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Abstract

The control synthesis problem involving Implicit Model
Following (IMF) is considered in the context of Linear
Parameter-Varying (LPV) and H2/H∞ theories. The
well-known quadratic or nominal H2 IMF problem is
first extended to encompass LPV system models with
a Linear Fractional Transformation (LFT) structure.
This problem is then embedded in the framework of
LPV theory. Conditions for dealing with additional
mixed H2/H∞ criteria are discussed. The solvabil-
ity conditions are provided with little conservatism by
a previous multi-channel LFT/LPV result in discrete
time. Finally, an illustrative example is used to validate
this new formulation. Also, we demonstrate through
this example that the IMF formulation is an effective
technique to achieve a desired transient behavior for
LPV systems.

1 Introduction

While most standard methods for robust control de-
sign of Linear Time-Invariant (LTI) systems focus on
frequency domain specifications, in a number of appli-
cations many performance specifications are explicitly
stated in time domain in terms of qualities of tran-
sient responses and internal state decoupling. It is
well-known from classical control theory that the main
properties of the time responses can be reflected in the
frequency domain. Therefore, the performance objec-
tives are often taken into account by choosing an appro-
priate synthesis structure and tuning frequency weight-
ing functions, filters and/or dynamic scalings. Hence,
the application of robust control design methods can
lead to a large amount of trial-and-error before obtain-
ing satisfactory conventional specifications in terms of
time-domain properties.

Some robust synthesis methodologies, as those based
on H∞ model matching schemes and on robust pole
placement approaches, handle time-domain specifica-
tions in a more explicit way. See, for instance, the
references [11, 10, 6] and [3]. However, extra diffi-

culties appear when non-stationary or nonlinear sys-
tems are considered, since they cannot be appropri-
ately represented in the frequency domain. The pole
notion no longer holds for these systems and some re-
quired transient properties are met only for slowly vary-
ing conditions. Moreover, because of excessive con-
servatism, these techniques are often restrictive in the
multi-objective control and Linear Matrix Inequalities
(LMI) [2, 5] contexts. Another drawback of the H∞
model matching methods is that they generally pro-
duce high order controllers.

In reference [8], the authors present an alternative ap-
proach to deal with the control problem involving as-
signment of closed-loop modal shapes. The LTI IMF
results of [7] are extended to the dynamic feedback case
and reformulated in the H2 context. In this method,
time domain specifications are readily reflected in a
quadratic criterion that penalizes the error between a
desired dynamic behavior and that of the closed-loop
system.

The purpose of this paper is to study the problem
of achieving precise and robust time-domain specifi-
cations on specific states of non-stationary LPV sys-
tems using IMF and a multi-channel LFT/LPV control
method.

2 Problem Statement

Consider a continuous-time LPV plant with LFT struc-
ture






ẋ(t)
z∆(t)
z(t)
y(t)






=







A B∆ B1 B2
C∆ D∆∆ D∆1 D∆2
C1 D∆1 D11 D12
C2 D2∆ D21 D22













x(t)
w∆(t)
w(t)
u(t)







w∆(t) = ∆(t) z∆(t),

(1)

where A ∈ Rn×n, ∆(t) ∈ RN×N , D12 ∈ Rp1×m2 and
D21 ∈ Rp2×m1 define the problem dimension. The no-
tation for signals is standard: x for the state vector, w
for exogenous inputs, z for controlled or performance
variables, u for the control signal, and y for the mea-
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surement signal. ∆(t) is a time-varying matrix-valued
parameter evolving in a polytopic set P∆, with

P∆ := co {∆1, . . . ,∆i, . . . ,∆L} 3 0 , (2)

where co stands for the convex hull and the ∆i’s denote
the vertices of P∆. That is,

∆ :=
L
∑

i=1

αi∆i,
L
∑

i=1

αi = 1, (3)

where αi ≥ 0 are the polytopic coordinates of ∆. Poly-
topic coordinates are computed in real time as func-
tions of the scheduling variables and can be exploited
by the controller. According to our definitions, the
pairs (w, z) and (w∆, z∆) define the performance and
the gain-scheduling channels, respectively. For simplic-
ity of presentation, we assume that D22 = 0 which in-
curs no loss of generality.

For the LPV plant (1) the gain-scheduling control prob-
lem consists in seeking an LPV controller with LFT
structure




ẋK(t)
u(t)
zK(t)



 =





AK BK1 BK∆

CK1 DK11 DK1∆

CK∆ DK∆1 DK∆∆









xK(t)
y(t)
wK(t)



,

wK(t) = ∆K(t)zK(t),

(4)

where AK ∈ Rn×n and ∆K ∈ RN×N , such that H2
and/or H∞ specifications are achieved for a family of
channels (wj , zj), j = 1, 2, · · ·, where the wj ’s and zj ’s
are sub-vectors of w and z, respectively (Figure 1). In
other words, bounds νj on the variance of the outputs
zj and/or bounds γj on the L2-induced gain of the op-
erator mapping wj into zj are guaranteed for all param-
eter trajectories ∆(t) ∈ P∆. The notation ∆K is used
for the controller gain-scheduling function which is a
function of the parameter ∆, that is, ∆K := ∆K(∆).

Remark 2.1 For an H2 performance index νj to be
well defined in continuous time, the state-space data
must be such that the closed-loop feedthrough term of
the channel/specification j is zero. Without impos-
ing restrictions to the controller, this is achieved with
D11j = 0 and either D1∆j = 0 and D12j = 0 or
D∆1j = 0 and D21j = 0.

3 H2−optimal IMF with LFT/LPV Structure
and Output Feedback

In this section, we revisit the IMF formulation within
the context of LPV systems and their associated con-
trol problem in a new statement of earlier results in
quadratic IMF is given taking into account the class of
LFT/LPV systems in (1). More specifically, the IMF
problem is interpreted as an H2 specification of the
multi-channel LFT/LPV problem stated in the previ-

∆
∆w∆z

Kz wK

P

K

uy

z wz2

z1
w2

w1 ...

 ... 







∆K

Figure 1: Mixed H2/H∞ multi-channel LPV interconnec-
tion

ous section. As a first phase, we must determine ma-
trices







B1
D∆1
D11
D21







imf

and [C1 D1∆ D11 D12 ]imf (5)

that define a fictitious pair (wimf , zimf ) and a corre-
sponding H2 performance channel for the system (1)
which reflect the IMF problem.

Ignoring the performance channel for a moment and
closing the ∆-loop, the system (1) is described as:

ẋ =
[

A+B∆∆̂C∆

]

x+
[

B2 +B∆∆̂D∆2

]

u

y =
[

C2 +D2∆∆̂C∆

]

x ,
(6)

where
∆̂ = ∆ [I −D∆∆∆(t)]−1 . (7)

Let ξ(t) ∈ Rq be an additional variable and H ∈ Rq×n

a full rank matrix that selects some important modes
from the state vector, namely

ξ(t) = Hx(t) . (8)

The IMF problem consists in finding a dynamic output
feedback control law (4), u = Fl(K,∆K)y, where Fl

is the notation for lower LFTs, for (6) such that the
closed-loop dynamics of the controlled output ξ are as
close as possible to those of the desired dynamics, given
by

η̇(t) = Adη(t) , η(t) ∈ Rq, (9)

for all admissible parameter trajectories ∆(t) ∈ P∆.
Note that Ad is usually selected to reflect time-domain
specifications.

With the IMF paradigm, η(t) = ξ(t), one can compute
the error derivative from (6) and (9):

ė := Hẋ− η̇
=

[

H
(

A+B∆∆̂C∆

)

−AdH
]

x

+H
(

B2 +B∆∆̂D∆2

)

u .

(10)
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The above problem can then be recast as minimizing a
quadratic performance index of the form

Jimf :=

∫ ∞

0

(

ėTR0ė+ u
TR1u

)

dt , (11)

where an input weight R1, a weighting, has been intro-
duced for design flexibility. By substituting (10) into
(11) this criterion becomes

Jimf =

∫ ∞

0

[

xTRxx+ 2x
TRxuu+ u

TRuu
]

dt, (12)

where the weighting matrices Rx, Rxu and Ru are given
on the top of the next page. Thus, analogously to pre-
vious results in the LTI context, the H2−optimal IMF
with LFT/LPV structure results in a minimization of
a standard quadratic criterion with a cross-weighted
term xTRxuu. This problem can then be restated as
an LFT/LPV control problem consisting in minimizing
an upper bound νimf on the H2 performance index of
the channel (wimf , zimf ) of the system (1) defined by
the matrices







B1
D∆1
D11
D21







imf

=









In
0N×n

0(q+m2)×n

0p2×n









(13)

and

[C1 D1∆ D11 D12 ]imf =
[

C11
0m2×n

R
1/2
0 HB∆
0m2×N

0q×n

0m2×n

R
1/2
0 HB2
R
1/2
1

]

,

(14)
where

C11 = R
1/2
0 (HA−AdH) .

In other words, the LFT/LPV H2 IMF problem seeks
an LPV controller (4) that minimizes the worst-case
(with respect to ∆) energy of the output zimf in re-
sponse to impulse inputs in wimf . Notice that the
conditions in Remark 2.1 are met and this problem is
properly posed.

It is important to stress the fact that the de-
rived IMF formulation is well-suited to the multi-
channel/specification context allowing to incorporate
a set of additional H2 and/or H∞ performance con-
straints. In [1] the solvability conditions of the mixed
H2/H∞ multi-channel problem in discrete time are
provided with little conservatism and the synthesis
LMI characterizations up to the discrete-time LPV
controller construction are shown explicitly. The pa-
per gives a comprehensive description of the pro-
posed methodology while its applicability to a realistic
continuous-time LPV system is investigated in [9].

4 Multi-objective LFT/LPV Result

In this section, we summarize the LPV control synthe-
sis procedure proposed in references [1, 9]. The general
synthesis scheme is described below.

Algorithm 4.1 Controller synthesis

Step 1: Given the continuous-time plant (1),

ẋ(t) = Ax(t) +Bϑ(t)
ψ(t) = Cx(t) +Dϑ(t),

(15)

with ϑ := [wT
∆, w

T , uT ]T and ψ :=
[zT
∆, z

T , yT ]T , compute its corresponding
discrete-time state description by applying the
bilinear transformation

P̃ :=

[

Ã B̃

C̃ D̃

]

= Fu

([

A B
C D

]

,

[

I
√
2I√

2I I

])

,

(16)
where Fu is the notation for upper LFTs.

Step 2: Define the set Gv of general non symmet-
ric decision variables which are common to all
specifications and channels and consist of gen-
eral slack variables, transformed controller vari-
ables and scheduling function coefficients (a pre-
cise definition of the set Gv can be found in ref-
erences [1] and [9]).

Step 3: For each H2-channel, define the set H2vj of
the following symmetric decision variables: H2
Lyapunov variables, H2 scaling variables and a
performance variable νj.

Step 4: For each H∞-channel, define the set H∞vj

of the following symmetric decision variables: an
H∞ Lyapunov variable, H∞ scaling variables and
a performance variable γj.

Step 5: For each channel/specification, construct the
LMI constraint system derived in Appendix A of
[1] and represented here by the simple notations
below:

• H2 performance:

LH2
(Gv,H2vj , {∆i}, P̃j) < 0 (17)

• H∞ performance:

LH∞
(Gv,H∞vj , {∆i}, P̃j) < 0 (18)

where P̃j is the set of discrete-time state-space
matrices (16) representing the LPV plant (1) with
only the channel/specification (wj , zj) under con-
sideration.

Step 6: (LMI optimization problem) - Basically, three
kinds of problems can be formulated:
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Rx =
[

H
(

A+B∆∆̂C∆

)

−AdH
]T

R0

[

H
(

A+B∆∆̂C∆

)

−AdH
]

Rxu =
[

H
(

A+B∆∆̂C∆

)

−AdH
]T

R0

[

H
(

B2 +B∆∆̂D∆2

)]

Ru =
[

H
(

B2 +B∆∆̂D∆2

)]T

R0

[

H
(

B2 +B∆∆̂D∆2

)]

+R1

• (Single H2 or H∞ synthesis) Minimize a
specific performance variable γj or νj sub-
ject to the LMI constraints (17) and (18),
keeping the remaining performance variables
below some adequate set of values (γ` < γ`

or ν` < ν`, ` = 1, 2, ..., ` 6= j), that is, set-
ting them at some chosen constant values;

• (Weighted mixed H2/H∞ synthesis) Mini-
mize a trade-off criterion of the form

∑

j

(αjγj + βjνj) ,

under the LMI constraints (17) and (18),
where the αj (≥ 0) and βj (≥ 0) are scalar
weights, imposing or not some adequate set
of upper-bound constraints γj < γj and/or
νj < νj;

• (Feasibility problem) Compute a feasible so-
lution to the LMI constraints (17) and (18),
imposing or not upper-bound constraints
γj < γj and/or νj < νj.

Step 7: As described in [1], compute the discrete-time
LPV controller data,

K̃ :=





ÃK B̃K1 B̃K∆

C̃K1 D̃K11 D̃K1∆

C̃K∆ D̃K∆1 D̃K∆∆



 , (19)

as functions of the decision variables obtained in
Step 6. The controller gain-scheduling function
is determined by

∆K(∆) :=

L
∑

i=1

αiΦi, (20)

where the Φi can be computed off line as functions
of the decision variables.

Step 8: Using the result in (19), recover the corre-
sponding continuous-time LPV controller data
(4),

K :=





AK BK1 BK∆

CK1 DK11 DK1∆

CK∆ DK∆1 DK∆∆



 ,

by applying the inverse bilinear transformation

K = Fu

(

K̃,

[

−I
√
2I√

2I −I

])

.

The introduction of new linearizing transformation
variables and of general matrix variables leads to a
full LMI characterization of the LPV control problem
allowing the use of multiple Lyapunov functions and
scalings known to reduce conservatism. The idea of us-
ing general slack variables to get rid of the standard
common Lyapunov and scaling terms, that generally
impose strong limitations, have been presented earlier
in [4] for LTI multi-objective synthesis.

5 Illustrative Example

The goal of this section is to validate the new
LFT/LPV IMF formulation developed in Section 3 by
running the Algorithm 4.1. Given our specific inter-
est on the IMF objective, additional specifications or
channels are not considered here.

Consider the translational second-order spring-mass-
damper system described as:




ẋ1(t)
ẋ2(t)
y(t)



 =





0 1 0
−k(∆(t))

m
−f
m

1
m

1 0 0









x1(t)
x2(t)
u(t)



 . (21)

The states x1 and x2 are, respectively, the displacement
around the equilibrium position (system at rest) and
the velocity of the mass m. The control signal u is a
force applied to the mass m and the output y is the
displacement measured from the equilibrium position,
y = x1. The viscous friction coefficient f is considered
constant, while the stiffness factor k is time dependent
and varies around a constant value k0:

k = k0 +
∆(t)

2
Nm−1, ∆(t) ∈ [−1, 1] .

Defining z∆ := x1, an exact and minimal LFT repre-
sentation of the system (21) is readily found to be







ẋ1
ẋ2
z∆
y






=







0 1 0 0
−k0

m
−f
m

−1
2m

1
m

1 0 0 0
1 0 0 0













x1
x2
w∆
u






,

w∆(t) = ∆(t)z∆(t).

(22)

Assuming that m = 1 Kg, f = 1.2 Nsm−1, and k0 = 1
Nm−1, and using the Simulinkr model depicted in
Figure 2, we obtain the open-loop responses to a unit
step described in Figure 3. One can notice that the
dynamic behavior of the system is very sensitive to pa-
rameter variations.
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zK

open loop

Time

closed loop
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w∆

MATLAB
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∆(t)

∆K ( ∆(t) )

Figure 2: Simulation diagram
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Figure 3: Open-loop responses

Hence, our objective is to minimize the parametric sen-
sitivity of the system. The nominal system response
obtained for ∆ = 0 in Figure 3 is desired to be pre-
served for all admissible parameter values and for any
parameter rate of variation.

The dynamic behavior of this system can be kept as
close as possible to a desired one by incorporating to
its model (22) a channel (w, z) defined by the input
and output matrices in (13) and (14), respectively, and
computing an LPV controller (4) that minimizes the
H2 performance variable ν of the linear operator Twz

mapping w into z.

The first step is to choose real matrices H, Ad, R0
and R1 that define the output matrix (14) and the
criterion (12) to be optimized. Notice that the time
domain specifications can be completely defined from
the dynamic matrix of the stationary system (21) op-
erating at the central point ∆(t) = 0. The fact that
the dynamic behavior of this LTI system is character-
ized by a pair of well-damped complex-conjugate poles

(s1,2 := −ζωn ± jωn

√

1− ζ2 = −0.6 ± j0.8) led us to
select H = I2 and a matrix Ad having the same natural
frequency (ωn = 1) and damping factor (ζ = 0.6),

Ad =

[

0 1
−ω2n −2ζωn

]

=

[

0 1
−1 −1.2

]

.

Suitable and reasonable values for rise time, settling
time, and peak overshoot are reflected in the matrices
Ad and H. However, the complete characterization of
the criterion (12) requires that the ratio between the
weighting matrices R0 and R1 be stipulated. By fixing
the error weight R0 = I2 and performing the Algorithm
4.1 for different values of R1, we obtain LPV controllers
with performance properties presented in Table 1 and
illustrated in Figure 4. Three main effects of the de-
crease of R1 are immediately observed: the input en-
ergy increases, the optimal value ν decreases, and the
dynamic behavior of the system tends to the desired
one. These properties mean that the matrices Ad and
H, that dictate the central design specifications, have
been appropriately chosen, with the former one indi-
cating that the additional freedom R1 penalizes ade-
quately the input energy. These results validate the
H2 formulation of the LFT/LPV IMF problem derived
in Section 3.

Finally, for R1 = 0.001 the synthesized LPV controller
is described by the following continuous-time state-
space data and gain-scheduling function:




ẋK

u
zK



=





−1.4557 −0.00955 0
0.00955 0 0.000595
0 917.73 0









xK

y
wK



,

∆K(∆(t)) = −0.9151α1(∆(t)) + 0.9151α2(∆(t)).
It must be emphasized that a fast mode of the con-
troller has been approximated by a static gain in the
form of a feedthrough scalar, resulting in the first-order
state description presented above and used for gener-
ating the corresponding simulation in Figure 4. We
also recall that the coefficients α1,2(t) are the polytopic
coordinates of ∆(t) available in real time. This gain-
scheduled controller is theoretically capable to keep the
closed-loop response very close to the central (∆ = 0)
open-loop response for all admissible parameter trajec-
tories, that is ∀∆ ∈ [−1, 1] and any rate of variation
d∆/dt. We must keep in mind, however, that practical
limit exists for online adjustment of the controller data
and consequently, only realistic trajectories ∆(t) can
be compensated by our LPV controller.

Table 1: Optimized H2 performance for different values
of the input weight

R1 0.001 0.1 0.5 1.0√
ν 0.021 0.203 0.410 0.525
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Figure 4: Closed-loop responses to a unit step for different input weights and for ∆(t) = cos(t)

6 Conclusions

The optimal IMF problem has been reconsidered and
treated in the context of LFT/LPV and H2/H∞ theo-
ries. The proposed synthesis procedure allow to attain
adequate transient behaviors for LPV systems and is a
practically valid alternative to pole-based methods for
LTI systems:

• the IMF criterion can be combined with a rich
variety of other closed-loop specifications in time
or frequency domains when interpreted as a set
of different H2/H∞ criteria;

• balancing these design requirements is carried out
in a very natural way within the proposed design
framework and conservatism is kept reasonable
thanks to the use of different Lyapunov and scal-
ing variables for each channel/specification;

• the H2 specification corresponding to the IMF
criterion does not impact the controller order;

• time-domain specifications for non-stationary
systems are readily considered in the controller
synthesis, overcoming difficulties concerning the
lack of frequency-domain concepts for non-
stationary systems and avoiding the tedious task
of weight selection.

Finally, an illustrative example has been used to val-
idate the proposed LFT/LPV IMF formulation. A
more realistic LPV control application considering ex-
tra H2 and/or H∞ performance constraints that trans-
late other desired properties like more stringent con-
trol limitations and robustness as well as studies about
the influence of the bilinear transformations on the de-
signed controller are subject of future investigations.
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