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Abstract

This paper is concerned with the design of gain-scheduled controllers with guaranteed Ho, perfor-
mance for a class of Linear Parameter-Varying (LPV) plants. Here the plant state-space matrices are
assumed to depend affinely on a vector ¢ of time-varying real parameters. Assuming real-time measure-
ment of these parameters, they can be fed to the controller to optimize the performance and robustness
of the closed-loop system. The resulting controller is therefore time-varying and automatically “gain-
scheduled” along parameter trajectories.

Based on the notion of quadratic H performance, solvability conditions are obtained for continuous-
and discrete-time systems. In both cases, the synthesis problem reduces to solving a system of Linear
Matrix Inequalities (LMIs). The main benefit of this approach is to bypass most difficulties associated
with more classical schemes such as gain interpolation or gain scheduling techniques.

The methodology presented in this paper is applied to the gain-scheduling of a missile autopilot.
The missile has a large operating range and high angles of attack. The difficulty of the problem is
reinforced by tight performance requirements as well as the presence of flexible modes that limit the
control bandwidth.

1 Introduction

Following the terminology of (?7), Linear Parameter-Varying Systems (LPV) are linear time-varying plants
whose state-space matrices are fixed functions of some vector of varying parameters (¢). Hence LPV systems
are described by state-space equations of the form:

i = A1) z+BO®)) u
y = C(0(t) =+ D(O(t)) u.

From a practical point of view, LPV systems have at least two interesting interpretations:

e they can be viewed as linear time-invariant (LTI) plants subject to time-varying parametric uncertainty
0(t),

e they can be models of linear time-varying plants or result from the linearization of nonlinear plants
along the trajectories of the parameter 6.

The first class of plants falls within the scope of the LTI robust control techniques described, e.g., in (?; ?; 7;
?; 7). For the second class of plants, the parameter ¢ is no longer uncertain and can often be measured in real
time during system operation. Consequently, the control strategy can exploit the available measurements of
f to increase performance.

Until recently, hardly any theoretical framework existed for systematic gain-scheduling of LPV systems. A
customary “heuristic” approach consisted of dividing the parameter space into areas of small variations where
the plant was regarded as LTI. An LTI controller was then derived for each frozen value of the parameter
f, and the overall control law was constructed via gain scheduling or gain interpolation techniques. The
main shortcoming of such schemes is to obliterate the time-varying nature of LPV plants (7; 7). As a result,
there is no guaranty of satisfactory performance and robustness along all possible trajectories of 0(t). In



fact, these gain-scheduled controllers are not even guaranteed to stabilize the LPV plant, except in the case
of slowly-varying parameters (7).

An important and original contribution toward the elimination of this intrinsic weakness is found in (?7;
?). The main thrust of this work is the development of a new controller structure dedicated to the gain
scheduling task. This approach is restricted to LPV plants where measurements of (¢) are available in real
time, and constructs time-varying controllers with the same parameter dependence as the plant. That is,

& = Ag(0(t)) x+ Bg(0(t)y
u = Cg(0(t) z+ Dr(0(1) y

where y denotes the vector of measurements and u the control inputs. By incorporating the parameter
measurements, this controller adjusts to the variations in the plant dynamics in order to maintain stability
and high performance along all trajectories #(t). In other words, the controller is “self-scheduled,” that is,
automatically gain-scheduled with respect to 6.

A first technique for parameter-dependent controller synthesis is based on the Small Gain Theorem and
applicable to LPV plants with an LFT (Linear Fractional Transformation) dependence on the parameter ¢
(?; 7). A drawback of the LFT formulation is that the variations of # are allowed to be complez, thus intro-
ducing some conservatism when parameters are known to be real. Significant improvements can be obtained
by using instead the notion of Quadratic Hs, Performance. This notion is closely related to quadratic sta-
bility (?; ?) and seeks a single quadratic Lyapunov function to ensure Ho-like performance for all possible
trajectories of the LPV plant (?; 7). In this framework, the parameter is treated as real and should enter
the state-space matrices of the LPV plant in an affine fashion. A detailed discussion of the conservatism
of Small Gain and Quadratic He, Performance approaches is provided in (?). The improvement essentially
comes from the ability of the Quadratic Ho, Performance formalism to handle real parameters. Note however
that this approach remains conservative in the face of slowly varying parameters since quadratic Lyapunov
techniques allow for arbitrarily fast parameter variations.

This paper considers the class of LPV plants where
e the state-space matrices depend affinely on the time-varying parameter 6,
e the measurements of § are available in real time.

The focus is on the practical synthesis and applications of parameter-dependent controllers with Quadratic
Hoo Performance. A simple and unified framework is then proposed to handle both continuous- and discrete-
time LPV systems. The derivation technique is an extension of (?7) to LPV plants and makes extensive use of
the Bounded Real Lemma (BRL) formulation of H, performance. Under mild assumptions, the synthesis
problem is reduced to solving a system of Linear Matrix Inequalities (LMI), which in turn falls within the
scope of reliable and efficient convex optimization techniques (?7; 7).

The remainder of the paper is organized as follows. Section 77 gives the notation and some definitions
regarding LPV plants with an affine parameter dependence. Useful concepts and tools are recapped in
Section 77, as well as the central notion of Quadratic Hs, Performance. The synthesis problem is formally
stated in Section 7?7 and solutions are characterized in Section ?7. Finally, a physically motivated application
is presented in Section 7?7 and solved using these techniques and the software package LMI-LAB, part of
the LMI Control Toolboz for use with MATLAB (7; 7).

2 Notations and Definitions

Throughout the paper, matrix transfer functions will be denoted P(c) where o stands for the Laplace
variable s in the continuous-time case and for the Z-transform variable z in the discrete-time case. Similarly,
7 will stand for the time ¢ (€ R¥) in the continuous-time case and for the time samples k (€ Z%) in the
discrete-time case. When sufficiently clear from the context, o or the time-dependence 7 will be omitted.
The notation o.z stands for U(li—f for continuous-time signals and for xj41 for discrete-time signals.

For a stable real-rational transfer function P(o), the Ho norm is defined in the usual way:
¢ [|P(5)|lcc = SUpP,eg Omac(P(jw)) for continuous-time systems

o ||P(2)]|eo = SUP ye[0,27] Omaz(P(e79)) for discrete-time systems ,



where 0pmqr (M) stands for the largest singular value of a matrix M. For real symmetric matrices M, the
notation M > 0 stands for ”positive definite” and indicates that all the eigenvalues of M are positive.
Similarly, M < 0 means "negative definite”, that is, all the eigenvalues of M are negative.

With these notations in mind, LPV systems are given in state-space form by the equations:

ocx = A(0:)x+ B(0:)u (2.1)
y = C(0;)z+ D(0;)u (2.2)
where z,u,y denote the state, input, and output vectors, respectively, and 8, is a time-varying vector of real
parameters. When “freezing” 6, to some given value 0, the LPV system (?7)-(?7) becomes an LTI system
of transfer function:
G(a) = D(0) + C(0) (oI — A(6))" L B(6).
Both LPV and LTI properties of such systems are interesting. LPV properties are global since they concern
the behavior of the system along all possible trajectories 6,. In contrast, the LTI behavior is only local
around some particular value # of the parameters.

Matrix polytopes are defined as the convex hull of a finite number of matrices N; with the same dimen-
sions. That is,

Co{N; :i=1,...,r}:= {Z%‘Ni Ca; >0, Zai =1}
i=1 i=1

We restrict ourselves to LPV systems where

(a) the parameter dependence is affine, that is, the state-space matrices A(6;), B(6;), C(0;), D(0,) depend
affinely on 6,

(b) the time-varying parameter f; varies in a polytope © of vertices 61,05, ...,6,. That is,
97— S O :=Co {01,92, .. .,gr}.
These vertices correspond to all combinations of extremal parameter values.

Though not fully general, this description encompasses many practical situations. From (a)-(b), it is clear
that the state-space matrices A(0;), B(0;), C(6;), D(0;) range in a polytope of matrices whose vertices are
the images of the vertices 61,65, ...,60,. In other words,

A(6) B(0) Ai B\ _ (A(0:) B(0i)\ . _
< C(0) D(0) € Co c )= \cw) pe)) i=1,..,r (2.3)
Because of this property, and with a slight abuse of language, we will refer to such LPV plants as “polytopic”
in the sequel.

Definition 2.1 (Polytopic LPV Systems)
An LPV system is called “polytopic” when it can be represented by state-space matrices A(0;), B(0,), C(0;),
D(0;) where the parameter vector 0, ranges over a fized polytope, and the dependence of A(.), B(.),C(.), D(.)
on & is affine.

|

3 Useful Tools

A central tool in our formulation and derivation technique is the Bounded Real Lemma (BRL). Given an
LTI system G(o) and a state-space realization G(o) = D + C(oI — A)~! B of G, we introduce the BRL map
BFA BC D](., .) defined for symmetric matrices X and positive scalars v by:

ATX+XA XB CT
Bisg.cp(X,7) = BTX —y I DY foro=s (3.1)
c D -1
—XT_1 A B OT
B[ZA,B,C,D] (X,7) = gT _OX _3 7 gT for o = 2. (3.2)
0 C D — I

With this notation in mind, the Bounded Real Lemma has the following general statement.



Theorem 3.1 (Bounded Real Lemma) Given a continuous- or discrete-time transfer function G(o) of
(not necessarily minimal) realization G(o) = D + C(cl — A)™1 B, the following statements are equivalent:
(i) A is stable and |D + C(ol — A)™1Bl|o < v

(ii) there exists a positive definite solution X to the matriz inequality:

B[OA,B,C,D] (X,7) <0 (3.3)

|
This theorem is only valid for LTI systems. However, the Bounded Real Lemma can be extended to LPV
systems in conjunction with the notion of Quadratic H., Performance.

Definition 3.2 (Quadratic H., Performance) The LPV system
ocx = A(0:)x+ B(0:)u .
y = C(0;)z+ D(0;)u (3.5)
has Quadratic Hoo Performance v if and only if there exists a single matriz X > 0 such that

Biace),B8),c(8), 0087 (X, 7) <0 (3.6)
for all admissible values of the parameter vector 0.
Then the Lyapunov function V(z) = z? Xz establishes (global) stability and the Lo gain of the in-
put/output map is bounded by y. That is,
llyllz < yllull2
along all possible parameter trajectories 0.

For LTI systems (@ frozen), Quadratic Performance is equivalent to internal stability with an H., bound
v on the transfer function G(o) = D(0) + C(0)(cI — A(0))~"1B(#). However, this equivalence does not
extend to general LPV systems since Quadratic Ho, performance requires the existence of a fixed quadratic
Lyapunov function for the entire operating range.

A difficulty with condition (?7) is the infinite number of constraints it imposes. In the special case
of polytopic LPV systems however, this condition can actually be reduced to a finite set of LMIs. Using
convexity, it is easily shown that (??) will hold for all (A(6), B(6),C(6), D(#)) if and only if it holds at the
vertices (A;, B;, C;, D;) for i = 1,...,r. The following result formalizes this fact.

Theorem 3.3 (Vertex Property)
Consider a polytopic LPV plant described in state-space form by

ocx = A(0:)x+ B(0:)u (3.7)
y = C(0;)x+ D(0;)u (3.8)

(45 2)er-o{(2 8) oo}

The following statements are equivalent:

(i) this LPV system is stable with Quadratic He, Performance v,

with

(ii) there exists a single matriz X > 0 such that, for all <A(9) B(Q)) e P,

C(0) D(0)
Bao),B(6).c0) pen(X:7) <0 (3.10)
(iit) there exists X > 0 satisfying the system of LMIs:
Bl pocopg(X,7) <0, i=12...r (3.11)

Proof: Statements (i) and (ii) are equivalent by definition, and the equivalence of (ii) and (iil) is a direct

consequence of the fact that
A@0) BO)\ _~~ (A Bi
(o) poy) == (& 5

i=1
with a; > 0 and > ;_; a; = 1.



4 Self-Scheduled H,, Control of LPV Systems

This section formulates an H-like control problem for polytopic LPV systems. By Hs, control, we mean
control with a Quadratic H,, Performance as defined in Section ??7. Assuming complete measurement of
6, the controller is allowed to incorporate these measurements in the same LPV fashion as the plant. The
resulting LPV controllers exploits all available information on 6, to adjust to the current plant dynamics (see
Figure 77). This provides smooth and automatic gain-scheduling with respect to the varying parameters 6.

In the sequel, we consider LPV plants mapping exogenous inputs w and control inputs u to controlled
outputs ¢ and measured outputs y, 1.e.,

ox = A(0:)x+ B1(0;)w+ B2(0;)u
q = Cl(ﬂr):v—i—D11(6’T)w+D12(6T)u (41)
Y = Cy(07)x + Da1(0;)w + Daa(8;)u

The plant is further assumed to be polytopic conformably to Definition ?7. That is,

A(GT) Bl (GT) 32(97) Az Bli B2i
Ci(0-) D11(0;) Di2(0;) | €P :=Co Cii Dii Dig |, 0=1,2,...,r (4.2)
C2(0:) D21(6;) Daa(6;) Coi Da1; Dasg;

where A;, By, ... denote the values of A(0;), B1(0;), ... at the vertices 6, = 0; of the parameter polytope.
The problem dimensions are given by

A(QT) € Rnxn’ Dll(‘gr) € Rplxml; D22(97) S [RP2Xmz2 (4.3)
We seek an LPV controller of the form:

ozxg = Ag(0:)zx + Bk (6:)y (4.4)
u = Ck(0;)rx + Dk (0;)y '

that guarantees some Quadratic Ho, Performance vy for the closed-loop system of Figure 77 (see Definition
??). This will ensure that

e the closed-loop system is quadratically stable over P,
e the L£s-induced norm of the operator mapping w into ¢ is bounded by ~ for all possible trajectories 8;.

The controller order k is defined as the size of the matrix Ag(f). With the notation

Ak(0) Bg(0
0= (&0 bain))

the closed-loop system is described by the state-space equations:

0.L; = Acl(‘g)zcl + Bcz(ﬂ)w
q = Cu(®)zo + Dep(f)w (4.5)
where
Ace(0) = Ao(0) + BQ(0) C, Be(0) = Bo(0) + B Q(0) Dy
CCZ(H) = CO(H) + D1y Q(Q) C, Dcl(a) = Dll(g) + Di» Q(@) Day (46)
and
o= <Ag€) Okoxk> ’ Bo = <Bl()(a)> ’ Co = (01(9):0)
B:(I(l BE)?)’ CI(C(')Q Iéc), D12 = (0, D1a), D21:<D021), (4.7)

The assumptions on the plant are as follows:

(A1) D22(0;) = 0 or equivalently Dag; =0 fori=1,2,...,r,
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Figure 1: LPV Control of LPV Systems

(A2) By(0;),C2(0;), D12(0;), Da1(0;) are parameter-independent or equivalently,

Ba; = Ba, Cy = Ca, Di1gi = Dia, Dayy = Dosfor i =1,2,...,r. (4.8)

(A3) The pairs (A(f), B2) and (A(f), Cs) are quadratically stabilizable and quadratically detectable over
O, respectively.

Quadratic detectability of (A(#),Cs) is equivalent to the quadratic stabilizability of (A(6)T,CT). By
quadratic stabilizability of (A(@), Ba) over ©, we mean (for continuous-time systems) the existence of a
matrix X > 0 such that

NTAGTX + XAO)N <0 forall 0 €0, (4.9)

where A denotes the null space of BZ . Using the affine parameter dependence and a convexity argument,
this is equivalent to the existence of a matrix X > 0 satisfying

NT(ATX + X AN <0, i=1,2,...,r (4.10)

The third assumption is necessary and sufficient to allow quadratic stabilization of the polytopic LPV
plant by an output feedback LPV controller. Assumption (A1) can often be removed by redefining the plant
output y. If Assumption (A2) is not satisfied, the computation of a solution requires solving a problem
with an infinite number of constraints and is therefore not easily tractable (7). Yet, this difficulty can be
alleviated by pre- and/or post-filtering of the control inputs u and/or the measured outputs y. Specifically,
define a new control input # and a new measured output y by:

{a.xu = Ay, + B,u {U.;l‘y = Ayzy,+ Byy

u = Cyuxy y = Cyzy (4.11)

Assuming (A2), the resulting LPV plant is described by

0.z A(8-) Bx(6-)C, 0 z B1(85) 0
(a.zu) = ( 0 Ay 0 ) (Iu)—|—( 0 )'w—l—(Bu)'& (4.12)
O.Ty ByCQ(HT) 0 y Ty ByD21(67—) 0

A
q = (C1(97—) D12(9~,—)Cn 0) (Iu) —|—D11(97—)‘w (413)

= (00 Cy)<$xu)~ (4.14)

Note that the control and the measurement matrices are now parameter-free. The filter bandwidth must be
chosen larger than the desired system bandwidth. With this constraint, the proposed pre- and post-filtering
will not significantly alter the original problem and preserve the conditions of assumption (A3). Note also
that whenever the plant model includes actuator and sensor dynamics then the control and measurement
matrices are parameter-free. Hence, the proposed filtering operations are not restrictive in a practical
perspective. In the sequel, we assume that these filtering operations have been performed beforehand so
that (A1)-(A3) hold. Note also that similar definitions and transformations apply to the discrete-time case.

R3]

5 Characterization and Computation of Solutions

This section gives necessary and sufficient conditions for solvability of the Quadratic Ho, Performance prob-
lem discussed in the previous section. As earlier, we assume that the LPV plant is polytopic subject to



(A1)-(A3) and that the parameter value 0, is measured in real time. If we restrict ourselves to LPV con-
trollers, there is no loss of generality in assuming that the controller is polytopic as well. Indeed, if some
LPV controller (6) has quadratic performance v, its values Q; := Q(6;) at the vertices 0; of the parameter
box must satisfy the Bounded Real Lemma, which ensures that the polytopic LPV controller of vertices €2;
yields the same performance as shown next.

Based on the Vertex Property (Theorem ?7) of polytopic LPV systems, we devise the following con-
structive approach to LPV synthesis:

o first compute a matrix X.; > 0 and adequate (LTI) Ho, controllers Q; at the vertices 6; of the parameter

polytope
@:{Zaiﬁi: aiZO;Zaizl}
i=1

i=1

e Define the LPV controller Q(f) as an “interpolant” of the vertex controllers ©;. Here the interpolation
is based on the position of ¢ in the polytope © (with respect to the vertices ;). More precisely, along

some trajectory
-

o(r) =Y ai(r)b;
i=1
of the parameter, the state-space matrices Ag(f), Bx (0), Cx(9), Dk (0) of Q(f) will be given by

Ak(0) Bk(0)\ _N"pq - N g [Axi B

(o) Dty ) =Xem=er (G i)
The first step enforces stability and H, performance over the entire parameter polytope © and for arbitrary
parameter variations (see Theorem ?7). It must be emphasized that a naive interpolation of LTI controllers
would generally fail to ensure stability and performance over ©. Our approach is valid only because a single
Lyapunov function V(z) = z7 X,,z is used over the entire operating range. While the vertex controllers Q;
can be computed off-line, the LPV controller matrices A(9), B(9), C(0), D(6) must be updated in real time
based on the parameter measurement #,. The notion of interpolating LPV controller is formalized in the
next theorem.

Theorem 5.1 Consider a continuous- or discrete-time LPV polytopic plant (?7?7) and assume (A1)-(A3).
Given some positive scalar vy, the following statements are equivalent:

(i) there exists a k-th order LPV controller solving the Quadratic Hoo Performance problem with bound v,

(ii) there exist some (n+ k) x (n + k) positive definite matriz X and k-th order LTI controllers Q; =
<AKZ' Bk

Cr: D such that

B[UAd(Gz)yBce(Gz)yccz(f)i)yDce(9i)](XCI’7) <0 (Z =1,2,.. .,7’) (5'1)

where Oy, ...,0, are the vertices of the parameter polytope and Aq(0;) = Ao(0;) + BQC, ... with the
notation (77).

If (i) or (ii) is satisfied, a possible choice of LPV controller is the polytopic controller given in state-space

form by
v oo~ (Axki Bgi
Q(8) = Z;QQ = Z; a; <Cm Dm) (5.2)
where (ay, ..., ) is any solution of the convexr decomposition problem:

r

i=1

Proof: (Necessity part) From Definition ??, Quadratic He, Performance « is equivalent to the existence of
a positive definite matrix X., € R(n+k)x(n+k) gych that for all 8 € O:

Bla 0 (8),Bes(8),Cor(8),Dor(8))(Xe£:7) < 0. (5.4)



Selecting @ := 6; and using the notation €; := Q(#;) immediately yields (ii).

(Sufficiency part) Assume now that (i) holds for X, > 0 and some €;’s, and consider the polytopic LPV

controller Q(#) = >, &;€;. Since this controller makes the closed-loop system (??) polytopic, the Vertex
Property of Theorem ?7 is applicable and guarantees for all # € © that

Bia.,(8),Bes(8),Cor(8),Doe(8))(Xe£:7) < 0. (5.5)

This exactly says that the closed-loop system has Quadratic Performance v over the parameter range ©.

|

The core of the LPV synthesis problem is therefore to compute a single Lyapunov matrix X, > 0 and

LTI controllers ©; which satisfy the system of LMIs (?7). Here the difficulty lies in the fact that the same

Lyapunov function should be used for all vertices. Fortunately, computing an adequate X (if any) reduces

to solving some system of LMIs. Once the Lyapunov matrix X., is determined, adequate vertex controllers

Q; are easily deduced by solving the corresponding Bounded Real Lemma inequality (?7) at each vertex.
The LMI-based solvability conditions are given in the following theorem.

Theorem 5.2 (Convex Solvability Conditions)
Consider a continuous LPV polytopic plant (77) and assume (A1)-(A3). Let Ng and N denote bases of
the null space of (B2T, D1T2) and (Ca, Day), respectively.

There exists an LPV controller guaranteeing Quadratic Hy, Performance v along all parameter trajecto-

ries in the polytope
@:{Z a;l0; 1 a; > 0; Zaizl}
i=1

i=1

if and only if there exist two symmetric matrices (R, S) in R"*™ satisfying the system of 2r 4+ 1 LMIs:

(NR O)T AR+ RA;  RCY, By (NR 0) o

CuR —~I Diy; 7 (Z =1, ,T‘) (5 6)
0 (I 0 (I
BY; DYy -1
v [ ATS+SA; SBy | C%
< 'A([)S ? ) BL.S —~I DY, ( Aés %) < 0 (i=1,...,7) (5.7)
Chi D1y -1

(? é) > 0. (5.8)

Moreover, there exists k-th order LPV controllers solving the same problem if and only if R, S further satisfy
the rank constraint

rank (I — RS) < k. (5.9)

Proof: This is a straightforward application of Theorem ?? above and of the main results of (7). Note
that Assumption (A3) is equivalent to the existence of R, S making the (1,1) blocks in (?7)-(??) negative
subject to (?7).
|
For the discrete-time LPV systems, the 2r constraints (?7?)-(?7) should be replaced by discrete-time
Riccati inequalities. The rank constraint (??) is immaterial in the full-order case (k = n). Hence R, S
are only constrained by LMIs and the problem of finding a feasible pair (R, S) is convex as well as that of
minimizing v subject to (?7)-(??). Once adequate matrices R, S are computed, the Lyapunov matrix X,
common to all inequalities (??7) and the vertex controllers €2; are obtained along the lines of (?; 7). The
construction of X, from R, S proceeds as follows:

e compute full-rank matrices M, N € R?** such that

MNT =71 - RS, (5.10)

e compute X ¢ as the unique solution of the linear matrix equation Ils = X II; where

S 1 I R
Hg::(NT 0); H1::<0 MT)'



Ar; Brgi

is any solution of the matrix inequality
Cki Dk

Given X4, a possible choice of vertex controllers Q; = <

B[UAC,E(9,),362(9,),06,3(9,),ch(9,)](Xcl, 7) < 0. (5.11)

This LMI in €; can be solved by the same convex optimization algorithms. However, where no further
constraint is placed on €; it is more efficient to solve (?7) by direct linear algebra techniques such as those
discussed in (7).

6 Self-Scheduled H, Control of a Missile

This section presents a realistic application of the LPV synthesis technique to the control of a missile pitch
axis.

The missile dynamics are highly dependent on the angle of attack «, the air speed V and the altitude
H. These three variables completely define the flight conditions (operating point) of the missile. They are
assumed to be measured in real-time. Based on the linearization of the missile equations around its flight
conditions, an LPV model can be developed for this problem. The gain-scheduling technique presented above
is then readily applicable to the design of a self-scheduled autopilot.

We first discuss the modelling and the open-loop characteristics of the missile pitch axis dynamics.
This preliminary analysis shows the relevance of LPV design for this system. Next we describe the control
problem and outline the control law computation. Finally, the resulting gain-scheduled controller is validated
by various simulations.

6.1 Open-loop analysis

In the sequel it is implicitly assumed that the pitch, yaw and roll axes are decoupled. Although this
assumption ignores some coupling phenomena in the missile, it greatly simplifies the design procedure while
retaining the main difficulties of the problem. The pitch axis model of the missile is depicted in Figure 77.

% % out

4 LPV PLANT

— = ACTUATOR ! q e N
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Figure 2: Missile pitch axis

The linearized dynamics of the missile (LPV part) are described by a state-space representation in the

form (i) = (3% 0) () + (o) o
(“) = (%9 (2)

where a denotes the angle of attack, ¢ the pitch rate, a, the vertical acceleration, é,, the fin deflection,
and V the air speed. The parameters Z,, M, and Ms_ are functions of the flight condition (e, V, H) and
are therefore available in real-time. The LPV model (??) can be further simplified by incorporating the
parameter dependence of the B and C' matrices into the self-scheduled controller. Hence, the corresponding
entries are considered as normalized to 1, hereafter. In this simpler form, the LPV description of the missile
satisfies Assumptions (A1)-(A3) and our synthesis technique is directly applicable. The parameter vector of
the LPV plant (?7) is denoted as 0()7 1= (Z,(t) Ma(2)).

Though the parameter dependence of the original plant has been simplified, the control of the missile
dynamics remains a hard task. Indeed, the parameter M, and Z, abruptly change as functions of the flight
condition and range over a large parameter domain where the stability properties of the missile vary greatly.
Moreover, the system can switch between stability and high instability regions. Analyzed as an LTI plant,
the characteristic polynomial of the plant (?7?) reads s? + Z,s+ M,. It follows that the plant is LTI unstable
whenever M, is negative. The parameter Z, has a less dramatic impact and influences the damping.

The missile speed varies between Mach 0.5 and Mach 4. The altitude belongs to the interval [0, 18000] (m.)
and the angle of attack evolves between 0 and 40 degrees. This wide variety of operating conditions results

(6.1)



in a large range of parameter values. Moreover, a small increase in the angle of attack may induce large
parameters variations. The parameter range O is a box defined by [—365, 380] for M, and [0.35, 4.35] for
L.

6.1.1 Actuator, Gyro and Flexibility Descriptions

In addition to the LPV plant dynamics (?7?), tail-deflection actuators, gyros, and bending flexible modes
must be incorporated to the model (see Figure ?7). The gyros and actuators are adequately represented
by second-order and third-order transfer functions, respectively. Meanwhile, flexible modes are modelled
as a multiplicative output LTI perturbation affecting the measurement of the pitch rate q. The frequency
responses of these components are plotted in Figure ?77.

6.2 LPV control structure

We use the two-degree-of-freedom synthesis structure of Figure 77. This structure includes a feedforward part
K3(0) and a feedback K(f) and is potentially more powerful to achieve strong performance requirements
than the usual unity feedback structure.

w0’ : i : : o 1° i
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107} Gaflistninlidin F
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»10'E 2 [
% r + +u + y
g BRI : K(© 0 r
107 ; :
Actuatc%r
107 ‘ .
10' 10’ 10° Figure 4: Two-Degrees-of-Freedom

Frequency (Rad/sec) C t 1 St t
ontro ructure

Figure 3: Actuator, Gyro and Flexible Modes
Frequency Responses

The design procedure parallels the customary H,-based loop shaping procedure except that the operators
to be minimized are now parameter-dependent. We choose a mixed sensitivity criterion adapted to the
control structure in Figure ?7. The performance objectives are expressed through the sensitivity operator
S(0) while additive robustness is captured by the operator K;(0)S(0).

The self-scheduled H, control problem consists in finding an LPV controller, denoted in operator form
as

K(0) := (K1(0), K2(0)) ,
that satisfies the following objectives for all admissible trajectories 6(1) in ©:

e internal stability of the closed-loop system of Figure 7?7,

e minimization of the L£s-induced gain of the closed-loop operator between <2> and (; ), where W,
+

and Ws are linear time-invariant weights.

The full control structure together with the weights appears in Figure 77. It is readily shown that the
unweighted LPV plant P(6) is completely defined by the state-space equations:

i A6() 0 0 B\ /zx
Z4 _ 0 0 0 I r
e o -C I -1 0 d ]’ (6.2)
r 0 I 0 0 U
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where the measurement vector is (i) with e := r —y and A(f) ranges in the polytope Co{4; i =1,...,4}.

The vertices A;’s are the values of A(#) at the four vertices of the parameter box:

Zamin Zamax Zamin Zamax
0, = <Mamin) 3 Oy = <Mamin) ) O3 = <Mamax> ) 04 = <Mamax> .

The synthesis structure of Figure 7?7 is the weighted version of P(#). It is also LPV and ranges in a
polytope easily obtained as the convex hull of the weighted vertices of P(9).

6.3 Weight selection and synthesis

The selection of weights is based on a frozen-time analysis of the LPV system and follows the same lines
as classical Ho synthesis. They must ensure adequate settling-time (0.25 sec.) and high frequency gain
attenuation. Finally, based on different closed-loop analyses the following filters were adopted:

e the sensitivity weight is described as

me = ("5 )

where W14(s) is a second-order low-pass filter and Wi,4(s) is a simple static gain.

e the robustness weight 1Ws(s) is a 6th-order Chebycheff high-pass filter.

The corresponding frequency responses are shown in Figure 77.

W1 _alpha

Magnitude (dB)

\
1

; ; ;
10° 10" 10° 10 107 10°
Frequency (rad/s)

Figure 5: Weighting Functions

The LPV synthesis structure of Figure 7?7 being fixed, the LMIs (?7?)-(??) are solved using LMI-LAB.
Solving (7?)-(??) for R, S yielded a performance level of ¥ = 1.1 after 100 iterations of the algorithm. Given
a solution (R, S), an LPV polytopic controller {Qy,...,Q4} can be constructed as described in (??). The
vertex controllers Q;’s are obtained as solutions to the convex problem (?7). Due to a rank loss of 1 in (?7),
a 9th order controller was computed. The €;’s are (94 1,9+ 4) matrices with the partitioning (?7). Finally,
a formal expression of the LPV controller is derived by solving the convex decomposition problem (?7) for

the a;’s in the case of a 2-dimensional box ©. The following formulas for the state-space data of the LPV
controller are readily obtained:

where
o) =y, as=(1—-2)y, as=z(1—-y), as=(1—-2z)(1-y) (6.4)
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with )
Zama:c _ Za o Ma _ Mamzn
y = Mamax _ Mamin '

z ::Zmax_Z min
(a3 (23

It is easy to check that the a;’s in (?7) are convex coordinates as they satisfy 0 < ; < 1 and Z?zl a; = 1.

Now recalling that the parameters Z, and M, are known functions of the flight condition through (o, V, H),

the controller dynamics can be easily updated in real-time according (?7)-(?7).

6.4 Assessment of the LPV controller

The resulting LPV controller is now tested through different time-domain simulations. Various parameter
trajectories are considered in Figure 7?7. Trajectory #1 is a smooth trajectory ranging over the (frozen-time)
stable and unstable regions of the missile. In contrast, Trajectory #2 is non-smooth and is intended to
test the reaction of the LPV control law in the face of abrupt parameter changes. For trajectory #3, the
second coordinate of the parameter is corrupted by noise up to 10 percent of its nominal value. This last
test is of fundamental importance for potential real-world implementations of LPV controllers. Indeed, noise
or uncertainties are always present and gain-scheduled controllers must be insensitive to small parameter
fluctuations.
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Figure 6: Parameter Trajectories Figure 7: LPV Simulations
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The corresponding LPV simulations are presented in Figures 77. It is seen that the LPV controller performs
well and withstands transitions between stable, badly damped, and unstable regions of the parameter box
without any loss of stability or performance. The settling-time and overshoot specifications are clearly met for
Trajectory #1. A slight overshoot degradation occurs for Trajectory #2. This degradation essentially stems
from the corner points of the parameter trajectory where one has an infinite derivative of the parameter.
However, from a practical point of view, the response is still satisfactory since infinite derivatives are not
realistic. Surprisingly, the overshoot is improved when 10 % of relative noise is introduced on the parameter
measurement M,. Accurate measurements of the varying parameter are therefore not required for the
efficiency of the LPV controller. Since in practical implementations perfect measurement or estimation are
never achieved, this encouraging result motivates other applications of the proposed technique.

Summing up, the LPV controller behaved as predicted by the theory and managed to meet tight speci-
fications with little apparent conservatism.

7 Conclusion

This paper has considered the design of self-scheduled controllers with guaranteed Ho, performance. The
proposed technique applies to LPV plants (continuous- or discrete-time) assuming an affine parameter depen-
dence of their state-space representation. Under mild assumptions, the overall synthesis problem amounts to
solving a convex program. The major advantage of the approach is to bypass most critical aspects associated
with gain interpolation or gain scheduling techniques in

e accounting for the time-varying nature of the plant,

e handling the whole parameter range of the plant in one “shot”, that is, without extensive simulations.
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The potential and performance of the approach has been demonstrated on a realistic missile pilot problem.
The design procedure is very similar in spirit to classical H, designs. Adequate filter selections allow to
meet tight robustness and performance specifications over the missile operating domain. More importantly,
such specifications were shown to be maintained even for rapidly changing parameters.
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