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Wide-Range Stabilization of an Arm-Driven Inverted

Pendulum Using Linear Parameter-Varying Techniques®

Hiroyuki Kajiwara,! Pierre Apkarian,* Pascal Gahinet?

Abstract: The purpose of the paper is to demon-
strate the ability of LPV (Linear Parameter Vary-
ing) control techniques to handle difficult nonlin-
ear control problems. The focus in this paper is
on the wide range stabilization of an arm-driven in-
verted pendulum. Two different LPV control tech-
niques are used to design nonlinear controllers that
achieve stabilization of the pendulum over the max-
imum range of operating conditions while providing
time- and frequency-domain performances. The mer-
its of each of these techniques are investigated and
the improvements over more classical LTI (Linear
Time-Invariant) control schemes such as Ho, or pu
controllers are discussed. A particular emphasis is
put on the real-time implementation of these con-
trollers for the inverted pendulum experiment. It is
shown that suitable multi-objective extensions of the
standard characterization of LPV controllers allow to
cope with sampling rate implementation constraints.
Finally, a complete validation of the proposed LPV
controller structures is carried out through a set of
realistic nonlinear simulations but also by means of
physical experiment records.

1 Introduction

Gain-scheduling control structures have proved use-
ful in many practical applications. As an example,
most aircraft control laws are based on the interpo-
lation of individually designed controllers or make
use of some ad-hoc gain-switching policy. Similarly,
in robot control problems the controller dynamics
are adjusted in real-time according to its geometry
and inertias. However, in spite of numerous suc-
cessful applications, the construction of the overall
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control structure invariably call for the engineering
insights of the designer and more critically, the re-
sulting control laws does not provide any guarantees
in face of rapid changes in the scheduled variables.
These difficulties have been the main motivation for
the development of modern gain-scheduling control
techniques and have led leading to some challenging
research in the area of the analysis and synthesis of
LPV systems. Such systems are described in state-
space form as

A(8)x + B(0)u, (1)
C(0)x + D(6)u,

Y

where 6 := 6(t) is a time-varying parameter describ-
ing the range of possible dynamics of the plant. Such
systems are natural extensions of customary LTI sys-
tems. Briefly speaking, the recently available LPV
synthesis techniques allow the construction of the
global control law as a whole entity for all admissi-
ble € , that is, without requiring unnatural separated
design syntheses and furthermore provide theoreti-
cal guarantees in terms of both stability and per-
formance in the presence of fast time-domain evolu-
tions of the scheduled variables. Note also that since
these synthesis techniques reduce to solving a finite
set of LMIs (Linear Matrix Inequality), the underly-
ing computations are both fast and accurate.

In this work, we are considering the challenging
application of an Arm-Driven Inverted Pendulum
(ADIP) as depicted in Figure 1. The pendulum
which is here the top link is driven by the rotated
arm (bottom link), instead of a more classical cart.
As the arm is rotated and gets closer to the horizon-
tal position, the horizontal motion of the arm tip be-
comes more limited and the inertias viewed from the
arm are modified. This naturally leads to the design
of controllers that adjust in real-time to the rotation
of the arm. For this purpose, two kinds of LPV syn-
thesis techniques are investigated the so-called LE'T
and polytopic techniques which use LFT and poly-
topic representations of the robot, respectively. Our
final goal is to completely validate these techniques
on the physical experiment. Therefore, in addition



to the usual stability, performance and robustness
requirements, we shall also be concerned by the im-
plementation constraints that inevitably show up in
real-world applications. The major implementation
constraints are the following.

e The high-frequency gain of the controllers must
be compatible with the actuator bandwith.

e The controller dynamics must be consistent with
the available sampling rate in this application

(< 400 Hz.).

Note that the second of these constraints is es-
pecially difficult to handle as it concerns the inter-
nal properties of the controller and cannot be di-
rectly treated through the properties of the closed-
loop system. We shall see however that a suitable
multi-objective extension of the polytopic technique
provides an effective mean to overcome this diffi-
culty. Another way to handle this implementation
constraint would have been to tune the weighting
functions until adequate closed-loop plant and open-
loop controller specifications are met. However, this
procedure revealed to be hardly tractable on this
application and in most instances led to high order
controllers as it requires complicated weighting func-
tions.

Another important issue is to evaluate the benefits
of LPV synthesis techniques in regard to classical ro-
bust control techniques such as Ho, and p syntheses.
It turns out in this application that though the H
and p controllers are capable of providing some sta-
bility guarantees they are, as expected, outperformed
by LPV controllers at the performance level.

The paper is organized as follows. Section 2 de-
scribes the modeling of the ADIP and introduces the
problem specifications. A brief review of the LPV
synthesis techniques used for the ADIP is given in
Section 3. The full design procedure up to the nonlin-
ear simulations and real experiment results are pre-
sented in Section 4. Concluding remarks are given
in Section 5.

All LMI-related computations in the application
were performed using the LMI Control Toolbox [23],
p controllers were designed using the p-Analysis
and Synthesis Toolbox [22], the nonlinear simula-
tions were obtained using MATLAB/SIMULINK facili-
ties and LPV controllers were implemented using the
REAL-TIME WORKSHOP.

For a real symmetric matrix M, the notation M >
0 stands for positive definite and means that all the
eigenvalues of M are positive. M < 0 means all the
eigenvalues of M are negative. The upper LFT of
M = [ ﬁgi 1122 } is defined as

FulM,K) = Myy + My K(I — My, K)™' My, (2)

Figure 1: For modeling the ADIP

2 LPV Modeling of the ADIP

In this section, the LPV synthesis model for the
ADIP is developed and the design specifications are
introduced. Consider the two-link arm depicted in
Figure 1. It is well known [1, 2]that the motion equa-
tion is described as

M(q)i+C(q,9) + Glq) =T, (3)
where
_|la | _| 7% 4
e {42}' [951—302}7 (4)
and
: | My+2Rcos(q1) M+ Rcos(qa)
Mfq) = [ My + Rcos(q2) M, . ()

. _ | 2Rd1gzsin(q2) — Rg3 sin(ge)
Cle.0):= [ Rt sin(gy) -

4 4
]\/[1 = g?nléi + 57’]7263 + 4?712167% I (7)
4
My = gmgfg, (8)
R .= 2m2€1€2 5 (9)
and
(g) = | Ut 2ma)ligeos(a) | g

—malag cos(q1 + ¢2)



7= { o ] . (11)

In this application, the first joint is actuated and the
second joint is free. From (3)-(11), we can derive the
following equations.

(Afl - 4‘7»12)(,51 + RCOS(Lpl — 2 )592
+Rsin(e1 — @2)¢3 + (M1 + 2ma)l1gsin(eq)
—maylagsin(pq) = 71, (12)

Rcos(p1 — ¢2)¢1 + Ma@s — Rsin(p1 — ¢2)¢]
—mylagsin(pz) =0. (13)

The main control objective is to maintain the second
arm in a vertical position like an inverted pendulum
using the rotation of the (first) actuated arm. In the
following, the first arm and the second arm are called
arm and pendulum, respectively. In the physical ex-
periment corresponding to 77 the arm is actuated by
a motor driven by a velocity-control power amplifier.
The physical quantities are given as follows.

0y = 0.13[m], ¢2 = 0.15[m], m; = 0.05[kg],
my = 0.03[kg], g = 9.8[m/s*]. (14)

As the velocity ¢y of the first arm can follow the
command input voltage u to the amplifier because of
the lightness of the second arm, we can assume that
the dynamics from the input voltage to the velocity
1 1s almost equally given by

d, _ 1, K
T T, T,

u . (15)

This means that (12) can be simplified to (15) with
reasonable accuracy.
On the other hand, (13) becomes
20y cos(p1 — p2)P1 + §(2992
= gsin(p2) + 20 sin(p1 — p2)Pt. (16)

Then, defining

re =20y sin(p1), ry 1= 20 cos(p1), (17)
and using (16), another description for the ADIP is
as follows :

cos(p2)fe + -2 2 = (g + 7y) sin(pa) . (18)

3

The pendulum has two kind of equilibrium states:

e unstable equilibrium state: ¢} = 0 (tip pointing
upwards)

e stable equilibrium state: 3 = 7 (tip pointing
downwards)

In this application, we will only consider the diffi-
cult situation where the tip is pointing upwards. An
immediate linearization of (16) around @3 = 0 then
leads to

.4 .
Pt glo @a = (9 +7y)p2. (19)

Introducing the new variable z defined as

4
zi=ry + §€2502 , (20)
we get
Z = %(g—i—ry)(zfrr). (21)

Gathering the equation 7, = ry¢1 with (15) and
(21) the following simple LPV model is obtained

01 0 0
d| z | 00 0 0
dt | re | 1|0 00 0
o1 00 0 —7
[0
3 ; 1
+@(g+1y) 0 (1 0 -1 0]
| 0
0 z
0 2
+ry | [0 0 0 1] .
0 $1
0
0
+ o | u (22)
K,
7

where both z and r, are assumed to be measured,
ry is viewed as an external time-varying parameters
and 7y is assumed to be zero.

In order to derive LPV models with bounds on the
time-varying parameters, it is assumed that the arm
can rotate within the angular range

™

“Piseisy (0<7 <3). (23)
This yields
ry € [ry,Ty| = 200 cos(7y), 201 cos(0)] . (24)
From (24), r, is normalized as

2 Ty + Ty

= _ T 9
T'y T'y 4

yel-L1].  (25)

Two different though completely equivalent LPV
representations can be used for the ADIP. This is
described in the sequel.



2.1 LPV model with LFT structure
Representing r, from (25) as
Ty +r Ty — 7T
Ty i L g,
2 2
= (1(1 4 cos(py)) + (1(1 — cos(71))6; , (26)
where 6, denotes the new normalized scheduling vari-

ables, the following LPV model of LFT type is ob-
tained.

p 01 0 0 .
d| :| |3 0 -3 O 2
dt|re | "o 0o o ||

#1 0 0 0 - P1
0 0
0 0
t| e [wet | g |, (27)
7 K.
0 T,
z
Z=[0 0 0 1] | (28)
1
with

2.2 LPV Model with polytopic struc-
ture

Similarly, by remarking that

Ty, —T Iy =Ty
y y _Z
+

— — =1, (30)
Ty—ry Ty—Ty
and introducing the notation
Ty — 7T Ty — Ty
pl(Ty) = yﬂ pQ(ry) = (31)
Py =Ty Fy =Ty

we obtain the following LPV polytopic model for the
ADIP.

B 0 1 0 0
. 3 3
d |z — (ry) ﬁ 0 _% 0
at | re Py 0 0 00
#1 0 0 0 —F
0 1 0 0 2
399 2 2
405 445
20 B R re
0 0 0 -2 ¢1
0
0
+ g |u (32)
Ko
Ta

and it is easily verified that p; and py are polytopic
coordinates that is p; > 0and p2 > 0and p1+p2 =1

2.3 Quick look at the wide-range sta-
bilization problem

As already stated in the Introduction, the main con-
trol objective for the ADIP is to stabilize the inverted
pendulum using the rotations of the arm as depicted
in Figure 2 below, and simultaneously increase as
much as possible the range where stabilization is
achieved. One important difficulty of this problem

Starting Position

Target Position

Uncontrollable Position

Figure 2: Wide Range Stabilization for the ADIP

comes from the fact that the ADIP becomes uncon-
trollable as the pendulum gets closer to the hori-
zontal position, hence the need for a gain-scheduled
controllers. Apart from the maximation of the range
where stabilization holds, we must also provide per-
formance in terms of settling-time and overshoot in
response to reference signals. This will be detailed
in Section 4. Also the controller should exhibit ad-
equate roll-off in the high-frequency range for noise
attenuation.

3 LPV Control Techniques

This section provides a brief review of the design
techniques that will be used for the ADIP applica-
tion. Two LPV design techniques will be investi-
gated hereafter:

e the LFT design technique,
e the polytopic design technique.

As indicated by their names, such techniques apply
to LPV plants with LFT and polytopic parameter-
dependence, respectively. The first class of LPV
plants can be described as

¥ = Ax + Bywyg + Biw + Bou,

29 = Cypx + Dygwy + Doyw + Dygau ,

zZ = ClI + Dle’wg + an + Dmu7 (33)
Yy = CQJJ + Dge‘lﬂe + Dgl’w + Dgg‘ur,

wy = O(t) zg ,



where O(t) is a time-varying parameter matrix and is
usually assumed to have a block-diagonal structure
in the form

O(t) = diag(...,0(t),...,0;(t)1,...), (34)
and normalized such that
onle) <I t>0. (35)

Blocks denoted ©; and 6; I are generally referred to
as full and repeated-scalar blocks according to the
p analysis and synthesis literature [3, 4]. Note that
straightforward computations lead to the state-space

representation
T A By B, By
z| = Ciy Dy Diz| + | Dig| O1)
Y Cy Dy Dy D>y
x

x(I —DgeO(t))"* [Cy Do Dga]} |w | ,

u
(36)
hence the plant with inputs w and u and outputs
z and y has state-space data entries which are frac-
tional functions of the time-varying parameter O (¢).
Hereafter, we are using the following notation

e u for the control signal

e w for exogenous inputs

e = for controlled or performance variables
e y for the measurement signal.

As an alternative to this description, we are also
considering polytopic systems which are described by
the state-space representation

( (t)x + Ba(p(t ))lU+B2 p(t))u,
Ci(p(t))x + Dyi(p(t))w + Dya(p(t))u,
Ca(p(t) )U+D21( (t))w + Daz(p(t))u, (3”)

are affine functions

@
Y

where generally, A(p), Bi(p), ...
of the time-varying parameter p(t) evolving in a poly-
topic set P, i.e.,

t>0, (38)

p(t) € 7);0 ‘= co {pluv" . 79111-}7

where the notation co {.} stands for the convex hull
of the set {.}.

Clearly, the state-space data of the plant (37)
range over a matrix polytope and thus it trivially
holds that

Alp(t))  Bilp(t))  Ba(p(t))
Ci(p(t)) Dii(p(t)) Dia(p(t)) | €
Ca(p(t)) Dai(p(t)) Daalp(t))
A; By By
P :=co Cli Dlli Dm, 1= 1,2, LT
C2i Da1i Doy

where

A; By By

Cii Diii Dig

C2i Daii Doy

A(pvi) By (pvi) B2(pvi) (4())

= | Cilpo;) Durlpe;) Dizlpw) |
C2(po;)  Dai(po;)  Daz(pv;)
1=1,...,r.

For any of the LPV plants (33)-(35) or (37)-(39),
the LPV control problem (often referred to as the
gain-scheduling control problem) consists in seeking
an LPV controller

ix = Arx(p)zx + Br(p)y,
uw=Cgk(p)ex + Dx(p)y,

O(t) for the LFT-LPV plant (33
(t) for the polytopic LPV plant (37

(41)

where p(t) =

and p(t) = p
such that

)-(35)
-(39)

e the closed-loop system (33)-(35) and (41) or the
closed-loop system (37)-(39) and (41) is inter-
nally stable,

e the Ls-induced gain of the operator connecting
w to z is bounded by ~,

for all parameter trajectories p(t) defined by either
(35) or (39).

It is now well-known that such problems can be
handled via a suitable generalization of the Bounded
Real Lemma. The following LMI characterizations
for the solvability of such problems is then obtained.
The reader is referred to references [5, 6, 7, 8, 13, 12]
for more details and additional results.

3.1 Solvability conditions for LFT

plants

The characterization of the solutions to the LPV con-
trol problem for LFT plants requires the definitions
of scaling sets compatible with the parameter struc-
ture given in (34).
the following scaling sets can be introduced. The set

Denoting this structure as O,

of symmetric scalings associated with the parameter
structure @ is defined as

Se = {S: sT=3 Se=6s,

VO with structure @} .

Similarly, the set of skew-symmetric scalings associ-
ated with the parameter structure ® is defined as
Te ={T:T"=-T, TO =0T,

VO with structure @} .



Equivalently, it is easily verified that with S > 0, the
scheduled matrix O satifies the quadratic constraints

AT

VO s. t. 010 < I, with structure ©.

With the above definitions and notations in mind,
the following LMI characterization for the solvability
of the problem can be established.

Theorem 3.1 Consider the LET plant governed by
(33) and (35) with © assuming a block-diagonal
structure as in (34). Let Nx and Ny denote
any bases of the null spaces of [Cq, Dag, D21,0] and
(B, DI,, DL,,0], respectively. Then, there ezists
an LPV controller such that the (scaled) Bounded
Real Lemma conditions hold for some guaranteed Lo-
performance level v if and only if there exist pairs
of symmetric matrices (X,Y), (Ss,33) and a pair
of skew-symmetric matrices (T3,T's) such that the
structural constraints

S3, Y3 € Seo and T3, '3 € Te (42)
hold, and the LMIs

ATX + XA XBy+ClT)
BlYX +T3Cy —Ss + T3Dgg + D}, T

N BIx Dy T}
S3C4 S3Dgg
Cl D16’

XB, clsy ¢f
TyDyy DL,5; DT,

—~I D%Sg D} [x <0, (43)
SsDgr  —953 0

D11 0 —’)/I

AY + Y AT YC’eT + BT

CyY +T3BY —S4+T3DY + DggT'F

./\[3; C’l Y DngT
s, B s.Dl
Bf Dj,

YCT  BySs By
IsDY, DgST Dy

—vI  DypEs Dy | Ny <0, (44)

23D1T9 -3 0
D}q 0 —~1
X I
{I Y] >0, (45)
Ss 0
[ 0 23] >0 (46)

are feasible.

Remark 3.2 The characterization given in Theo-
rem 3.1 constitutes a standard semi-definite pro-
gram, that is, minimize the linear objective v sub-
ject to the LMI constraints (43)-(46), and can be

solved with very efficient interior-point techniques as

in [14, 15, 16, 17].

3.2 Solvability conditions for poly-
topic plants

A similar characterization can be derived for poly-
topic LPV plants by invoking a suitable extension of
the Bounded Real Lemma [5, 8].

For simplicity, it is first assumed that By(p),
C3(p), D12(p), D21(p) are parameter-independent or
equivalently,

B2i - BQ - o .
|:D12i:| - |:D12:|7 [C‘Zz D21z]—{62 D‘Zl],

i=1,2,...,r (47)

Theorem 3.3 Consider the polytopic plant (37) and
(39) and let Nx and Ny denote bases of the null
spaces of [Cq, Da1,0] and [ BT, DT, 0], respectively.
Then, there exists an LPV controller such that the
(extended) Bounded Real Lemma conditions hold in
closed-loop for some Ly-performance level v if and
only if there exist a pair of symmetric matrices

(X,Y) satisfying the LMI conditions:
ATX + XA, XBy CFL

NT BLX —~I DI, | Nx <0,(48)
Chi Dy *“/I
AY +YAT vCL By
NE ;Y —~I Dy | Ny <0,(49)
BlTi Dﬂz‘ —I
X I -
[ I Y} >0 (50)
fori=1,...,r.

Using a slightly different approach, it is possible
to characterize multiple and multi-channel specifica-
tions in the case of polytopic LPV systems [10, 19, 9].
Since it has proved useful in the ADIP control,
we briefly introduce the LMIs characterizing Lo-
gain performance in conjunction to LMI region con-
straints on the pole of the closed-loop system. The
reader is referred to [19, 20] for a thorough discussion
on LMI regions and their use in robust control the-
ory. For completeness, we must mention that LMI
regions of the complex plane are very general. As ex-
amples, vertical and horizontal strips, circles, conic
sectors, ... and intersections of such regions are LMI
regions. Moreover, any self-conjugate region of the
complex plane can be aproximated to any desired
accuracy with an LMI region. LMI region are more
formally characterized as the set

{reC: L+:M+zM" <0} . (51)

For the polytopic system (37), it is not difficult to
establish the following [9].



Theorem 3.4 There exists an LPV controller such
that

o the (extended) Bounded Real Lemma conditions
hold in closed-loop for some Lo-performance
level ~,

o at frozen (with respect to time) values of the pa-
rameter p the closed-loop system has all its poles

in the LMI region (51)

whenever there eiz:z'st s)ymme/\tric r@\atm'ces Y and X
and quadruples (A, Bx i, CK,i, DK, i) such that the
following LMI problem 1is feasible,

XA; 4+ Br,iCo + (%) *
T ~ ~
A i+ Ai+B:DiCy AY + BoCre i + (%)
(X By, +BI&1'D21)T (Bi; +B2DK,1'ADZI)T
Chi+ D12D g iCy C1;Y 4+ D12Cx

* *
* * 0 s
—~I * <9, (
Dy1; + D2 Dk i Dy —r1
Y I A;Y + ByCres
ol £ 32
Ai + ByD g i Cs T :
P My i[> <0, 5
XA, + B Co + kj[ ] } 5
1 ],k‘
X I .
{I Y] >0 (5

fori=1,... r.

Remark 3.5 As before the conditions given in The-
orems 3.3 and 3.4 not only secure stability and per-
formance for any admissible frozen value of the pa-
rameter p but also for any time-dependent trajectory
p(t) confined to (38). However, the additional LMI
region pole constraint in Theorem 3.4 only makes
sense at frozen values of p in its polytopic range.

When solutions to the LMI conditions of Theorems
3.1 or 3.3 have been found, the state-space data of the
controller in (41) can be computed for any admissible
value of the parameter ©(¢) or p(t), using well-known
schemes. The reader is referred to [18, 21] and [7, 8,
9] for a comprehensive discussion.

4 LPYV Controller Synthesis for
the ADIP

In this section, we first give a thorough description
of the specifications and control objectives together
with the control structure used for the ADIP. Next
different robust and LPV syntheses are carried out

and results are discussed with regards to the speci-
fications introduced earlier but also from the view-
point of the ease of implementation on the physi-
cal experiment. This last phase has revealed neces-
sary since we have found some mismatches between
computerized nonlinear simulations and the ‘real’ re-
sponses on the ADIP.

rr

: R u Tx d
;[ K H—ACT—ADIP—pwup 41—

Controller

measured vars.

Figure 3: Interconnection Structure for the ADIP

4.1 Problem presentation and specifi-
cations

For the designs, we shall be using the synthesis inter-
connection shown in Figure 3. The serial connection
of the ADIP and the actuator (ACT) is described
by (27)-(29) or (31)-(32) depending on the particu-
lar LPV representation we are actually using. Note
that we have introduced some integral action in the
forward channel to ensure zero steady-state tracking
error at an equilibrium position. The integral action
is here described as
ir=wr(r—ry), (55)
where wy is a design parameter. The family of test or
reference signals r for the arm rotation in the range
(23) which are used hereafter can be described as

follows.
Imaz ¢ (0<t<T)
Tmax (TStS%*T)

r(t) = —tmee(t— Ly (L7 <t <Ly 7) (56
—Tmaz (%+T<l‘<T—T)
T”’%(t—T) (T—TStST)

where 7,0, 1= 201 cos(pi.), 7 = 0.5 and ¢1.(< 7y)
is a target value. A simple drawing of such signals is
depicted in Figure 4. Then the specifications for the
control system are the following:

(S1) the closed-loop system is internally stable.

(S2) the Ls-induced gain of the operator connecting
w=rtoz= [ w?” ] is bounded by v, where
xr

wp is a design parameter.

wDTI‘l-

-
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2(; cos(pic)
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—2(; cos(p1c)

Figure 4: The Command r(t)

(S3) specifications (S1) and (S2) must hold on the

largest range of @, as far as possible.

(S4) the LPV controller must be implementable with
a minimum sampling interval 2.5[msec].

The specification (S1) means that the LPV con-
troller must stabilize the inverted pendulum in any
vertical position in the range ¢1 € [—%;,7;]- Be-
sides, the specification (S2) translates performance
tracking and high-frequency gain attenuation objec-
tives. The specification (S3) express that stabiliza-
tion but also performance and roll-off requirements
must be achieved on the largest range of possible
dynamics of the ADIP. The specification (S4) is di-
rectly dictated from physical hardware limitations.

4.2 Robust LTI syntheses

Before utilizing the LPV synthesis techniques intro-
duced in in Section 3, it is instructive to investigate
what can be achieved using customary robust control
techniques such as H,, and p syntheses. Note first
that since the synthesis problem depicted in Figure
3 is completely singular (D12 = 0 and Dy; = 0),
any H., synthesis steps were performed using the
LMI formulation in [18], which is not restricted by
singularity problems. Moreover, in order to satisfy
the implementation constraints (S4), which require
reasonable controller dynamics, we also have intro-
duced LMI region pole constraints on the closed-loop
dynamics. This requires using the refined H., syn-
thesis technique in [19] (See also Section 3). The LMI
region under consideration is determined by the in-
tersection of a half-plane, a conic sector and a disk
as shown in Figure 5.

4.2.1 H,, synthesis based on a nominal
model

Based on a nominal model (ADIP in vertical posi-
tion p; =0, 1.e. $; =0), an H controller has been

9re(§
—Tre /

—ar Pg

Figure 5: LMI region for the closed-loop system

computed leading to a performance level v = 2.5774
where the wp = 0.02,w; = 0.5 and the LMI re-
gion constraint is determined by ayq = 0.5,7c4 =
50, 8,ey = 45°. The poles of the H controller are
given as

{—67.166, —49.834+19.1095, —39.3169, —0.1319, 0}.

Note that this is in stark contrast with the result
obtained without pole constraints which yielded the
controller poles

{—3.3110 x 10°, —5.8209 x 10*, —3.97759 x 10*,
—2.0037 x 10*, —22.806, 0} .

Such dynamics clearly do not satisfy the implemen-
tation constraints (S4) and thus must be ruled out
in this application. So, we only retained the first
H, controller. The corresponding nonlinear simula-
tions using the realistic model (3) are compared with
records on the “true” experiment in Figure 6. For
each figure, the (1,1)-subplot shows the command r
and the time-response of ¢y, the (1,2)-subplot shows
@2, the (2,1)-subplot shows the control signal u, and
the (2,2)-subplot shows 8,.. We first observe the con-
sistency of the responses of the simulation and the
experiment, which to some extent validates the sim-
plified model we have used for synthesis. One can
also see that the control system has very poor per-
formance using this controller even on the somewhat
reduced target ¢, = 45°.

4.2.2 4 controller based on an uncertain
model

We decided to improve these preliminary results us-
ing p synthesis by explicitly taking account of the
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Figure 6: Ho, control system (v = 2.5774, ¢y, =
45°)

changing dynamics of the ADIP, where &, = 65°.
Using first-order p scaling and the parameters tuned
to wp = 0.02,wr = 0.8 and arey = 0.1,77¢y =
50,8,y = 45°, we converged using the p-Analysis
and Synthesis Toolbox (with the H., synthesis steps
enforcing closed-loop pole constraints) to some con-
troller with poles

{—61.497 £+ 25.5965, —47.080, —33.753,
—0.8993, —0.3723, —0.2206, 0},

which are clearly satisfactory with respect to the
implementation constraints. In our example, usual
i synthesis algorithms would lead to unacceptable
controller dynamics. As before, the nonlinear sim-
ulations and the hardware experiment are shown in
Figure 7.

As expected, this second controller provides bet-
ter performance on the target ¢;. = 45°. However,
the very same controller but with the target ¢, in-
creased to 60° does not even provide stability and we
did not find any simple way to guarantee the same
level of performance on this larger range.

Summing up our results, the Ho, controller is able
to stabilize the range 45° but provides very poor per-
formance. The p controller provides adequate per-
formance on the range 45° but does not longer work
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Figure 7: p control system (v = 0.7938, @1, = 45°)

for ranges up to 60° hence illustrating a fundamental
tradeoff between performance and the size of the op-
erating range. In many applications this tradeoff is
very limiting and can only be negotiated outside the
set of fixed controller structures by exploiting gain-
scheduling strategies. This is considered in the next
section.

4.3 LPYV syntheses

In this section, the synthesis techniques discussed in
Section 3 are exploited to improve both performance
and the operating range of the ADIP.

4.3.1 Design of a LFT controller

An LFT controller is designed using the LFT descrip-
tion of the ADIP, where $; = 65°. The parameters
wp and wy were set to 0.02 and 0.5, respectively. The
underlying LTI dynamics of the LFT controller are
easily obtained by instantiating the LFT controller
at some frozen values of 6,. For the extreme values
of 8, the following dynamics are obtained.

6, =1:{-365.56, —359.74, —291.81, —24.064,

~1.3786, 0},
6, = —1:{—365.56, —359.72, —291.84, —42.888,



—1.4367, 0}.

Such dynamics are again satisfactory in regards to
implementation constraints and have been derived by
minimizing, through an LMI formulation, the norm
of the A matrix of the LPV controller in the con-
struction procedure. The nonlinear simulations and
the hardware experiments are shown in Figure 8. As
expected, both performance and the the size of the
operating range have been enhanced as compared to
previous LTT controllers.
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60°)

LFT control system (v = 0.4733, ¢4, =

4.3.2 Design of a polytopic controller

A similar design is now conducted using the poly-
topic description of the ADIP, where 3, = 65°, hence
leading to polytopic LPV controllers. In order to sat-
isfy the implementation constraints (S4), we have
used the refined synthesis technique of Theorem 3.4
which can handle constraints on the closed-loop dy-
namics. With the selection wp = 0.1,w; = 0.5 and
Qreg = 1,7reg = 50,0,y = 45°, the underlying LTI
controllers obtained at the extreme values of the pa-
rameter range have the following dynamics

@1 =0°: {—69.352 + 50.251j, —53.529, —20.775,
—3.6379, 0}.

10

o1 = 65° : {—76.0805, —35.506 & 41.303, —35.159,
—2.1349. 0}.

They are again satisfactory. The nonlinear simula-
tions and the hardware experiments with the poly-
topic controller are shown in Figure 9. It is again ob-
served that again very good performance is achieved
over the same operating range.

Simulation

0, [deg] , [deg]
4

S

5 10 15 2
imefsec]

10
timefsec]

U [degsec] 18j<1

:
=

5 10 15 20 0 5 10 15 2
time{sec] time[sec]

Experiment

4, ldeg) 4, ldeg]

4

=

15 2

10
timelsec]
j<1

10
imefsec]

uldegisec]

:

5 10 15 20
imefsec]

10
timefsec]

Polytopic control system

Figure 9:
Plec = 600)

4.4 LPYV Controller Implementation

For completeness, we give a brief description of the
implementation of LPV controllers both for the non-
linear simulations and for the experiments. Note
first that due to their inherent time-varying nature,
LPV controllers are generally harder to implement
than classical LTI controllers. It is shown below
that nonlinear simulations can be easily performed
using SIMULINK, and that LPV controllers can be
implemented on the ADIP with little effort using the
REAL-TIME WORKSHOP.

In order to perform the controller implemen-
tations, we have used the flexibility offered by
SIMULINK which only requires the construction of
dynamic blocks together with their interconnections.
For the nonlinear simulations of the closed-loop sys-
tems involving the LFT controllers, we used the



block-diagram as shown in the left-hand side of Fig-
ure 10. It consists of the following principal blocks.

e ADIP: the nonlinear simulator block of ADIP
based on (15)-(16)

e PP: the pre-processing block is computing rele-
vant outputs consisting of the scheduled variable
6, by (25), the measurement r, = 2(; sin(yy),
and the measurement z — r, = 4[2 @2. These
variables are calculated from the Values of ¢y

and @9 detected by two encoders.

e LTISS: this block corresponds to the LTI part
of the LFT controllers and can be detailed as

follows.
Ci‘c - Ach'c + chca =4rd
Ue = C’cl"c + Dcyc 5 (O{)
Tz
4l . u
with y. = | 3 72 , Ue = [ . } , and the feed-
r Zr
w,

back relation w, = 6,z, .

Nonlinear Simulation

Pre- Nonlinear
Proc. 4 Simulator ¢

PP ADIP

Wh -
_’ X'=Acx+Bc

Y m
u=Ccx+Dcy _'

LTISS

MUl pux Demux

Controller Implementation

D «CNT24  DAL2

pp CNT DA

i :
_} X'=Acx+Bc!

Y
u=Cex+Dcy _>m

, x
LTISS
FMUI Mix Demux

Figure 10: LFT controller

Similarly, as shown in the right-hand side of the fig-
ure, the LFT structure is also easily implemented on
the (physical) ADIP by replacing the nonlinear sim-
ulator block ADIP with the I/O driver blocks CNT and

11

DA. Then it becomes fairly straightforward to gener-
ate the C code associated with the LFT controller.
This C code is then linked to a Runge-Kutta solver
using the facilities of the REAL-TIME WORKSHOP to
constitute the discrete-time LPV controller. Note
that the designer completely avoids the discretiza-
tion phase in such a procedure.

Nonlinear Simulation

Proc +— i
PP2 ADIP
M
S ey
¢ Mux LTVSS
— (e B
PLPV

Controller Implementation

D «CNT24 DAL
prz  CNT DA
M
NG~
xe M LTVSS
= &) O
PLPV

Figure 11: Polytopic controller

For polytopic LPV controllers, the relevant dia-

grams are those of Figure 11. In addition to ADIP
and PP with the scheduled variable r, by (17), we
have the following new blocks.

LTVSS: the solver block of the differential equa-
tion related to a general linear time-varying

(LTV) system
Te = Ac(ﬂl’c + Bc(t)yc

Ue = Cc(t)l’c + Dc(t)yc (O8>
Tz
where y,. = 46y 22|, U =u.

7

PLPV: this block is only for computing the state-
space data of the polytopic controller at the cur-
rent value of the scheduled variable ry(t), we
have

A(p(t)) Br(p(t))
Cilp(t) Di(p(t))
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Figure 12: LTVSS and PLTV

The inside of the blocks LTVSS and PLPV is de-
tailed in Figure 12. The block LTVSS is simply
the time-varying version of the LTISS block. The
S-function block called stvmgain is simply com-
puting the matrix-vector products in the right-hand
sides of (58) and the LTV system (58) is represented
by an upper LFT in the form

(= ]-n ([0 28] 1]

The PLTV block is computing the state-space data
using (59), which are then provided to the LTVSS
block in vectorized form.

Ac(t)
Ce(t)

5 Concluding Remarks

We can summarize the results of the four kinds of
synthesis methods as shown in Table 1.

| synthesis | 0 | P | Y1e | T, |
H,, 2.57 - 45° | b5s
L 0.79 | 65° | 45° | 2.5s
LFT-LPV | 0.47 | 65° | 60° | 2s
Poly-LPV | 0.42 | 65° | 60° | 2s
Table 1: Performance indeces for LTI and LPV

methods

This shows that each synthesis method can theoret-
ically stabilize the operating range [—%,, %, ] but ex-
perimentally dose [—¢1., ¢1.]. As for the p-synthesis,
we observe some gap between the two range, that is,
@, = 65° and @1, = 45°. This may come from the
fact that we adopted the approximated mathemati-
cal model for thr ADIP. In Table 1, T indicates the
settlinig time in the experiments.

We can address the important comments about
the LTT and LPV methods as shown in Table 2.

| synthesis comments ‘

He

less performance
needs pole constraint
L often higher order
needs pole constraint

LFT-LPV | no direct pole constraint
treats general dependence
Poly-LPV | pole constraint OK

treats only affine dependence

Table 2: Merits and demerits in LTI and LPV meth-
ods

We have presented a comprehensive application of
LPV control techniques to the control of an arm-
driven inverted pendulum. The particular interest
of this application lies in the fact that all ingredi-
ents of the design problem have to be taken into ac-
count, from the specifications up to the constraints
inherent to real-world implementations. In this con-
text, it has been shown that currently available syn-
thesis methodologies such as p and LPV techniques
may fail to provide acceptable answers. A major
obstacle is undoubtly the implementation constraint
that puts hard limitations on the controller dynam-
ics. These limitations are generally difficult to handle
within the usual formulation of LPV control tech-
niques. It has been shown that a suitable extension
of these techniques including LMI region contraints
on the closed-loop dynamics allows to overcome this
difficulty. When implementable, it has been observed
that LPV controllers outperform fixed p controllers
both in robustness and performance. These obser-
vations were confirmed by simulations but more im-
portantly by a number of records on the physical
experiment.
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