering problems are on hand readily.

This paper develops an effective approach toward the
posed robust filtering problems. We are then successful
in:

• Making out a new characterization of the gen-
eralized H2 norm constraint for uncertain NFT
systems.

• Forming new LMI formulations for uncertain
NFT systems. Coherently, new LMI formula-
tions for polytopic and LFT cases are available.

We organize the paper as follows. Section 2 outlines
characterizations of the generalized H2 and H∞ norms
of the above NFT systems. Section 3 transforms these
characterizations into LMI formulations. Section 4 val-
idates the effectiveness of our approach via thorough
simulations and comparisons.
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2 Characterizations for norm
constraints

based formulations will be provided for the gen-
zed H2 and H∞ norm constraints to evaluate the
esponding performances of filters. This is done
the loop system (1) having the output to be min-

ed zcl = z − zF

xcl(k + 1)
z∆(k)
zcl(k)

]
=

[Acl B∆cl Bcl

C∆ D∆z Dz

Lcl Dcl Mcl

][
xcl(k)
w∆(k)
w(k)

]
,

w∆(k) = ∆(α)z∆(k)
(6)

re

(k) =

[
x(k)

xF (k)

]
, Acl(α) =

[
A(α) 0

BF C(α) AF

]
,

cl(α) =

[
B∆(α)

BF D∆(α)

]
, Bcl(α) =

[
B(α)

BF D(α)

]
,

(α) = [ C∆(α) 0 ] , Dcl(α) = D∆∆(α) − DF D∆(α),

l(α) = [ L(α) − DF C(α) −LF ] ,

cl(α) = M(α) − DF D(α).
(7)

Generalized H2-norm characterization
generalized H2 norm of the (6) is defined as

sup
w,T

||zcl(T )||(
T∑

k=0

||w(k)||2
)1/2

(8)

s, if the inequality

||zcl(T )||2 < ν

T∑
k=0

||w(k)||2 (9)

s for any input sequence w(k) and its output se-
ce zcl(k), then the generalized H2 norm of system
s less than

√
ν and vice versa.

orem 1 One has (9) guaranteeing the generalized
norm of system (6) less than

√
ν if for every α ∈ Γ,

e are symmetric matrices X(α) > 0 and scaling
rices Ri(α), Si(α), a scalar µ and slack matrices
), Hi(α), Fi(α) satisfying the following matrix in-
lities

i ∆T HT
i

i∆ Si + (Hi + HT
i )

]
(α) ≥ 0 ∀α ∈ Γ i = 1, 2; (10)




T11 ∗ ∗ ∗
0 T22 ∗ ∗

T31 T32 T33 ∗
T41 T42 0 T44


 (α) < 0 ∀α ∈ Γ, (11)




U11 ∗ ∗ ∗
0 U22 ∗ ∗

U31 U32 U33 ∗
U41 U42 0 −νI


 (α) < 0 ∀α ∈ Γ (12)



where

T11 = −X, T22 =

[
S1 ∗
0 −(1 − µ)I

]
,

T31 = VTAcl, T32 = VT [B∆cl Bcl ] ,
T33 = X − (V + VT ), T41 = F1C∆,
T42 = F1 [ D∆z Dz ] , T44 = R1 − (F1 + FT

1 ),

U11 = −X, U22 =

[
S2 ∗
0 −µI

]
, U31 = F2C∆,

U32 = F2 [ D∆z Dz ] , U33 = R2 − (F2 + FT
2 ),

U41 = Lcl, U42 = [Dcl Mcl ] ,

(13)

2.2 H∞-norm characterization
As well defined, the H∞ norm for system (6) is

sup
w,T

(
T∑

k=0

||zcl(k)||2
)1/2

(
T∑

k=0

||w(k)||2
)1/2

(14)

Hence
T∑

k=0

||zcl(k)||2 < γ2

T∑
k=0

||w(k)||2 (15)

always holds, meaning that the H∞-norm of system
(6) is less than γ.

Theorem 2 One has (15) if for every α ∈ Γ there
are matrices Y(α) > 0, V(α), R(α), S(α), H(α) and
F(α) satisfying the following inequalities[

R ∆T HT

H∆ S + (H + HT )

]
(α) ≥ 0 ∀α ∈ Γ, (16)




P11 ∗ ∗ ∗ ∗
0 P22 ∗ ∗ ∗

P31 P32 P33 ∗ ∗
P41 P42 0 P44 ∗
P51 P52 0 0 −γI


 (α) < 0 ∀α ∈ Γ (17)

where

P11 = −Y, P22 =

[
S ∗
0 −γI

]
P31 = VTAcl, P32 = VT [B∆cl Bcl ]
P33 = Y − (V + VT ), P41 = FC∆, P42 = F [ D∆z Dz ] ,
P44 = R − (F + FT ), P51 = Lcl, P52 = [Dcl Mcl ] .

(18)

3 Robust filters for NFT

In (6), note that Acl(α),B∆cl(α),Bcl(α) are functions
of the variable K = [BF AF ]

[Acl [B∆cl Bcl ] ] (α) =

s∑
j=1

αj([ ΘAjΘ
T ΘBj ] + ΥK [ Cj ΘpDj ])

(19)
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=

[
0n

In

]
, Θ =

[
In

0n

]
, Θp =

[
Ip

0np

]
,

= [ In In ] , Bj = [ B∆j Bj ] , Cj =

[
Cj 0pn

0n In

]
,

j = [ D∆j Dj ] , Dzj = [ D∆zj Dzj ] .
(20)

facilitates the linearization for the stated gener-
d H2/H∞ norm characterizations .

Robust generalized H2 filter
rder to derive tractable LMI-based formulation for
posed filtering problems, we must impose the fol-
ng structures for decision variables in (11), (12)
(10)

α) ≡ V, Fi(α) ≡ Fi, Hi(α) ≡ Hi ∀α ∈ Γ, i = 1, 2.
(21)

X(α) =

s∑
j=1

αjXj , Ri(α) =

s∑
j=1

αjRij ,

Si(α) =

s∑
j=1

αjSij , i = 1, 2,

(22)

the basic variables are parameter-dependent while
slack variables are not.

orem 3 There is a filter (4) which sat-
s the estimation condition (9) whenever
following LMI constraints are feasible in
X̂j , Sij , Rij , K̂, L̂F , DF , Hi, Fi and[

Rij ∆T
j HT

i

Hi∆j Sij + (Hi + HT
i )

]
≥ 0, (23)


M j

11 ∗ ∗ ∗
0 M j

22 ∗ ∗
M j

31 M j
32 M j

33 ∗
M j

41 M j
42 0 M j

44


 < 0, (24)




N j
11 ∗ ∗ ∗
0 N j

22 ∗ ∗
N j

31 N j
32 N j

33 ∗
N j

41 N j
42 0 −νI


 < 0,

j = 1, 2, ..., s.

(25)

,

j
11 = −X̂j , M j

22 =

[
S1j ∗
0 −(1 − µI)

]
,

j
31 = V̂T ΘAjΘ

T + IT K̂Cj ,
j
32 = V̂T ΘBj + IT K̂ΘpDj ,
j
33 = X̂j − (V̂ + V̂T ), M j

41 = F1C∆jΘ
T ,

j
42 = F1Dzj , M j

44 = R1j − (F1 + FT
1 ),

j
11 = −X̂j , N j

22 =

[
S2j ∗
0 −µI

]
, N j

31 = F2C∆jΘ
T ,

j
32 = F2Dzj , N j

33 = R2j − (F2 + FT
2 ),

j
41 = [ Lj − DF Cj −L̂F ] ,
j
42 = [ D∆∆j Mj ] − DFDj .

(26)
matrix data AF , BF , LF , DF defining the fil-
4) can be derived from the solutions of the matrix
ualities (23), (24), (25) according to

AF = ÂF V̂−T
3 , BF = B̂F , LF = L̂F V̂−T

3 . (27)



3.2 H∞ and mixed generalized H2/H∞ filters

Theorem 4 There is a filter (4) which sat-
isfies the robust estimation condition (15)
whenever the following LMIs are feasible in
V̂, Ŷj , Sj , Rj , K̂, L̂F , DF , G, F.

[
Rj ∆T

j HT

H∆j Sj + (H + HT )

]
≥ 0, (28)




Ej
11 ∗ ∗ ∗ ∗
0 Ej

22 ∗ ∗ ∗
Ej

31 Ej
32 Ej

33 ∗ ∗
Ej

41 Ej
42 0 Ej

44 ∗
Ej

51 Ej
52 0 0 −γI


 < 0,

j = 1, 2..., s

(29)

with

Ej
11 = −Ŷj , Ej

22 =

[
Sj ∗
0 −γI

]
Ej

31 = V̂T ΘAjΘ
T + IT K̂Cj , Ej

32 = V̂T ΘBj + IT K̂ΘpDj

Ej
33 = Ŷj − (V̂ + V̂T ), Ej

41 = FC∆jΘ
T , Ej

42 = FDzj ,

Ej
44 = Rj − (F + FT ), Ej

51 = [ Lj − DF Cj −L̂F ] ,

Ej
52 = [ D∆∆j Mj ] − DFDj .

(30)

The filter data AF , BF , LF , DF defining the filter
(4) can be derived from the solutions of the LMIs (28)
and (29) according to the formulas in (27).

The solution to the optimal mixed filter problem (5) is
merely the combination of the theorems 3 and 4.

Theorem 5 A sub-optimal robust filter (4) for prob-
lem (5) can be solved by the following optimization
problem

min[ρν + (1 − ρ)γ2] : (23), (24), (25), (28), (29). (31)

with decision variables V̂, X̂j , Ŷj , Sij , Rij , Sj , Rj ,

K̂, L̂F , DF , Hi, Fi, H, F, µ, ν, γ. The matrix
data AF ,BF ,LF ,DF defining the suboptimal filter (4)
can be derived from the solutions of the optimization
problem (31) according to the formulas in (27).

4 Numerical examples

Different representations of the system model
(NFT/LFT) as well as different filter structures
(4/3) may result in dramatically different estimation
performances. This is shown via the solutions the
robust filtering problems for the system

[
x(k + 1)

y(k)
z(k)

]
=

[
A(α) B

C D
L 0

][
x(k)
w(k)

]
(32)

with

A(

Q0

Q2

Q4

B

D

Both

•

•

Note
the
foun
prov
boun
estim
ator
ized
by fi

The
larg
com
of th
In a
(34)
are
gene

Trac
stric
α) = Q0 + α3
1Q1 + α3

2Q2 + α1α
2
2Q3 + α1Q4 + α2Q5,

=

[
−0.3 0.5
0.2 −0.1

]
, Q1 =

[
0.1 0.15
0.1 0.15

]
,

=

[
0.1 0.2
0.25 0.25

]
, Q3 =

[
0.2 0.15
0.2 0.15

]
,

=

[
0.2 0.2
0.1 0.2

]
, Q5 =

[
0.1 0
0.25 0.1

]
,

=

[
−2 0
1.5 0

]
, C = [−10 10 ] ,

= [ 0 3 ] , L = [ 1 0 ] .
(33)

representations are used.

NFT as in (1) with

A(α) = α1(Q0 + Q4) + α2(Q0 + Q5),

B∆(α) = [ α1I2 α2I2 ]

[
Q1 Q3

O Q2

]
,

∆(α) =

[
α1I2 02

02 α2I2

]
, D∆z = 0,

C∆(α) =

[
α1I2

α2I2

]
, Dz = 0, D∆ = 0, D∆∆ = 0

(34)

LFT as in (1) with

A = Q0, B∆ = [ I2 02 02 I2 02 02 ] ,

D∆z =




02 Q1 02 02 Q3 02

02 02 I2 02 02 02

02 02 02 02 02 02

02 02 02 02 Q2 02

02 02 02 02 02 I2

02 02 02 02 02 02


 , C∆ =




Q4

02

I2

Q5

02

I2




Dz = 0, D∆ = 0, D∆∆ = 0, ∆(α) =

[
α1I6 06

06 α2I6

]
(35)

that using theorems 1 and 2, the upper bounds on
generalized H2 and H∞ norms of this system are
d equal to 2.6405 and 5.5908 respectively. The im-
ement (Im.) ratios are fractions having the upper
d on the generalized H2 (H∞) norm of the to be
ated sequence z(k) of the system as their numer-

s and the corresponding upper bounds on general-
H2 (H∞) norms of error sequences z(k) − zF (k)
lters as their respective denominators

dimension 12 of z∆ in the LFT (35) is three time
er than that of the NFT in (34), severely affecting
putational efficiency and estimation performances
e resulting filters as described in tables 1 and 2.

ddition, running times of LMI programs for NFT
are short whereas their counterparts for LFT (35)

very long. Table 3 lists the trade-offs between the
ralized H2 and H∞ performances.

king performances of proper filters and that of the
tly proper generalized H2 one are taken within 100



Model/Filter H2 Time Im. ratio
NFT/Proper 0.5503 6.5 s 4.7983
LFT/Proper 1.2469 13428 s 2.1176

NFT/Str. proper 2.0402 4.8 s 1.2942

Table 1: Generalized H2 performances of different filter
structures and system representations

Model/Filter H∞ Time Im. ratio
NFT/Proper 0.7934 2.5 s 7.0466
LFT/Proper 2.3471 2348 s 2.3820

NFT/Str. proper 2.2576 2.7s 2.4764

Table 2: H∞ performances of different filter structures
and system representations

steps in the case that noise is zero mean white noise
with the identity spectral density.

Figure 1 captures the real (to be estimated) sequence
z(k). The error sequences |z(k) − zF (k)|2 by proper
filters (fig. 2-4) are small in sample amplitude as com-
pared to the real sequence, confirming that proper fil-
ters achieve good tracking performances. The error
|z(k) − zF (k)|2 by the strictly proper generalized H2

filter (fig. 5) is nearly equal to the real sequence in
absolute value, showing that the strictly proper gener-
alized H2 filter is unacceptable. This well agrees with
their improvement ratios listed in tables 3 and 4 as
well as highlights the effectiveness of the proper filter
structure.

The error sequence by the proper generalized H2 filter
(fig. 2) shows peak sample amplitudes smaller than
those of the proper H∞ filter. As a compensation,
the error sequence by the proper H∞ filter (fig. 3)
is smoother in amplitude change of samples than that
of the proper generalized H2 filter. This reflects the
physics nature of the two norm constraints as men-
tioned earlier. The error sequence by the proper mixed
filter with the trade off constant ρ = 0.9 (fig. 4)
is smoother in amplitude change of samples as com-
pared to those of the proper generalized H2 filter and
has peak sample amplitudes smaller than those of the
proper H∞ one. Thus, it realizes a compromise be-
tween the two conflicting constraints as desired.

ρ Mixed H2 H∞
0.5 0.7830 0.9040 0.8653
0.7 0.6612 0.7901 0.8645
0.9 0.4939 0.6831 0.8599

Table 3: Performances of mixed proper filters by different
trade-off constants (ρ) for the NFT model
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5 Conclusions

ave proposed a new approach toward robust filter-
for time invariant uncertain NFT systems. In this
r, NFT once again shows its advantages against
not only via its generality but also, of utmost

ortance, via the computation efficiency it results
Our norm constraint characterizations using pa-
eter dependent Lyapunov functions together with
proper filter structure bring about effective LMI
mization formulations for generalized H2, H∞ and
d filtering problems. Finally, the viability of these
ulations is manifested by careful simulations and
ysis.
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Figure 1: Real signal
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Figure 2: Error |z(k) − zF (k)|2 of the proper H2

filter
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igure 3: Error |z(k) − zF (k)|2 of the proper H∞
filter
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igure 4: Error |z(k)− zF (k)|2 of the proper mixed
filter
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igure 5: Error |z(k)−zF (k)|2 of the strictly proper
H2 filter
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