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Abstract

When designing controllers with robust performance and stabilization require-
ments, H-infinity synthesis is a common tool to use. These controllers are often
obtained by solving mathematical optimization problems. The controllers that
result from these algorithms are typically of very high order, which complicates
implementation. Low order controllers are usually desired, since they are con-
sidered more reliable than high order controllers. However, if a constraint on
the maximum order of the controller is set that is lower than the order of the so-
called augmented system, the optimization problem becomes nonconvex and it
is relatively difficult to solve. This is true even when the order of the augmented
system is low.

In this thesis, optimization methods for solving these problems are considered.
In contrast to other methods in the literature, the approach used in this thesis is
based on formulating the constraint on the maximum order of the controller as a
rational function in an equality constraint. Three methods are then suggested for
solving this smooth nonconvex optimization problem.

The first two methods use the fact that the rational function is nonnegative. The
problem is then reformulated as an optimization problem where the rational
function is to be minimized over a convex set defined by linear matrix inequali-
ties (LMIs). This problem is then solved using two different interior point meth-
ods.

In the third method the problem is solved by using a partially augmented La-
grangian formulation where the equality constraint is relaxed and incorporated
into the objective function, but where the LMIs are kept as constraints. Again,
the feasible set is convex and the objective function is nonconvex.

The proposed methods are evaluated and compared with two well-known meth-
ods from the literature. The results indicate that the first two suggested methods
perform well especially when the number of states in the augmented system is
less than 10 and 20, respectively. The third method has comparable performance
with two methods from literature when the number of states in the augmented
system is less than 25.
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Populärvetenskaplig sammanfattning

Robust reglering är ett verktyg som används för att konstruera regulatorer till
system som har stora krav på tålighet mot parametervariationer och störningar.
En metod för att konstruera dessa typer av robusta regulatorer är så kallad H-
oändlighetssyntes. För att använda denna metod utgår man vanligen från en
nominell modell av systemet som man utökar med olika viktfunktioner som
motsvaras av de krav på robusthet för parameterosäkerheter och störningar som
ställs på systemet. Detta får som följd att det utökade systemet ofta får mycket hö-
gre komplexitet än det nominella systemet. Regulatorns komplexitet blir i regel
lika hög som det utökade systemets komplexitet. Inför man en övre gräns för
den grad av komplexitet som tolereras, resulterar detta i mycket komplicerade
optimeringsproblem som måste lösas för att en regulator ska kunna konstrueras,
även i de fall då det nominella systemet har låg komplexitet. Att ha en regulator
med låg komplexitet är önskvärt då det förenklar implementering.

I denna avhandling föreslås tre metoder för att lösa denna typen av optimer-
ingsproblem. Dessa tre metoder jämförs med två andra metoder beskrivna i lit-
teraturen. Slutsatsen är att de föreslagna metoderna uppnår bra resultat så länge
som systemen inte har alldeles för hög komplexitet.
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1
Introduction

In this thesis, the problem of designing low order H∞ controllers for continuous
linear time-invariant (LTI) systems is addressed. This chapter is structured as
follows. In Section 1.1 we discuss the motivation for the thesis and present im-
portant work in the past that are related to this work. In Section 1.2 questions
are listed which we aim to answer in this thesis. A list of publications is given
in Section 1.3, where the author is the main contributor, and the contributions
are summarized in Section 1.4. We conclude this chapter with Section 1.5 by
presenting the outline of the remaining chapters of the thesis.

1.1 Background

We begin by a brief overview of the history of robust control. Then we present
what has been done in the past that is related to design of low order H∞ con-
trollers, and we also very briefly discuss controller reduction methods. We con-
clude this section with the motivation for the thesis.

1.1.1 Robust control

The development of robust control theory emerged during the 1980s and and a
contributory factor certainly was the fact that the robustness of linear quadratic
Gaussian (LQG) controllers can get arbitrarily bad as reported in Doyle [1978].
A few years later an important step in the development towards a robust control
theory was taken by Zames [1981], who introduced the concept of H∞ theory.

The H∞ synthesis, which is an important tool when solving robust control prob-
lems, was a cumbersome problem to solve until a technique was presented in
Doyle et al. [1989], which is based on solving two Riccati equations. Using this

3



4 1 Introduction

method, the robust design tools became much easier to use and gained popularity.
Quite soon thereafter, in Gahinet and Apkarian [1994] and Iwasaki and Skelton
[1994], linear matrix inequalities (LMIs) were found to be a suitable tool for solv-
ing these kinds of problems. Also related problems, such as gain scheduling syn-
thesis, see e.g. Packard [1994] and Helmersson [1995], fit into the LMI framework.
In parallel to the theory for solving problems using LMIs, see e.g. the survey pa-
pers by Vandenberghe and Boyd [1996] and Todd [2001], numerical methods for
solving LMIs were being developed.

Typical applications for robust control include systems that have high require-
ments for robustness to parameter variations and high requirements for distur-
bance rejection. The controllers that result from these algorithms are typically
of very high order, which complicates implementation. However, if a constraint
on the maximum order of the controller is set, that is lower than the order of
the plant, the problem is no longer convex and is then relatively hard to solve.
These problems become very complex, even when the order of the system to be
controlled is low. This motivates the use of efficient special purpose algorithms
that can solve these kinds of problems.

1.1.2 Previous work related to low order control design

In Hyland and Bernstein [1984] necessary conditions for a reduced order con-
troller to stabilize a system were stated. In Gahinet and Apkarian [1994] it was
shown that in order to find a reduced order controller using the LMI formulation,
a rank constraint had to be satisfied. In Fu and Luo [1997] it was shown that this
problem is so-called NP-hard. Many researchers were now focused on the issue
of finding efficient methods to solve this hard problem.

The DK-iteration procedure became a popular method to solve robust control
problems, see e.g. Doyle [1985]. In Iwasaki [1999] a similar method for low order
H∞ synthesis was presented, which solved the associated BMIs by fixing some
variables and optimizing on others in an alternating manner. The problems to be
solved in each step were LMIs. One problem with these methods is that conver-
gence is not guaranteed.

In Grigoriadis and Skelton [1996] an alternating projections algorithm was pre-
sented. The algorithm seeks to locate an intersection of a convex set of LMIs and a
rank constraint. However, only local convergence is guaranteed for the low order
case. Similar methods are presented in Beran [1997]. Other algorithms that ap-
peared around this time were e.g. a min/max algorithm in Geromel et al. [1998],
the XY-centering algorithm in Iwasaki and Skelton [1995], the potential reduc-
tion algorithm in David [1994]. For a survey on static output feedback methods,
see Syrmos et al. [1997].

Also some global methods began to appear. In Beran [1997] a branch and bound
algorithm for solving bilinear matrix inequalities (BMIs) was presented, which
divides the set into several smaller ones where upper and lower bounds on the
optimal value are calculated. Similar approaches were presented in e.g. Goh et al.
[1995], VanAntwerp et al. [1997] and Tuan and Apkarian [2000] and in the ref-
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erences therein. In Apkarian and Tuan [1999, 2000] an algorithm was presented
for minimization of a nonconvex function over convex sets defined by LMIs. The
problem was solved using a modified Frank-Wolfe method, see Frank and Wolfe
[1956], combined with branch and bound methods.

Mesbahi and Papavassilopoulos [1997] showed how to compute lower and upper
bound on the order of a dynamical output feedback controller that stabilizes a
given system by solving two semi-definite programs. In El Ghaoui et al. [1997],
a cone complementarity linearization method was presented. In each iteration it
solved a problem involving a linearized nonconvex objective function subject to
LMI constraints. Another method based on linearization is Leibfritz [2001].

A primal-dual method with a trust-region framework for solving nonconvex ro-
bust control problems was suggested in Apkarian and Noll [2001]. A modi-
fied version of the augmented Lagrangian method, the partially augmented La-
grangian method was used in Fares et al. [2001] to solve a robust control prob-
lem where the search direction was calculated using a modified Newton method
and a trust-region method. In Fares et al. [2002] the same formulation was used
but solved using a sequential semidefinite programming approach. In Apkarian
et al. [2003] and Apkarian et al. [2004] the low order H∞ problem was consid-
ered, where in each iteration a convex SDP was solved in order to find a search
direction.

A barrier method for solving problems involving BMIs was presented in Koc-
vara et al. [2005] which is an extension of the so-called PBM method in Ben-Tal
and Zibulevsky [1997] to semidefinite programming. It uses a modified New-
ton method to calculate the search direction. If ill-conditioning of the Hessian
is detected, a slower but more robust trust-region method is used instead. The
method was implemented in the software PENBMI. Other methods that attack
the BMI problem using local methods are e.g. Leibfritz and Mostafa [2002], Hol
et al. [2003] Kanev et al. [2004] and Thevenet et al. [2005]. For another overview
of earlier work in robust control, the introduction of Kanev et al. [2004] is recom-
mended.

In Orsi et al. [2006], a method similar to the alternating projection algorithm in
Grigoriadis and Skelton [1996] for finding intersections of sets defined by rank
constraints and LMIs is proposed. The method is implemented in the software
LMIrank, see Orsi [2005].

In Apkarian and Noll [2006a] a nonsmooth, multi directional search approach
was considered that did not use the LMI formulation in Gahinet and Apkarian
[1994] but instead searched directly in the controller parameter space. However,
the method they used for solving this nonsmooth problem seem to have been
abandoned in favor for an approach using subgradient calculus, see e.g. Clarke
[1990]. This approach was presented in Apkarian and Noll [2006b] and in 2010 it
resulted in the code Hinfstruct, which is part of the Robust Control Tool-
box in Matlab® version 7.11. In parallel, a code package for H-infinity fixed
order optimization, Hifoo, was being developed that considered the same non-
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smooth problem formulation as in Apkarian and Noll [2006b] but with another
approach. It was presented in Burke et al. [2006] and parts of its code are based
on gradient sampling, see Burke et al. [2005]. Further developments of Hifoo
were presented in Gumussoy and Overton [2008a] and as presented in the paper
by Arzelier et al. [2011] it now also includes methods for H2 controller synthesis.
An advantage with these kind of nonsmooth methods, compared to LMI-based
methods, is that they seem better fitted to handle systems with large dimensions.
Another approach that directly minimizes an appropriate nonsmooth function
of the controller parameters is presented in Mammadov and Orsi [2005]. How-
ever, it uses a different objective function compared to Burke et al. [2006] and
Apkarian and Noll [2006b].

New sufficient LMI conditions for low order controller design were presented in
Trofino [2009], however some degree of conservatism was introduced due to the
conditions only being sufficient. An algorithm that combines a randomization al-
gorithm with a coordinate descent cross-decomposition algorithm is presented in
Arzelier et al. [2011]. The first part of the algorithm randomizes a set of feasible
points while the second part optimizes on a group of variables while keeping the
other group of variables fixed and vice versa.

1.1.3 Controller reduction methods

A completely different approach worth mentioning is to compute the full order
controller and then apply model reduction techniques to get a low order con-
troller. Some references on this approach are e.g. Enns [1984], Zhou [1995], God-
dard and Glover [1998], and Kavranoğlu and Al-Amer [2001]. The results in
Gumussoy and Overton [2008a] indicate that controller reduction methods per-
form best when the controller order is close to the order of the system. However,
when the controller order is low compared to the order of the system, the results
is in clear favor of optimization based methods such as Hifoo.

1.1.4 Motivation

To conclude the overview of related published work the following can be said.
Several approaches to low order H∞ controller synthesis have been proposed in
the past. All methods have their advantages and disadvantages. None of the
global methods have polynomial time complexity due to the NP-hardness of the
problem. As a result, these approaches require a large computational effort even
for problems of modest size. Most of the local methods, on the other hand, are
computationally fast but may not converge to the global optimum. The reason
for this is the inherent nonconvexity of the problem. Some problem formulations
are “less” nonconvex than others, e.g. Apkarian et al. [2003], in the sense that it
is only the objective function that is nonconvex while the constraints are convex.
However, a drawback with the approach in Apkarian et al. [2003] is that the
system is augmented with extra states in the case that a dynamic controller, i.e.,
a controller with nonzero states, is searched for.

In Helmersson [2009] it was shown that the matrix rank constraint used in H∞
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controller synthesis can be formulated as a polynomial constraint. This allows
new approaches for low order H∞ controller design where a nonconvex function
is to be minimized over a convex set defined by LMIs. The order of the controller
in these approaches is decided by using a specific coefficient in a polynomial as
objective function instead of augmenting the system as is done in e.g. Apkarian
et al. [2003]. Hopefully, this results in lower computational complexity and better
results. In this thesis three different optimization algorithms for low order H∞
controller synthesis will be investigated that use the formulation in Helmersson
[2009].

1.2 Goals

In this thesis we aim to answer the following questions.

1. Which are currently the state of the art methods for low order H∞ controller
synthesis?

2. When using the reformulation of the rank constraint of a matrix as a quo-
tient of two polynomials, see Helmersson [2009], in tandem with the classi-
cal LMI formulation of the H∞ controller synthesis problem in Gahinet and
Apkarian [1994], what approaches can be used for solving the resulting op-
timization problems? How well do these methods perform?

3. What are the advantages and disadvantages of using the LMI formulation of
the H∞ controller synthesis problem compared to using nonsmooth meth-
ods, e.g. the methods in Apkarian and Noll [2006b] and Gumussoy and
Overton [2008a]?

1.3 Publications

The thesis is based on the following publications, where the author in the main
contributor.

D. Ankelhed, A. Helmersson, and A. Hansson. A primal-dual method for
low order H-infinity controller synthesis. In Proceedings of the 2009 IEEE
Conference on Decision and Control, Shanghai, China, Dec 2009.

D. Ankelhed, A. Helmersson, and A. Hansson. Additional numerical re-
sults for the quasi-Newton interior point method for low order H-infinity
controller synthesis. Technical Report LiTH-ISY-R-2964, Department of Au-
tomatic Control, Linköping university, Sweden, 2010. URL http://www.
control.isy.liu.se/publications/doc?id=2313.

D. Ankelhed, A. Helmersson, and A. Hansson. A quasi-Newton interior point
method for low order H-infinity controller synthesis. Accepted for publica-
tion in IEEE Transactions on Automatic Control, 2011a.

D. Ankelhed. An efficient implementation of gradient and Hessian calcula-
tions of the coefficients of the characteristic polynomial of I - XY. Techni-

http://www.control.isy.liu.se/publications/doc?id=2313
http://www.control.isy.liu.se/publications/doc?id=2313
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cal Report LiTH-ISY-R-2997, Department of Automatic Control, Linköping
university, Sweden, 2011. URL http://www.control.isy.liu.se/
publications/doc?id=2387.

D. Ankelhed, A. Helmersson, and A. Hansson. A partially augmented La-
grangian algorithm for low order H-infinity controller synthesis using ratio-
nal constraints. Submitted to the 2011 IEEE Conference on Decision and
Control, December 2011b.

Some of the results in this thesis has previously been published in

D. Ankelhed. On low order controller synthesis using rational constraints.
Licentiate thesis no. 1398, Department of Electrical Engineering, Linköping
University, SE-581 83 Linköping, Sweden, Mar 2009.

Additionally, some work not directly related to this thesis has been published in

D. Ankelhed, A. Helmersson, and A. Hansson. Suboptimal model reduc-
tion using LMIs with convex constraints. Technical Report LiTH-ISY-R-
2759, Department of Electrical Engineering, Linköping University, SE-581 83
Linköping, Sweden, Dec 2006. URL http://www.control.isy.liu.se/
publications/doc?id=1889.

1.4 Contributions

Below the main contributions of the thesis are listed.

• A new algorithm for low order H∞ controller design based on a primal-dual
method is presented. The algorithm was introduced in Ankelhed [2009]
and Ankelhed et al. [2009]. The algorithm was implemented and evaluated
and the results are compared with a well-known method from the litera-
ture.

• A new algorithm for low order H∞ controller design based on a primal log-
barrier method is presented. The algorithm was introduced in Ankelhed
[2009] and solves the same problem as the primal-dual algorithm above.
The method was implemented and evaluated and the results are compared
with the primal-dual method above and a well-known method from the
literature.

• A modified version of the primal-dual algorithm is presented that clearly
lowers the required computational time. This work was first presented in
Ankelhed et al. [2011a], where exact Hessian calculations are replaced with
BFGS updating formulae. The algorithm was implemented and the results
from an extended numerical evaluation was published in Ankelhed et al.
[2010], and a summary of the results is presented in the thesis.

• A computationally efficient implementation of the gradient and Hessian
calculations of the coefficients in the characteristic polynomial of the matrix
I − XY is presented. This work was first published in Ankelhed [2011].

http://www.control.isy.liu.se/publications/doc?id=2387
http://www.control.isy.liu.se/publications/doc?id=2387
http://www.control.isy.liu.se/publications/doc?id=1889
http://www.control.isy.liu.se/publications/doc?id=1889
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• A new algorithm for low order H∞ controller design based on a partially
augmented Lagrangian method is presented. The algorithm was imple-
mented and evaluated and the results were compared with two methods
from the literature. This work was first published in Ankelhed et al. [2011b]
and uses the efficient implementation for gradient and Hessian calculations
that was published in Ankelhed [2011] in order to lower the required com-
putational time.

1.5 Thesis outline

The thesis is divided into three parts. The aim of the first part is to cover the
background for the thesis.

• In Chapter 2, the focus lies on H∞ synthesis for linear systems.

• In Chapter 3 optimization preliminaries are presented. The focus is on
minimization of a nonconvex objective function subject to semidefinite con-
straints.

• In Chapter 4 it is described how a quotient of coefficients of the charac-
teristic polynomial of a special matrix are connected to its rank. This is a
common theme for all suggested methods in the thesis.

The second part of the thesis presents the suggested methods for design of low
order H∞ controllers.

• In Chapter 5 a primal logarithmic barrier method for H∞ synthesis is pre-
sented.

• In Chapter 6 a primal-dual method for H∞ synthesis is presented. A modi-
fication of this method is also described.

• In Chapter 7 a partially augmented Lagrangian method for H∞ synthesis is
presented.

The third part of the thesis presents the results and conclusions of the thesis.

• In Chapter 8 the numerical evaluations of the suggested methods are pre-
sented. The other methods used in the evaluation are also described.

• In Chapter 9 conclusions and suggested future research are presented.





2
Linear systems and H∞ synthesis

In this chapter, basic theorems related to linear systems and H∞ synthesis are
presented. This includes defining the performance measure for a system and
reformulating this to an LMI (linear matrix inequality) framework and how to
recover the controller parameters once the problem involving the LMIs has been
solved. We also briefly mention the concept of balanced realizations. The chapter
is concluded by summarizing its contents in a general algorithm for H∞ synthesis.

Some references in the field of robust control are e.g. Zhou et al. [1996], Skoges-
tad and Postlethwaite [1996] and for the LMI formulations we refer to Gahinet
and Apkarian [1994] and Dullerud and Paganini [2000]. More details on bal-
anced realizations and gramians can be found in e.g. Glover [1984] and Skoges-
tad and Postlethwaite [1996].

Denote with Sn the set of real symmetric n×nmatrices and Rm×n is the set of real
m × n matrices, while Rn denotes a real vector of dimension n × 1. The notation
A � 0 (A � 0) and A ≺ 0 (A � 0) means A is a positive (semi)definite matrix
and negative (semi)definite matrix, respectively. If A is a symmetric matrix, the
notation A ∈ Sn++ (A ∈ Sn+) and A � 0 (A � 0) are equivalent.

2.1 Linear system representation

In this section we will introduce notations for linear systems that are controlled
by linear controllers and derive the equations that describe the closed loop sys-
tem.

11
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2.1.1 System description

Let H denote a linear system with state vector, x ∈ Rnx . The input vector contains
the disturbance signal, w ∈ Rnw , and the control signal, u ∈ Rnu . The output
vector contains the measurement signal, y ∈ Rny , and the performance signal, z ∈
R
nz . The system is illustrated in Figure 2.1. In terms of its state-space matrices,

we can represent the linear system as

H :

 ẋ
z
y

 =

 A B1 B2
C1 D11 D12
C2 D21 D22


 x
w
u

 . (2.1)

We assume that D22 is zero, i.e., the system is strictly proper from u to y. If this
is not the case, we can find a controller K̃ for the system where D22 is set to zero,
and then construct the controller for the system in (2.1) as

K = K̃(I + D22K̃)−1.

Hence, there is no loss of generality in making this assumption. For simplicity, we
assume that the system is on minimal form, i.e., it is both observable and control-
lable. However, in order to find a controller, it is enough to assume stabilizability
of (A, B2) and detectability of (A, C2), i.e., the nonobservable and noncontrollable
modes are stable.

H
w

u

z

y

Figure 2.1: A system with two inputs and two outputs. The inputs are the
disturbance signal, w, and the control signal, u. The outputs are the perfor-
mance signal, z, and the output signal, y.

2.1.2 Controller description

The linear controller is denoted K . It takes the system measurement, y, as input
and the output vector is the control signal, u. The state-space matrices for the
controller are defined by the equation

K :
(
ẋK
u

)
=

(
KA KB
KC KD

) (
xK
y

)
, (2.2)

where xK ∈ Rnk is the state vector of the controller. How the controller is con-
nected to the system is illustrated in Figure 2.2.

2.1.3 Closed loop system description

Next we will derive expressions for the closed loop system in terms of the state-
space matrices of the system in (2.1) and the controller in (2.2). Let us denote the
closed loop system by Hc. The state-space matrices of the closed loop system can
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H

K

w

yu

z

Figure 2.2: A standard setup for H∞ controller synthesis, with the system H
controlled through feedback by the controller K .

be derived by combining (2.1) and (2.2) to obtain the following.

u = KCxK + KDy = KCxK + KDC2x + KDD21w

ẋK = KAxK + KBy = KAxK + KBC2x + KBD21w

ẋ = Ax + B1w + B2u = (A + B2KDC2)x + B2KCxK + (B1 + B2KDD21)w

z = C1x + D11w + D12u

= (C1 + D12KDC2)x + D12KCxK + (D11 + D12KDD21)w

From the equations above we obtain the closed loop expression as

Hc :

 ẋ
ẋK
z

 =

 A + B2KDC2 B2KC B1 + B2KDD21
KBC2 KA KBD21

C1 + D12KDC2 D12KC D11 + D12KDD21


 x
xK
w

 . (2.3)

Denoting the closed loop system states xC =
(
x
xK

)
and using the above matrix

partitioning, we can write (2.3) as

Hc :
(
ẋC
z

)
=

(
AC BC
CC DC

) (
xC
w

)
, (2.4)

where xC ∈ Rnx+nk . Using the system matrices in (2.4) we can write the transfer
function of Hc in terms of its system matrices AC , BC , CC , DC as

Hc(s) = CC(sI − AC)−1BC + DC . (2.5)

2.2 The H∞ norm

In this section we introduce the concept of H∞ norm and conditions in terms of
linear matrix inequalities (LMIs) of its upper bound. First, we define the follow-
ing.

Definition 2.1 (H∞ norm of a system). Let the transfer function of a stable lin-
ear system be given byH(s) = C(sI−A)−1B+D, where A, B, C, D are its state-space
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matrices. The H∞ norm of this system is defined as

‖H(s)‖∞ = sup
ω
σ̄
(
H(iω)

)
,

where σ̄ ( · ) denotes the largest singular value.

Using the Bounded real lemma, which is introduced below, we can state an equiv-
alent condition for a system to have H∞ norm less than γ .

Lemma 2.1 (Bounded real lemma, Scherer [1990]). For any γ > 0 we have that
all eigenvalues of A are in the left hand half-plane and ‖H(s)‖∞ < γ hold if and
only if there exists a matrix P ∈ S++ such that(

AT P + P A + CT C P B + CTD
BT P + DT C DTD − γ2I

)
≺ 0. (2.6)

We can rewrite the inequality in (2.6) as(
P A + AT P P B
BT P −γ2I

)
+

(
CT

DT

)
I
(
C D

)
≺ 0. (2.7)

Then multiply the inequality (2.7) by γ−1 and let P1 = γ−1P to obtain(
P1A + AT P1 P1B

BT P1 −γI

)
+

(
CT

DT

)
γ−1I

(
C D

)
≺ 0. (2.8)

From now on, we will drop the index on P for convenience. For later purposes
it is useful to rewrite the inequality in (2.8) such that it becomes linear in the
state-space matrices A, B, C, D. In order to do this, the following lemma is useful.

Lemma 2.2 (Schur complement formula, Boyd et al. [1994]). Assume we have
that R ∈ Sn, S ∈ Sm and G ∈ Rn×m. Then the following conditions are equivalent.

1. R ≺ 0, S − GT R−1G ≺ 0 (2.9)

2.
(
S GT

G R

)
≺ 0 (2.10)

Now, by using Lemma 2.2, the inequality in (2.8) can be written asP A + AT P P B CT

BT P −γI DT

C D −γI

 ≺ 0, (2.11)

which is an LMI in the matrices A, B, C, D if the matrix P and γ are given. Now
we have shown that finding a matrix P such that the inequality in (2.6) is satisfied
is equivalent to finding a matrix P such that the inequality in (2.11) is satisfied.
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2.3 H∞ controller synthesis

In this section we will derive the solvability conditions for finding a controller
for the system in (2.1) such that the closed loop H∞ norm is less than γ , i.e., such
that ‖Hc(s)‖∞ < γ .

Let the matrix P ∈ Snx+nk and its inverse be partitioned as

P =
(
X X2
XT2 X3

)
and P −1 =

(
Y Y2
Y T2 Y3

)
, (2.12)

where X, Y ∈ Snx++, X2, Y2 ∈ Rnx×nk and X3, Y3 ∈ S
nk
++. Then insert P and the closed

loop system matrices AC , BC , CC , DC into the inequality in (2.11). After some
rearrangements we get the following matrix inequality.


XA + ATX ATX2 XB1 CT1
XT2 A 0 XT2 B1 0
BT1 X BT1 X2 −γI DT

11
C1 0 D11 −γI

︸                                         ︷︷                                         ︸
Q

+

+


XB2 X2
XT2 B2 X3

0 0
D12 0

︸          ︷︷          ︸
U

(
KD KC
KB KA

)
︸      ︷︷      ︸

K

(
C2 0 D21 0
0 I 0 0

)
︸                 ︷︷                 ︸

V T

+
(
C2 0 D21 0
0 I 0 0

)T
︸                   ︷︷                   ︸

V

(
KD KC
KB KA

)T
︸        ︷︷        ︸

KT


XB2 X2
XT2 B2 X3

0 0
D12 0


T

︸            ︷︷            ︸
UT

≺ 0 (2.13)

The matrix inequality in (2.13) is bilinear in the controller variables, KA, KB, KC ,
KD and the matrices X, X2, X3. The introduced matrix aliases Q,U, K, V in (2.13)
correspond to the matrices in Lemma 2.3 below, which states two conditions on
the existence of a matrix K that satisfies the inequality in (2.13). However, first
we need to define the concept of an orthogonal complement.

Definition 2.2 (Orthogonal complement). Let V ⊥ denote any full rank matrix
such that kerV ⊥ = rangeV . Then V ⊥ is an orthogonal complement of V .

Remark 2.1. Note that for V⊥ to exist, V needs to have linearly dependent rows. We have
that V⊥V = 0. There exist infinitely many choices of V⊥.
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Lemma 2.3 (Elimination lemma, Gahinet and Apkarian [1994]). Given matri-
ces Q ∈ Sn, U ∈ Rn×m, V ∈ Rn×p, there exists a K ∈ Rm×p such that

Q + UKV T + V KTU T ≺ 0, (2.14)

if and only if

U⊥QU⊥T ≺ 0 and V ⊥QV ⊥T ≺ 0, (2.15)

where U⊥ is an orthogonal complement of U and V ⊥ is an orthogonal comple-
ment of V . If U⊥ or V ⊥ does not exist, the corresponding inequality disappears.

In order to apply Lemma 2.3 to the inequality in (2.13), we need to derive the
orthogonal complements U⊥ and V ⊥. Note that U in (2.13) can be factorized as

U =


XB2 X2
XT2 B2 X3

0 0
D12 0

 =
(
P 0
0 I

) 
B2 0
0 I
0 0
D12 0

 .
and an orthogonal complement U⊥ can now be constructed as

U⊥ =


B2 0
0 I
0 0
D21 0


⊥ (

P −1 0
0 I

)
.

By using Lemma 2.3 and performing some rearrangements, the inequality (2.13)
is now equivalent to the two LMIs(

NX 0
0 I

)T XA + ATX XB1 CT1
BT1 X −γI DT

11
C1 D11 −γI


(
NX 0
0 I

)
≺ 0

(
NY 0
0 I

)T AY + YAT YCT1 B1
C1Y −γI D11
BT1 DT

11 −γI


(
NY 0
0 I

)
≺ 0,

(2.16)

where NX and NY denote any bases of the nullspaces of
(
C2 D21

)
and

(
BT2 DT12

)
respectively. Now, the LMIs in (2.16) are coupled by the relation of X and Y
through (2.12), which can be simplified after using the following lemma.

Lemma 2.4 (Packard [1994]). Suppose X, Y ∈ Snx++ and nk being a nonnegative
integer. Then the following statements are equivalent.

1. There exist X2, Y2 ∈ Rnx×nk and X3, Y3 ∈ Rnk such that

P =
(
X X2
XT2 X3

)
� 0 and P −1 =

(
Y Y2
Y T2 Y3

)
� 0. (2.17)
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2. The following inequalities hold.(
X I
I Y

)
� 0 and rank

(
X I
I Y

)
≤ nx + nk . (2.18)

Remark 2.2. Note that the first inequality in (2.18) implies that Y � 0. The factorization(
X I
I Y

)
=

(
I Y −1

0 I

) (
X − Y −1 0

0 Y

) (
I 0
Y −1 I

)
(2.19)

implies that

rank
(
X I
I Y

)
= rank(X − Y −1) + rank(Y ) = rank(XY − I) + nx.

Using this fact, the second inequality in (2.18) is equivalent to

rank(XY − I) ≤ nk . (2.20)

The solvability conditions for the H∞ problem, which is essential for this thesis,
will now be stated.

Theorem 2.1 (H∞ controllers for continuous plants). The problem of finding
a linear controller of order nk ≤ nx such that the closed loop system Hc is stable
and such that ‖Hc(s)‖∞ < γ , is solvable if and only if there exist X, Y ∈ Snx++, which
satisfy (

NX 0
0 I

)T XA + ATX XB1 CT1
BT1 X −γI DT

11
C1 D11 −γI


(
NX 0
0 I

)
≺ 0, (2.21a)

(
NY 0
0 I

)T AY + YAT YCT1 B1
C1Y −γI D11
BT1 DT

11 −γI


(
NY 0
0 I

)
≺ 0, (2.21b)

(
X I
I Y

)
� 0, (2.21c)

rank(XY − I) ≤ nk , (2.21d)

where NX and NY denote any base of the null-spaces of
(
C2 D21

)
and

(
BT2 DT12

)
respectively.

Proof: Combine Lemma 2.1–2.4 or see the LMI reformulation of Theorem 4.3 in
Gahinet and Apkarian [1994].

Remark 2.3. If nk = nx, the rank constraint (2.21d) is trivially satisfied and the problem
is convex.
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2.4 Gramians and balanced realizations

It is well known that for a linear system, there exist infinitely many realizations
and for two realizations of the same system, there exists a nonsingular transfor-
mation matrix T that connects the representations. Let A, B, C, D and Ā, B̄, C̄, D̄
be the system matrices for two realizations of the same system. Then there exist
a nonsingular transformation matrix T such that

Ā = T AT −1, B̄ = T B, C̄ = CT −1, D̄ = D. (2.22)

The two systems have the same input-output properties, but are represented dif-
ferently. The state vectors are connected by the relation x̄ = T x.

Definition 2.3 (Controllability and observability gramians). Let A, B, C, D be
the system matrices for a stable linear system H of order nx. Then there exist
X, Y ∈ Snx++ that satisfy

XA + ATX + BBT = 0, AY + YAT + CT C = 0, (2.23)

where X and Y are called the controllability and observability gramians, respec-
tively.

The gramians are often used in model reduction algorithms and can be inter-
preted as a measure of controllability and observability of a system. For more
details, see e.g. Glover [1984] or Skogestad and Postlethwaite [1996].

Definition 2.4 (Balanced realization). A system is said to be in a balanced re-
alization if the controllability and observability gramians are equal and diago-
nal matrices, i.e., X = Y = Σ, where Σ = diag(σ1, . . . , σn). The diagonal entries
{σ1, . . . , σn} are called the Hankel singular values.

For any stable linear system, a transformation matrix T can be computed that
brings the system to a balanced realization by using (2.22). The procedure is
described in e.g. Glover [1984], and is stated in Algorithm 1 for convenience.

Actually, we can perform a more general type of a balanced realization around
any X0, Y0 ∈ S

nx
++ which is described in Definition 2.5.

Definition 2.5 (Balanced realization around X0,Y0). Given any X0, Y0 ∈ S
nx
++

which need not necessarily be solutions to (2.23), it is possible to calculate a trans-
formation T such that (2.25) holds. Then the realization described by (2.24) is a
Balanced realization around X0, Y0.

The balancing procedure around X0, Y0 is the same as normal balancing, thus
Algorithm 1 can be used for the same purpose.
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Algorithm 1 Transforming a system into a balanced realization, Glover [1984]

Assume that the matrices X, Y ∈ S
nx
++ and the system matrices A, B, C, D are

given.
1: Perform a Cholesky factorization of X and Y such that

X = RTXRX and Y = RTYRY .

2: Then perform a singular value decomposition (SVD) such that

RYR
T
X = UΣV T ,

where Σ is a diagonal matrix with the singular values along the diagonal.

3: The state transformation can now be calculated as

T = Σ−1/2V T RX .

4: The system matrices for a balanced realization of the system are given by

Ā = T AT −1, B̄ = T B, C̄ = CT −1, D̄ = D. (2.24)

The controllability gramian and observability gramian are given by

X̄ = T −TXT −1 = Σ, Ȳ = T Y T T = Σ. (2.25)

2.5 Recovering the matrix P from X and Y

Assume that we have found X, Y ∈ Snx++ that satisfy (2.21). We now wish to con-
struct a P such that (2.17) holds. First note the equality

P −1 =
(
Y Y2
Y T2 Y3

)
=

(
(X − X2X

−1
3 XT2 )−1 −X−1X2(X3 − XT2 X−1X2)−1

−X−1
3 XT2 (X − X2X

−1
3 XT2 )−1 (X3 − XT2 X−1X2)−1

)
,

(2.26)

which is verified by multiplying the expression in (2.26) by the matrix

P =
(
X X2
XT2 X3

)
from the left. Using the fact that the (1, 1) elements in (2.26) are equal, the fol-
lowing equality must hold.

X − Y −1 = X2X
−1
3 XT2 (2.27)

Now we intend to find X2 ∈ Rnx×nk and X3 ∈ Rnk×nk that satisfy the equality in
(2.27). Perform a Cholesky factorization of X and Y such that X = RTXRX and
Y = RTYRY . Then we have that

RTXRX − R
−1
Y R

−T
Y = X2X

−1
3 XT2 ,
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which after multiplication by RY from the left and by RTY from the right becomes

RYR
T
XRXR

T
Y − I = RYX2X

−1
3 XT2 R

T
Y .

Then use a singular value decomposition RYR
T
X = UΣV T to obtain

U (Σ2 − I)U T = U Γ 2U T = RYX2X
−1
3 XT2 R

T
Y , (2.28)

where

Σ =
(
Σnk 0
0 Inx−nk

)
, Γ 2 = Σ2 − Inx and Γ =

(
Γnk 0
0 0

)
.

Let the transformation matrix be T = Σ−1/2V T RX which balances the system, i.e.,
we have that T −TXT −1 = T Y T T = Σ. Now we can choose

X3 = Σnk and X2 = T T
(
Γnk
0

)
,

which satisfy (2.17) and (2.28).

2.6 Obtaining the controller

In the previous section we recovered the matrix variable P . The controller state-
space matrices KA, KB, KC , KD can be obtained by solving the following convex
optimization problem, which was suggested in Beran [1997].

minimize
d,KA,KB,KC ,KD

d

subject to F(P ) ≺ dI
(2.29)

Where F(P ) is defined as the left hand side of the matrix inequality in (2.13).
Since we have used Theorem 2.1, we know that the optimal value d∗ of the prob-
lem in (2.29) satisfies d∗ < 0 and that the closed loop system has an H∞ norm that
is less than γ , i.e., we have that

‖Hc(s)‖∞ < γ.

2.7 A general algorithm for H∞ synthesis

Now we summarize the contents of this chapter in an algorithm for H∞ synthesis
using an LMI approach in Algorithm 2.

Algorithm 2 Algorithm for H∞ synthesis using LMIs
Assume that γ , nk and system matrices A, B, C, D are given.

1: Find X, Y ∈ Snx++ that satisfy (2.21).
2: Recover P from X and Y as described in Section 2.5.
3: Solve (2.29) to get the controller system matrices KA, KB, KC , KD .



3
Optimization

An optimization problem is defined by an objective function and a set of con-
straints. The aim is to minimize the objective function while satisfying the con-
straints. In this chapter, optimization preliminaries are presented and some
methods that can be used to solve optimization problems are outlined. The pre-
sentation closely follows relevant sections in Boyd and Vandenberghe [2004] and
Nocedal and Wright [2006]. Those familiar with the subject may want to skip
directly to the next chapter.

3.1 Nonconvex optimization

In a nonconvex optimization problem, the objective function or the feasible set
or both are nonconvex. There is no efficient method to solve a general nonconvex
optimization problem, so specialized methods are often used to solve them. It is
not possible in general to predict how difficult it is to solve a nonconvex problem
and even small problems with few variables may be hard to solve. Nonconvex
optimization is a very active research topic today.

3.1.1 Local methods

One approach to use when solving nonconvex optimization problems is to use lo-
cal methods. A local method searches among the feasible points in a local neigh-
borhood for the optimal point. The drawback for this kind of methods is that a
solution that is found may not be the global optimum, and that it may be very
sensitive to the choice of the starting point, which in general must be provided or
found using some heuristics. There are parameters that may have to be tuned for
these algorithms to work. All methods that are presented in this thesis are local
methods.

21
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3.1.2 Global methods

In contrast to local methods, global methods find the global minimum of a non-
convex minimization problem. It can be very hard to construct such methods
and they tend to be very complex and time consuming in general, and thus not
efficient in practice. This of course does not mean that global methods cannot be
successful for certain subclasses of nonconvex optimization problems. However,
we will not consider or analyze any global methods in this thesis.

3.2 Convex optimization

Convex optimization problems belong to a subgroup of nonlinear optimization
problems, where both the objective function is convex and the feasible set is con-
vex. This in turn gives some very useful properties. A locally optimal point for a
convex optimization problem is the global optimum, see Boyd and Vandenberghe
[2004]. Convex problems are in general easy to solve in comparison to nonconvex
problems. However, it may not always be the case due to e.g. large scale issues,
numerical issues or both.

3.3 Definitions

In this section we present some definitions and concepts that are commonly used
in optimization and later on in this thesis.

3.3.1 Convex sets and functions

In this section, convex sets and functions are defined, which are important con-
cepts in optimization since they imply some very useful properties.

Definition 3.1 (Convex set). A set C ⊆ R
n is a convex set if the line segment

between two arbitrary points x1, x2 ∈ C lies within C, i.e.,

θx1 + (1 − θ)x2 ∈ C, θ ∈ [0, 1], (3.1)

The concept is illustrated in Figure 3.1.

θx1 + (1 − θ)x2

C

Figure 3.1: Illustrations of a convex set as defined in Definition 3.1.
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With the definition of a convex set, we can continue with the definition of a con-
vex function.

Definition 3.2 (Convex function). A function f : Rn → R is a convex function
if dom f is a convex set and if for all x1, x2 ∈ dom f we have that

f
(
θx1 + (1 − θ)x2

)
≤ θf (x1) + (1 − θ)f (x2), θ ∈ [0, 1]. (3.2)

In plain words, this means that the line segment between the points
(
x1, f (x1)

)
and

(
x2, f (x2)

)
lies above the graph of f as illustrated in Figure 3.2.

(
x1, f (x1)

) (
x2, f (x2)

)
θ f (x1) + (1 − θ) f (x2)

f
(
θx1 + (1 − θ)x2

)

f

x1 x2

Figure 3.2: Illustrations of a convex function as defined in Definition 3.2.

3.3.2 Cones

In this section we define a special kind of sets, referred to as cones.

Definition 3.3 (Cone). A set K ⊆ Rn is a cone, if for every x ∈ K we have that

θx ∈ K, θ ≥ 0. (3.3)

Definition 3.4 (Convex cone). A cone K ⊆ Rn is a convex cone, if it is convex or
equivalently, if for arbitrary points x1, x2 ∈ K we have

θ1x1 + θ2x2 ∈ K, θ1, θ2 ≥ 0. (3.4)

Cones provide the foundation for defining generalized inequalities, but before
we explain this concept, we first need to define a proper cone.

Definition 3.5 (Proper cone). A convex cone K is a proper cone, if the following
properties are satisfied:
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• K is closed.

• K is solid, i.e., it has nonempty interior.

• K is pointed, i.e., x ∈ K and −x ∈ K implies x = 0.

3.3.3 Generalized inequalities

Definition 3.6 (Generalized inequality). A generalized inequality �K with re-
spect to a proper cone K is defined as

x1 �K x2 ⇔ x1 − x2 ∈ K. (3.5)

The strict generalized inequality (�K) is defined analogously. From now on, the
index K is dropped when the cone is implied from context. We remark that the
set of positive semidefinite matrices is a proper cone.

Example 3.1
Let A be a real symmetric matrix of dimension n × n, i.e., A ∈ Sn. If the proper
cone K is defined as the set of positive semidefinite matrices, then A � 0 means
that A lies strictly in the cone K which is equivalent to that all eigenvalues of A
are strictly positive.

Now we define an optimization problem with matrix inequality constraints using
the concepts described previously in this chapter.

minimize
x

f0(x)

subject to fi(x) � 0, i ∈ I ,
hi(x) = 0, i ∈ E ,

(3.6)

where f0 : Rn → R, fi : Rn → S
mi , hi : Rn → R

mi , and where � denotes positive
semidefiniteness. The functions are smooth and real-valued and E and I are two
finite sets of indices.

3.3.4 Logarithmic barrier function and the central path

Definition 3.7 (Generalized logarithm for Sm+ ). The function

ψ(X) = log detX (3.7)

is a Generalized logarithm for the cone Sm+ with degree m.

The Central path is a concept that emerged as the barrier methods became pop-
ular, mostly used in the context of convex optimization. It is also referred to as
The barrier trajectory.
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Definition 3.8 (Central path, logarithmic barrier formulation). The Central
path of the problem (3.6) is the set of points x∗(µ), µ ≥ 0, that solves the following
optimization problems.

minimize
x

f0(x) − µ
∑
i∈I

ψ(fi(x)).

subject to hi(x) = 0, i ∈ E .
(3.8)

This proposes a way to solve (3.6) by iteratively solving (3.8) for a sequence of
values µk that approaches zero. The optimal point in iteration k can be used as
an initial point in iteration k+1, see e.g. Boyd and Vandenberghe [2004].

Note that the central path might not be unique in case that the problem is not
convex.

3.4 First order optimality conditions

In this section, the first order necessary conditions for x∗ to be a local minimizer
are stated. When presenting these conditions, the following definition is useful.

Definition 3.9 (Lagrangian function). The Lagrangian function (or just La-
grangian for short) for the problem in (3.6) is

L(x, Z, v) = f0(x) −
∑
i∈I
〈Zi , fi(x)〉 −

∑
i∈E
〈νi , hi(x)〉 (3.9)

where Zi ∈ S
mi
+ , νi ∈ Rmi and 〈A, B〉 = trace(AT B) denotes the inner product

between A and B.

Assume that the point x∗ satisfy assumptions about regularity, see e.g. Forsgren
et al. [2002] or Forsgren [2000] for the semidefinite case. We are now ready to
state the first-order necessary conditions for (3.6) that must hold at x∗ for it to be
an optimum.

Theorem 3.1 (First order necessary conditions for optimality, Boyd and Van-
denberghe [2004]). Suppose x∗ ∈ Rn is any local solution of (3.6), and that
the functions fi , hi in (3.6) are continuously differentiable. Then there exists La-
grange multipliers Z∗i ∈ S

mi , i ∈ I and ν∗i ∈ R
mi , i ∈ E, such that the following

conditions are satisfied at (x∗, Z∗, ν∗)

∇xL(x∗, Z∗, ν∗) = 0, (3.10a)

hi(x
∗) = 0, i ∈ E , (3.10b)

fi(x
∗) � 0, i ∈ I , (3.10c)

Z∗i fi(x
∗) = 0, i ∈ I , (3.10d)

Z∗i � 0, i ∈ I . (3.10e)
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The conditions (3.10) are sometimes referred to as the Karush-Kuhn-Tucker con-
ditions or the KKT conditions for short. See Karush [1939] or Kuhn and Tucker
[1951] for early references.

3.5 Unconstrained optimization

In this section we will present useful background theory for solving the uncon-
strained optimization problem

minimize
x∈Rn

f (x), (3.11)

where f : Rn → R is twice continuously differentiable. We assume that the
problem has at least one local optimum x∗.

There exist several kinds of methods to solve problems like (3.11), e.g. trust-
region methods, line search methods and derivative-free optimization methods,
see e.g. Nocedal and Wright [2006], Bertsekas [1995]. We will describe Newton’s
method, which is a line search method. Newton’s method is thoroughly described
in e.g. Nocedal and Wright [2006], Boyd and Vandenberghe [2004], Bertsekas
[1995].

The following theorem defines a necessary characteristic for a locally optimal
point of the unconstrained problem in (3.11).

Theorem 3.2 (First order necessary conditions, Nocedal and Wright [2006]).
If x∗ is a local minimizer and f (x) is continuously differentiable in an open neigh-
borhood of x∗, then ∇f (x∗) = 0.

3.5.1 Newton’s method

Assume a point xk ∈ dom f (x) is given. Then the second order Taylor approxima-
tion (or model) Mk(p) of f (x) at xk is defined as

Mk(p) = f (xk) + ∇f (xk)
T p +

1
2
pT∇2f (xk)p. (3.12)

Definition 3.10. The Newton direction pNK is defined by

∇2f (xk)p
N
k = −∇f (xk). (3.13)

The Newton direction has some interesting properties. If ∇2f (xk) � 0:

• pNk minimizes Mk(p) in (3.12), as illustrated in Figure 3.3.

• ∇f (xk)T p
N
k = −∇f (xk)T

(
∇2f (xk)

)−1
∇f (xk) < 0 unless ∇f (xk) = 0, i.e., the

Newton step is a descent direction unless xk is a local optimum.
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(
xk, f (xk)

)
Mk(p)

f (x)

f (x)(
xk + pN

k , f (xk + pN
k )

)
(

x∗, f (x∗)
)

x

Figure 3.3: The function f (x) and its second order Taylor approximation
Mk(p). The Newton step pNk is the minimizer of Mk(p). The optimum x∗

minimizes f (x).

If ∇2f (xk) � 0, the Newton step does not minimize Mk(p) and is not guaran-
teed be a descent direction. If that is the case, let Bk be a positive definite ap-
proximation of ∇2f (x), i.e. Bk ∈ S++, and choose the search direction by solving
Bkp

M
k = −∇f (xk). Then pMk is guaranteed to be a descent direction and minimizes

the convex quadratic model

MB
k (p) = f (xk) + ∇f (xk)

T p +
1
2
pT Bkp. (3.14)

Some methods to obtain approximations Bk ∈ S++ of the Hessian will be pre-
sented in Section 3.5.3.

Definition 3.11 (Newton decrement). The Newton decrement Λ(xk) is defined
as

Λ(xk) =
(
∇f (xk)

T B−1
k ∇f (xk)

)1/2
= (−∇f (xk)

T pMk )1/2. (3.15)

The Newton decrement is useful as a stopping criterion. Let MB
k (p) be the convex

quadratic model of f at xk . Then

f (xk) − inf
p
MB
k (p) = f (xk) −MB

k (pMk ) =
1
2
Λ(xk)

2, (3.16)

and we see that Λ(xk)2/2 can be interpreted as an approximation of f (xk)−p∗, i.e.,
a measure of distance from optimality based on the modified quadratic convex
approximation of f at xk .
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3.5.2 Line search

When a descent direction pMk is determined, we want to find the minimum of the
function along that direction. Since MB

k (p) is only an approximation, pMk will not
necessarily minimize f (xk+p). The problem of minimizing the objective function
along the search direction can be stated as

minimize
α∈(0,1]

f (xk + αpMk ), (3.17)

which is called exact line search. An approximate method, but cheaper in compu-
tation than exact line search, is Backtracking line search. The idea is not to solve
(3.17) exactly, but just to reduce f enough, according to some criterion. The pro-
cedure is outlined in Algorithm 3 and illustrated in Figure 3.4.

α = 0 α0

f (xk) + α∇ f (xk)
T pk

f (xk) + αβ∇ f (xk)
T pk

f (xk + αpk)

α

f

Figure 3.4: The figure illustrates Backtracking line search. The curve shows
the function f along the descent direction. The lower dashed line shows the
linear extrapolation of f and the upper dashed line has a slope of factor β
smaller. The condition for accepting a point is that α ≤ α0.

Algorithm 3 Backtracking line search

Given a descent direction pk for f (xk), β ∈ (0, 0.5), γ ∈ (0, 1).
α := 1
while f (xk + αpk) > f (xk) + βα∇f (xk)T do
α := γα

end while
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3.5.3 Hessian modifications

As mentioned in Section 3.5.1, it is important that the Hessian approximation Bk
in (3.14) is positive definite for the calculated step to be a descent direction. There
are several ways to modify the Hessian in order to achieve this. The main idea is
to make the smallest modification possible in order not to change the curvature
more than necessary. We will describe some of these methods in this section.

Eigenvalue computation

A straight-forward approach would be to calculate the eigenvalues of the Hessian
∇2f (x) and choose the approximation to be

B = ∇2f (xk) + dI � 0, d ≥ 0, (3.18)

where d > λmin

(
∇2f (xk)

)
.

Cholesky factorization

Another suggestion would be to try and calculate the Cholesky factors R of (3.18),

RT R = ∇2f (xk) + dI � 0, (3.19)

starting with d = 0 and successively trying greater values until we succeed. This
will guarantee (with quite high accuracy) that RT R > 0 since Cholesky factoriza-
tion can only be carried out on a positive definite matrix. The disadvantage of
this method is that we do not beforehand know which d that is appropriate, and
therefore we might have to make many tries before we succeed. A similar but
somewhat more elaborate procedure is described in [Nocedal and Wright, 2006,
Appendix B].

Modified symmetric indefinite factorization

For any symmetric matrix B it is possible to calculate the factorization

P T BP = LDLT , (3.20)

which is called the symmetric indefinite factorization or LDL factorization, see
e.g. Golub and Van Loan [1996]. The matrix L is a lower triangular matrix, P
is a permutation matrix and D is a block diagonal matrix with block sizes of
1 × 1 and 2 × 2, which makes it tridiagonal. A procedure that is presented in
Cheng and Higham [1998] is to then calculate a modification matrix F such that
L(D +F)LT is positive definite. In order to calculate this modification matrix, one
first computes the eigenvalue factorization

D = QD̄QT , (3.21)

and then calculates the modification matrix

F = QEQT ,
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where the diagonal matrix E is defined by

Eii =

0, if D̄ii ≥ δ,
δ − D̄ii , if D̄ii < δ,

i = 1, 2, . . . (3.22)

The matrix F is now the minimal matrix in Frobenius norm such that D + F � δI .
Note that since D is tridiagonal, calculating the eigenvalue factorization in (3.21)
is computationally cheap.

3.5.4 Newton’s method with Hessian modification

Now we outline a method in Algorithm 4, which is based on Algorithm 9.5 in
Boyd and Vandenberghe [2004]. The stopping criterion used is the Newton decre-
ment, defined in Definition 3.11.

Algorithm 4 Newton’s method with Hessian modification

Given a starting point x0 ∈ dom f , tolerance ε > 0
loop

Compute the Newton step by solving Bkp
M
k = −∇f (xk) with approximate

Hessian Bk � 0.
Compute the Newton decrement Λ(xk).
if Λ(xk) < Λtol then

Exit loop.
end if
Choose step size αk by using Backtracking line search.
Update iterate. xk+1 := xk + αkp

M
k .

Set k := k + 1.
end loop

3.5.5 Quasi-Newton methods

Quasi-Newton methods only require the gradient of the objective function to be
supplied at each iteration. By measuring the change in gradient they update
the Hessian estimate from the previous iterate in a way that is good enough to
produce superlinear convergence.

Especially in cases where the Hessian is unavailable or computationally expen-
sive to calculate, quasi-Newton methods are efficient to use. Among the quasi-
Newton methods, the BFGS method (named after its discoverers Broyden [1970],
Fletcher [1970], Goldfarb [1970], Shanno [1970]) is perhaps the most well-known
and most popular. According to Nocedal and Wright [2006] it is presently con-
sidered to be the most effective of all quasi-Newton updating formulae.

BFGS updating

The BFGS updating formulae is derived in a quite intuitive way in Nocedal and
Wright [2006], where also additional details are given. Below we will briefly
summarize the main ideas in the derivation.
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Suppose we have formed the convex quadratic approximate model of the objec-
tive function as in (3.14). The minimizer of the convex quadratic model MB

k (p)
can be written explicitly as

pk = −B−1
k ∇fk

and is used as the search direction to update the iterate as

xk+1 = xk + αpk .

where the step length α is chosen in a way such that it satisfies the Wolfe condi-
tions, see Nocedal and Wright [2006]. Define the vectors

sk = xk+1 − xk , yk = ∇fk+1 − ∇fk . (3.23)

and let the inverse of Bk be denoted Hk . By requiring that ∇pMB
k (sk) = ∇fk+1 in

(3.14) we get that

Hk+1yk = sk , (3.24)

which is usually referred to as the secant equation. Since we require that Hk+1 ∈
S++, the equation (3.24) is feasible only if yk and sk satisfy the curvature condi-
tion,

yTk sk > 0, (3.25)

which follows from multiplying (3.24) by yTk . The inverse Hessian update Hk+1
is now obtained as the minimizer to the following optimization problem.

minimize
H

‖H − Hk‖W

subject to Hyk = sk , H ∈ S++

(3.26)

where W is any matrix satisfying Wsk = yk and ‖A‖W = ‖W 1/2AW 1/2‖F is the
weighted Frobenius norm. The objective function in (3.26) reflects the desire
that the updated (inverse) Hessian should in some sense be close to the (inverse)
Hessian in the previous iteration. The unique solution to (3.26) is given by

Hk+1 =
(
I −

sky
T
k

yTk sk

)
Hk

(
I −

yks
T
k

yTk sk

)
+
sks

T
k

yTk sk
(3.27)

and by applying the Sherman-Morrison-Woodbury formula (see e.g. [Nocedal
and Wright, 2006, Appendix A]) on (3.27) we obtain

Bk+1 = Bk −
Bksks

T
k Bk

sTk Bksk
+
yky

T
k

yTk sk
(3.28)

which is the formula that probably is the most known and used for BFGS updat-
ing. Other references on BFGS are e.g. the books by Fletcher [1987] and Dennis,
Jr. and Schnabel [1983], where the second book of the two also describes an up-
date of the Cholesky factor of Bk .



32 3 Optimization

Damped BFGS updating

The curvature condition (3.25) will not always hold for nonconvex functions f (x)
or if we do not choose step sizes according to the Wolfe conditions. In those cases
one can modify the BFGS update by modifying the definition of yk . Below we
will briefly describe this modified procedure which is known as damped BFGS
updating, which is described in [Nocedal and Wright, 2006, Procedure 18.2].

Given the symmetric and positive definite matrix Bk , define sk and yk as in (3.23)
and let

rk = θkyk + (1 − θk)Bksk , (3.29)

where θ is defined as follows.

θk =

1 if sTk yk ≥ 0.2sTk Bksk ,
(0.8sTk Bksk)/(s

T
k Bksk − s

T
k yk) if sTk yk < 0.2sTk Bksk

(3.30)

Then obtain the updated Hessian estimate Bk+1 using the formula

Bk+1 = Bk −
Bksks

T
k Bk

sTk Bksk
+
rkr

T
k

rTk sk
, (3.31)

which is similar to (3.28) but with yk replaced by rk . This guarantees that Bk+1 is
positive definite and one can verify, using the equations above, that when θk , 1
we have

sTk rk = 0.2sTk Bks
k > 0. (3.32)

3.6 Constrained optimization

We now turn to constrained optimization. The approach we will present here
is the primal-dual approach. As the name suggests, the approach uses both the
original primal variables as well as dual variables. One way to derive this ap-
proach is to start from the KKT conditions (3.10) and add slack variables Si to
the inequalities. We get the following equations

∇xL(x∗, Z∗, ν∗) = 0, (3.33a)

hi(x
∗) = 0, i ∈ E , (3.33b)

fi(x
∗) − S∗i = 0, i ∈ I , (3.33c)

Z∗i S
∗
i = 0, i ∈ I . (3.33d)

Z∗i � 0, S∗i � 0, i ∈ I , (3.33e)

and we note that this is now a collection of equality constraints, except for the
inequality constraints (3.33e). Below we will describe a method for finding a
solution to a system of equations.
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3.6.1 Newton’s method for nonlinear equations

Recall from Section 3.5 that Newton’s method is based on the principle of mini-
mizing a second order model, which is created by taking the first three terms of
the Taylor series approximation, see (3.12), of the function around the current it-
erate xk . The Newton step is the vector that minimizes that model. When solving
nonlinear equations, Newton’s method is derived in a similar way, the difference
is that a linear model is used.

Assume that r : Rn → R
n and that we want to find x∗ such that r(x∗) = 0. Assume

we have a point xk such that r(xk) ≈ 0. Denote the Jacobian of r as J(x) and we
can create a linear model Mk(p) of r(xk + p) as

Mk(p) = r(xk) + J(xk)p. (3.34)

If we choose pk = −J(xk)−1r(xk) we see that Mk(pk) = 0 and this choice of pk
is Newton’s method in its pure form. A structured description is given in Algo-
rithm 5.

Algorithm 5 Newton’s method for nonlinear equations

Given x0
for k = 0, 1, 2, . . . do

Calculate a solution pk to the Newton equations J(xk)pk = −r(xk).
xk+1 := xk + pk

end for

If any positivity constraints are present, such as (3.33e), we can use line search
techniques to find a feasible point along the search direction.

Remark 3.1. Note that Newton’s method for nonlinear equations can be extended to func-
tions r : Sn → S

n by applying standard differential calculus for matrices.

Remark 3.2. Note that the domain and range of the function defined by the left hand
side of (3.33) are not the same spaces, since the product in (3.33d) is not symmetric in
general. This means that Newton’s method is not directly applicable. A solution is to
apply a symmetry transformation to the left hand side in (3.33d) before Newton’s method
is applied. We will come back to this issue in Section 6.4.2.

3.6.2 Central path

With Remark 3.2 in mind, the KKT system in (3.33) can be solved by applying
Newton’s method for equations while ignoring the inequality in (3.33e). However,
the inequality in (3.33e) should be taken into consideration when computing the
step length. Unfortunately, due to (3.33d), only very short steps can be taken. As
a result the convergence will be very slow. In order to be able to take longer steps,
we can relax the condition in (3.33d). A way to do this relaxation is to use the
central path.
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Definition 3.12 (Central path, primal-dual formulation). The central path is
defined as the set of solution points, parameterized by µ, for which

∇xL(x, Z, ν) = 0, (3.35a)

hi(x) = 0, i ∈ E , (3.35b)

fi(x) − Si = 0, i ∈ I , (3.35c)

ZiSi = µIni , i ∈ I . (3.35d)

Zi � 0, Si � 0, i ∈ I , (3.35e)

where µ ≥ 0 and where L(x, Z, ν) is defined in Definition 3.9.

The idea is to start with a µ = µ0 and let µ tend to zero, in order to make the limit
solution satisfy the KKT conditions. Methods following this principle are called
path-following methods.

Example 3.2
Consider the convex optimization problem

minimize
x

cT x

subject to F(x) = F0 +
m∑
i=1

xiFi � 0
(3.36)

where c, x ∈ Rn and Fi ∈ Sn+,∀i. Assume that (3.36) is strictly feasible. Using Defi-
nition 3.12, the central path for (3.36) is the set of solution points, parameterized
by µ, for which

∇xL(x, Z)i = ci − trace(ZFi) = 0, ∀i
F(x) − S = 0,

ZS = µI,

Z � 0, S � 0,

(3.37)

where Z, S ∈ Sn. If we now instead use Definition 3.8, the central path of (3.36)
is the set of solution points x∗(µ) that solves

minimize
x

cT x − µ log det F(x). (3.38)

Since (3.38) is a convex problem, by using Theorem 3.1 or Theorem 3.2 we know
that global minimizers satisfy

ci − µ trace(F−1(x)Fi) = 0, ∀i,
F(x) � 0.

(3.39)

By introducing a slack variable S � 0 and defining the dual variable Z = µF−1(x),
we actually obtain exactly the same equations as in (3.37) which shows that the
two definitions coincide for the problem in (3.36).
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3.6.3 A generic primal-dual interior point method

Using what has been presented in recent sections, we can outline a simple algo-
rithm that produces iterates that tend towards a solution of the KKT conditions.

Write the equations (3.35a)–(3.35d) on the form r(x, Z, ν, S, µ) = 0. Assume that
an initial point (x, Z, ν, S) is available that satisfies the condition (3.35e). Com-
pute the next iterate as

(x+, Z+, ν+, S+) = (x, Z, ν, S) + α(∆x,∆Z,∆ν,∆S), (3.40)

where (∆x,∆Z,∆ν,∆S) is the search direction and α is a step length such that
the next iterate S+, Z+ satisfies (3.35e). We outline what is just described in Algo-
rithm 6.

Algorithm 6 A generic interior point method

Choose an initial point z = (x, Z, v, S) that satisfies (3.35e).
Choose error tolerance ε.
Choose a starting value for µ.
while ||r(x, Z, v, S, ν)||2 > ε do

Choose a search direction (∆x,∆Z,∆ν,∆S)
Find α > 0 such that Z+, S+ are feasible in (3.40).
Update iterate using (3.40).
Choose a new µ.

end while

The choice of the parameter µ is a tricky issue, which has no obvious solution.
Different choices have given rise to different methods, e.g. predictor-corrector
method and the method by Mehrotra [1992].

3.7 Penalty methods and augmented Lagrangian
methods

In this section we will discuss some smooth methods that are useful when consid-
ering the problem of minimizing a function subject to equality constraints. We
follow the presentation in [Nocedal and Wright, 2006, Chapter 17.1 and 17.3]
quite closely, where only penalty methods for equality constraints are presented.

3.7.1 The quadratic penalty method

The quadric penalty function was first proposed by Courant [1943]. Consider the
equality constrained problem

minimize
x

f (x)

subject to ci(x) = 0. i ∈ E
(3.41)
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We can formulate a related problem by using a quadratic penalty function as in

minimize
x

f (x) +
µ

2

∑
i∈E

c2
i (x), (3.42)

where µ is a the penalty parameter. By squaring the equality constraint violations
and scaling them by µ/2, the minimizer of (3.42) will tend towards being a feasi-
ble solution of (3.41) as µ → ∞. An approach would be to consider a sequence
of increasing values {µk} as k → ∞ and for each value of µk , solve (3.42) using
unconstrained optimization. Each solution xk obtained using µk would serve as a
good starting point for the following minimization problem when searching for
the minimizer µk+1. If µk → ∞ as k → ∞ it can be proved that every limit point
x∗ of the sequence {xk} is a global solution of the problem (3.41), see [Nocedal
and Wright, 2006, Theorem 17.1].

3.7.2 The augmented Lagrangian method

Sometimes also referred to as the method of multipliers, the augmented Lagrang-
ian method was proposed independently by Hestenes [1969] and Powell [1969].
They were considering an equality constrained optimization problem and it was
shown that the numerical properties were improved compared to using regular
penalty methods, e.g. the one presented in Section 3.7.1. More details regarding
multiplier and penalty methods can be found in the books by Bertsekas [1982,
1995], Fletcher [1987], Nocedal and Wright [2006] and the survey paper by Rock-
afellar [1993].

Motivation and definition

When using quadratic penalty methods, the minimizers of the problem (3.42)
do not quite satisfy the equality constraints of (3.41) unless in the limit where
µk →∞. The augmented Lagrangian method was shown to produce approximate
minimizers that more closely satisfy the equality constraints in (3.41), even for
moderate values of the penalty parameters µk .

The augmented Lagrangian for the optimization problem (3.41) is defined as

LA(x, λ, µ) = f (x) +
∑
i∈E

λici(x) +
µ

2

∑
i∈E

c2
i (x), (3.43)

where λi is an estimate the of Lagrange multiplier. We can see that the augmented
Lagrangian (3.43) differs from the quadratic penalty function by including a sum
of λici(x).

Algorithmic framework

If xk is the approximate minimizer of LA(x, λk , µk) then by the optimality condi-
tions for unconstrained minimization, Theorem 3.2, we have that

∇xLA(x, λ) = ∇xf (x) +
∑
i∈E

(
λki + µkci(x)

)
∇ci(x) ≈ 0, (3.44)
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which we can compare to the first optimality condition for constrained optimiza-
tion, Theorem 3.1, for (3.41) which is

∇xL(x, λ) = ∇xf (x) +
∑
i∈E

λi∇ci(x) ≈ 0. (3.45)

where we can draw the conclusion that at the optimum xk of (3.43), we have that

λi ≈ λki + µkci(xk), ∀i ∈ E . (3.46)

This suggests an updating rule for the Lagrange multiplier estimates

λk+1
i = λki + µkci(xk), ∀i ∈ E . (3.47)

We will now summarize the ideas from this section in Algorithm 7, see also [No-
cedal and Wright, 2006, Framework 17.3].

Algorithm 7 An augmented Lagrangian method for equality constraints

Choose µ0 > 0, tolerance τ0 > 0, starting point xs0 and λ0.
for k = 0, 1, 2, . . . do

Start at xsk and minimize LA(x, λk , µk) approximately to find xk such that
‖∇xLA(xk , λk , µk)‖ ≤ τk .
if some convergence test for (3.41) is satisfied then

Stop with approximate solution xk .
end if
Calculate the updated Lagrange multipliers λk+1 using (3.47).
Choose new penalty parameter µk+1 ≥ µk .
Let the starting point for the next iteration be xsk+1 = xk .
Set tolerance for next iteration, τk+1.

end for

This completes the chapter of optimization preliminaries.





4
The characteristic polynomial and

rank constraints

The approach to low order H∞ control in this thesis involves the characteristic
polynomial of the matrix I − XY in (2.21d). In this chapter we will explain how
the rank constraint of a matrix can be expressed as a quotient of coefficients of
its characteristic polynomial. As a consequence this enables gradient methods to
be applied to the resulting smooth optimization problem. The reference on this
topic is Helmersson [2009].

The chapter is structured as follows. We begin in Section 4.1 by presenting two
lemmas regarding properties of the coefficients of the characteristic polynomial.
In Section 4.2 we present a modified version of Theorem 2.1, and in Section 4.3
we will reformulate the solvability conditions of Theorem 2.1 as an optimiza-
tion problem. In Section 4.4 we will describe how to compute the coefficients
of the characteristic polynomial of I − XY and their derivatives. The chapter is
concluded by showing how the problem of finding a dynamic controller (i.e., a
controller with nonzero number of states) can be equivalently rewritten as a prob-
lem of finding a static controller (i.e., a controller with no states). Additionally,
some advantages and disadvantages of using such an approach in the context of
low order H∞ controller synthesis will be discussed.

4.1 A polynomial criterion

The characteristic polynomial of a matrix Z ∈ Rnx×nx is defined by

det(λI − Z) =
nx∑
i=0

ci(Z)λi , (4.1)

39
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where the coefficients ci(Z) are polynomial functions of the elements in the ma-
trix Z. Then we have that e.g.

cnx (Z) = 1, cnx−1(Z) = − trace(Z) and c0 = (−1)nx det(Z).

Some other nontrivial properties of the coefficients of the characteristic polyno-
mial in the case where the matrix Z is positive semidefinite are presented in
Lemma 4.1 and Lemma 4.2 below.

Lemma 4.1 (Helmersson [2009]). Let Z ∈ Rnx×nx be a matrix with real non-
negative eigenvalues, λi(Z) ≥ 0, and let ci(−Z), i = 1, 2, . . . , nx, be the coefficients
of the characteristic polynomial of −Z as defined in (4.1). Then, the following
statements are equivalent if nk < nx:

1. cnx−nk−1(−Z) = 0,

2. rankZ ≤ nk .

Lemma 4.2 (Helmersson [2009]). Let Z ∈ Rnx×nx be a matrix with real nonneg-
ative eigenvalues ordered by λ1(Z) ≥ λ2(Z) ≥ . . . ≥ λnx (Z) ≥ 0 and assume that
cnx−nk (−Z) , 0. Then, for nk < nx, the following relations hold:

1
nk + 1

nx∑
i=nk+1

λi(Z) ≤
cnx−nk−1(−Z)

cnx−nk (−Z)
≤

nx∑
i=nk+1

λi(Z), (4.2)

or equivalently

cnx−nk−1(−Z)

cnx−nk (−Z)
≤

nx∑
i=nk+1

λi(Z) ≤ (nk + 1)
cnx−nk−1(−Z)

cnx−nk (−Z)
. (4.3)

Remark 4.1. For future reference, note that the quotient in (4.2) is nonnegative if Z is
positive semidefinite.

From experience, better numeric properties are obtained by using the quotient in
(4.2) instead of only the nominator when searching for matrices Z with low rank.
Insights on this can be gained from noting that the quotient in (4.2) is bounded
both from above and from below by the sum of eigenvalues of Z that should be
zero for rankZ ≤ nk to hold.

4.2 Replacing the rank constraint

Let us define Z = XY − I , where X, Y ∈ Snx . The following corollary can be
proved.

Corollary 4.1. Assume that X, Y ∈ Snx satisfy(
X I
I Y

)
� 0, or equivalently, XY − I � 0.

Then the following statements are equivalent:
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1. rank(XY − I) = nk ,

2.
cnx−nk−1(I − XY )

cnx−nk (I − XY )
= 0, and cnx−nk (I − XY ) , 0.

Proof: Note that Z = XY − I has real eigenvalues, since it is similar to a symmet-
ric matrix. From Lemma 4.1 we have that

rank(XY − I) = nk ⇔

rank(XY − I) ≤ nk
rank(XY − I) > nk − 1

⇔

cnx−nk−1(I − XY ) = 0
cnx−nk (I − XY ) , 0

which completes the proof.

By combining Theorem 2.1 and Corollary 4.1, we can now formulate a theorem
for synthesis of H∞ controllers for continuous plants that only involves smooth
functions.

Theorem 4.1 (H∞ controllers for continuous plants). The problem of finding
a linear controller of order nk < nx such that the closed loop system Hc is stable
and such that ‖Hc(s)‖∞ < γ , is solvable if there exist X, Y ∈ Snx++, which satisfy(

NX 0
0 I

)T XA + ATX XB1 CT1
BT1 X −γI DT

11
C1 D11 −γI


(
NX 0
0 I

)
≺ 0, (4.4a)

(
NY 0
0 I

)T AY + YAT YCT1 B1
C1Y −γI D11
BT1 DT

11 −γI


(
NY 0
0 I

)
≺ 0, (4.4b)

(
X I
I Y

)
� 0, (4.4c)

cnx−nk−1(I − XY )

cnx−nk (I − XY )
= 0, (4.4d)

cnx−nk (I − XY ) , 0, (4.4e)

where NX and NY denote any base of the null-spaces of
(
C2 D21

)
and

(
BT2 DT12

)
respectively.

Proof: Combine Theorem 2.1 and Corollary 4.1.

Remark 4.2. In practice we do not consider the constraint in (4.4e) when looking for a
solution, but instead we just check afterwards that this condition is satisfied. In case not,
Lemma 4.1 implies that rank(XY − I) ≤ nk − 1. Thus a controller with order less than nk
can be found.
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4.3 Problem reformulations

In this section we will formulate the problem of finding X, Y that satisfy (4.4)
as a minimization problem. We will also show how to reformulate the LMIs in
(4.4a)–(4.4c) in a more compact way.

4.3.1 An optimization problem formulation

Recall from Remark 4.1 that the quotient in (4.4d) is nonnegative as long as we
have Z = XY − I � 0. This implies that the problem of finding X, Y such that the
conditions in (4.4) are satisfied can be formulated as the following optimization
problem, where nk and γ is given.

minimize
X,Y

cnx−nk−1(I − XY )

cnx−nk (I − XY )

subject to (X, Y ) ∈ X,
(4.5)

where X denotes the convex set defined by the LMIs in (4.4a)–(4.4c). If the solu-
tion X∗, Y ∗ to the problem in (4.5) is such that the conditions in (4.4d) and (4.4e)
hold, we have that X∗, Y ∗ satisfy (4.4).

4.3.2 A reformulation of the LMI constraints

Let us define the half-vectorization operator as follows.

Definition 4.1 (Half-vectorization). Let

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

. . .
...

an1 an2 . . . ann

 .
Then

vech(A) =
(
a11 a21 . . . an1 a22 . . . an2 a33 . . . ann

)T
,

i.e., the operator vech stacks the columns of A from the diagonal elements down-
wards in a column vector. See Lütkepohl [1996] for properties and details.

Remark 4.3. Note that vech(A) does not require A to be symmetric. However, if it is not,
some information will be lost.

For X, Y ∈ Snx let us make the variable substitution

x =
(
vech(X)
vech(Y )

)
∈ Rm, (4.6)

where m = nx(nx + 1). By choosing appropriate symmetric matrices A(j)
i and C(j)
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we can rewrite the problem in (4.5) equivalently as

minimize
x

cnx−nk−1(x)

cnx−nk (x)
(4.7a)

subject to C(j) −
m∑
i=1

A
(j)
i xi � 0, j = 1, 2, 3, (4.7b)

where ci(x) = ci(I − XY ) is an abuse of notation. Note that (4.7b) replaces the
LMIs (4.4a)–(4.4c). The index j corresponds to each of the three LMIs. This
problem formulation will be used in Chapter 5 and Chapter 6 when we assume
that a value of γ is given.

Remark 4.4. Note that the nonstrict matrix inequality in (4.4c) is replaced by a strict
matrix inequality in (4.7b). The LMI in (4.4c) is strictly feasible. To see this, let e.g. X =
Y = αI, α > 1. Thus by solving the optimization problem in (4.7) with strict inequalities
and interpreting minimize as seeking an infimum we will obtain a solution to problem in
(4.5) involving a nonstrict inequality, see Section 2.5 in Boyd et al. [1994].

4.4 Computing the characteristic polynomial of
I − XY and its derivatives

To determine the characteristic polynomial of a square matrix Z symbolically, one
calculates det(λI − Z) using basic linear algebra. However, when Z is of higher
dimension, it might not be efficient to use the symbolic derivation of the charac-
teristic polynomial. Instead numeric approaches can be used, e.g. the Matlab
command poly or the implementation suggested in Berkowitz [1984]. However,
the calculations of the gradient and Hessian of the coefficients in the characteris-
tic polynomial are not as straight-forward to calculate and will be explained in
the next few sections.

4.4.1 Derivative calculations

In this section, we will present how to compute the derivatives of a coefficient
of the characteristic polynomial with respect to Xij and Yij for the special case
when Z = I − XY .

Gradient calculations

The gradient expressions are derived in [Helmersson, 2009, Section 3.1]. A sim-
plified presentation is provided below.
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Let Ci ∈ Rnx×nx and define

Cnx = 0,

Cnx−1 = I,

Cnx−2 = Z + cnx−1(Z)I,

...

Ck = Ck+1Z + ck+1(Z)I,

...

C0 = C1Z + C1(Z)I.

Then the first-order derivatives of a coefficient ck(Z) in (4.1) are given by

∂ck
∂Xij

= traceCkEijY , (4.8a)

∂ck
∂Yij

= traceCkXEij , (4.8b)

with the matrix Eij defined as

Eij =

eieTj , if i = j,

eie
T
j + eje

T
i , if i , j,

(4.9)

where ei , ej ∈ Rnx are the ith and jth unit vectors respectively. The expressions
in (4.8) can be simplified using the fact that traceABC = traceCAB = traceBCA
for matrices A, B, C with compatible dimensions. For instance if i , j we get that

∂ck
∂Xij

= eTj YCkei + eTi YCkej , (4.10)

which is the same as extracting two elements from the product of Y and Ck and
summing them.

Hessian calculations

The Hessian expressions are derived in [Helmersson, 2009, Section 3.2]. It holds
that

∂2ck
∂Xij∂Xpq

= (traceCnx−1EpqY )(traceZnx−k−2EijY ) − traceCnx−1EpqYZ
nx−k−2EijY

+ . . .

+ (traceCk+2EpqY )(traceZEijY ) − traceCk+2EpqYZEijY

+ (traceCk+1EpqY )(trace EijY ) − traceCk+1EpqY EijY
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∂2ck
∂Yij∂Ypq

= (traceCnx−1XEpq)(traceZnx−k−2XEij ) − traceCnx−1XEpqZ
nx−k−2XEij

+ . . .

+ (traceCk+2XEpq)(traceZXEij ) − traceCk+2XEpqZXEij

+ (traceCk+1XEpq)(traceXEij ) − traceCk+1XEpqXEij

∂2ck
∂Xij∂Ypq

= (traceCnx−1XEpq)(traceZnx−k−2EijY ) − traceCnx−1XEpqZ
nx−k−2EijY

+ . . .

+ (traceCk+2XEpq)(traceZEijY ) − traceCk+2XEpqZEijY

+ (traceCk+1XEpq)(trace EijY ) − traceCk+1XEpqEijY

+ traceCkEijEpq

The number of terms in each expression is dependent on k. For k = nx−1 the
first two expressions contain no terms at all, while the third expression will con-
tain only one term, which corresponds to searching for a zeroth-order controller
(nk = 0) while k=nx−2 corresponds to a first-order controller (nk =1). The smaller
k is, the more terms will enter the expressions.

4.4.2 Computational complexity

When implementing the gradient and Hessian calculations, it is important to uti-
lize the structure of the problem. A careless, straightforward implementation
that carries out all the matrix multiplications might end up using O(n5

x) opera-
tions for the gradient calculations and O(n7

x) operations for the Hessian calcu-
lations, see Ankelhed [2011]. By utilizing the structure in the problem, e.g. by
using the trace manipulations as in (4.10), it is possible to reduce this complex-
ity at least down to O(n3

x) and O(n4
x) for the gradient and Hessian calculations,

respectively. For more details on implementational issues, refer to Helmersson
[2009] and Ankelhed [2011].

4.4.3 Derivatives of quotient

In the previous section we showed how to calculate the gradient and Hessian of
one coefficient. However the gradient and Hessian of the quotient of two coeffi-
cients are needed. These are obtained by applying differential calculus as follows.
First define the quotient ĉ(x) as

ĉ(x) =
cnx−nk−1(x)

cnx−nk (x)
.
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Then the gradient of ĉ(x) is given by

∇x ĉ(x) =
1

cnx−nk (x)
∇xcnx−nk−1(x) −

cnx−nk−1(x)

c2
nx−nk (x)

∇xcnx−nk (x)

and the Hessian of ĉ(x) is given by

∇2
xx ĉ(x) =

1
cnx−nk (x)

∇2
xxcnx−nk−1(x) −

cnx−nk−1(x)

c2
nx−nk (x)

∇2
xxcnx−nk (x)

+
2cnx−nk−1(x)

c3
nx−nk (x)

(
∇xcnx−nk (x)∇Tx cnx−nk (x)

)
− 1

c2
nx−nk (x)

(
∇xcnx−nk−1(x)∇Tx cnx−nk (x) + ∇xcnx−nk (x)∇Tx cnx−nk−1(x)

)
.

4.5 Formulating a dynamic controller problem as a
static controller problem

As a comparison we will now present another approach to reduced order control
synthesis. It has been shown, e.g. in El Ghaoui et al. [1997], Syrmos et al. [1997],
and Nett et al. [1989] that a dynamic controller problem (nk > 0) can be written
as an equivalent problem of finding a static controller (nk = 0) by augmenting
the system. This procedure is used by several other methods for H∞ controller
synthesis, e.g. Apkarian et al. [2003], Apkarian and Noll [2006b] and Gumussoy
and Overton [2008a] to name a few. This procedure is described below.

Let the system H be defined by

H :

 ẋ
z
y

 =

 A B1 B2
C1 D11 D12
C2 D21 D22


 x
w
u

 ,
which is a restatement of (2.1). Assume we augment the state vector with xK ∈
R
nk , the control signal vector with uK ∈ Rnk and the measurement signal vector

with yK ∈ Rnk in the following way.

x̃ =
(
x
xK

)
, ũ =

(
uK
u

)
, ỹ =

(
yK
y

)
(4.11)

In plain words, we add nk states, nk control signals and nk outputs to the system.
The system matrices for the augmented system are chosen as follows.

Ã =
(

A 0nx×nk
0nk×nx 0nk×nk

)
, B̃1 =

(
B1

0nk×nw

)
, B̃2 =

(
0nx×nk B2
Ink×nk 0nk×nu

)
C̃1 =

(
C1 0nz×nk

)
, D̃11 = D11, D̃12 =

(
0nz×nk D12

)
(4.12)

C̃2 =
(
0nk×nx Ink×nk
C2 0ny×nk

)
, D̃21 =

(
0nk×nw
D21

)
, D̃22 = 0(nk+ny )×(nk+nu ).
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Then assume that we have synthesized a static output feedback controller K̄ for
the system in (4.12). The control signal ū is then computed as

ũ = K̃ ỹ =
(
KA KB
KC KD

)
ỹ, (4.13)

where the way the submatrices in K̃ are labeled will be apparent later. This re-
sults in the closed loop system equations

˙̃x = Ãx̃ + B̃1w + B̃2ũ

=
(
A + B2KDC2 B2KC

KBC2 KA

)
x̃ +

(
B1 + B2KDD21

KBD21

)
w,

z = C̃1x̃ + D̃11w + D̃12ũ

=
(
C1 + D12KDC2 D12KC

)
x̃ +

(
D11 + D12KDD21

)
w.

The above expressions are equal to the expressions in (2.3). This means that by
augmenting the system and synthesizing a static controller ũ = K̃ ỹ, we can obtain
a dynamic controller for the nonaugmented system using the exact same matrices
in the controller, but arranged as suggested by the partitioning in (4.13).

The augmented system contains more states than the nonaugmented system. This
is not a desired property if we use Theorem 4.1 to synthesize a controller since the
dimensions of the variables X and Y increase, which in turn increases the compu-
tational burden. However, the dimensions of the matrix K̃ do not increase, which
makes this procedure suitable for methods that do not involve matrix variables
of the kind that are used in Theorem 4.1. Some references on such methods are
e.g. Gumussoy and Overton [2008a] and Apkarian and Noll [2006a], Apkarian
and Noll [2006b] and Mammadov and Orsi [2005].

This concludes the background part of this thesis. In the next part we will present
the suggested methods for low order H∞ controller synthesis.
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5
A primal logarithmic barrier method

In this chapter we will describe a primal barrier method that is adapted to the
problem of finding a feasible x for the problem in (4.7). For convex problems,
better convergence is obtained from methods using the primal-dual framework
according to Potra and Wright [2000]. However, we consider a primal log-barrier
method mostly because of its straight-forward implementation, see e.g. Boyd and
Vandenberghe [2004]. The method presented in this chapter consists of both
solving linear and nonlinear SDPs in order to find a solution. The approach is
somewhat ad hoc and some parts are based on empirical results more than a
solid theoretical foundation. However, the algorithm has shown to perform quite
well.

This chapter is structured as follows. We begin in Section 5.1 by presenting pub-
lished work related to logarithmic barrier methods. Then we present the prob-
lem formulation in Section 5.2. We continue by adapting a barrier method to
the problem in Section 5.3–Section 5.5. We summarize all parts of the method in
Algorithm 8 in Section 5.6 and conclude the chapter by a summary in Section 5.7.

5.1 Introduction

The barrier method emerged as a popular interior point algorithm for convex
optimization as early as in the 1960s, and its early history is described in detail
in [Fiacco and McCormick, 1968, Chapter 1.2]. Other related techniques are the
method of centers, see Liêũ and Huard [1966], and penalty (or exterior point)
methods, see [Fiacco and McCormick, 1968, Chapter 4]. The interest for barrier
methods decreased in the 1970s due to concerns about ill-conditioning for high
values of the barrier parameter.
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When the paper on a polynomial-time projective algorithm in Karmarkar [1984]
was published, researchers really began to focus on interior point methods. The
barrier method regained interest when it was pointed out in Gill et al. [1986] that
it had close connection with Karmarkar’s algorithm. Nesterov and Nemirovski
[1994] developed the theory of self-concordance, which was shown to be the
key property of a barrier function for the method to achieve polynomial-time
complexity. They extended the framework for primal logarithmic barrier algo-
rithms to also include semidefinite programming (SDP) problems and second-
order cone programming (SOCP) problems. A survey paper on interior-point
methods for convex, conic and general nonlinear optimization can be found in
Nemirovski and Todd [2008] and a survey paper on numerical methods for large-
scale nonlinear optimization in Gould et al. [2005].

As mentioned in the introduction for the thesis, barrier methods have been used
in several algorithms for design of low order H∞ controllers, e.g. Kocvara et al.
[2005], Leibfritz and Mostafa [2002], Hol et al. [2003], Thevenet et al. [2005]
and Stingl [2006]. However they considered the BMI formulation of the problem
in (2.13) as a starting point for their method instead of the LMI formulation in
(2.21). The algorithm in Kocvara et al. [2005] was implemented in the software
PENBMI which is a special version of PENNON. PENNON can be used for gen-
eral nonlinear and semidefinite problems, see Kocvara and Stingl [2003].

5.2 Problem formulation

As described in Chapter 4, the problem of finding an H∞ controller of order
nk such that the closed loop system satisfy ‖Hc(s)‖∞ ≤ γ can be formulated as
solving the following nonconvex semidefinite program, which is a restatement of
(4.7).

minimize
x

cnx−nk−1(x)

cnx−nk (x)
(5.1a)

subject to Fj (x) = C(j) −
m∑
i=1

A
(j)
i xi � 0, j = 1, 2, 3 (5.1b)

If the solution x∗ to (5.1) is such that cnx−nk−1(x)/cnx−nk (x) = 0 and cnx−nk (x) , 0,
then x∗ satisfies (4.4) and we can obtain the controller by continuing from step 2
in Algorithm 2 from Chapter 2.

5.3 Using the logarithmic barrier formulation

Using Definition 3.8, we can state that the central path for the problem in (5.1) is
the solutions x∗(t), t ≥ 0 to the following minimization problems,

minimize
x

t
cnx−nk−1(x)

cnx−nk (x)
−

∑
j=1,2,3

log det Fj (x), (5.2)
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where we have made the variable substitution t = 1/µ in (3.8) and multiplied by t.
The idea for obtaining an approximate solution to (5.1) is to solve (5.2) iteratively
for a sequence of increasing values of tk . The point x∗(tk−1) can be used in the
next iteration as a starting point for the problem of finding x∗(tk).

It is important to note that since the objective function in (5.1) is a nonconvex
function, a solution to (5.2) might not be a global solution and thus as t →∞, the
sequence x∗(t) might not approach a global solution of the problem (5.1).

5.4 An extra barrier function

In some cases, the problem in (5.2) is unbounded from below, even if the optimal
point is attainable for the problem in (5.1). This can happen if the set defined by
the inequalities in (5.1b) is not bounded. We can introduce an extra constraint
such that the set becomes bounded and such that the optimum of the original
problem in (5.1) is not affected. Consider the following lemma.

Lemma 5.1. For X, Y ∈ Snx , the following constraints define a bounded set.(
X I
I Y

)
� 0, (5.3)

trace(X + Y ) < M. (5.4)

where 0 < M < ∞ is an arbitrary constant.

Proof: From the inequality in (5.3) and the nonstrict Schur complement formula
in Boyd et al. [1994] follows that X � 0. This and the inequality in (5.4) imply
that

0 < Xii < M, i = 1, . . . , nx,

which means that each diagonal element is bounded. Since X � 0, we have for
each submatrix X̂ ∈ S2 of X defined by

X̂ =
(
Xii Xji
Xji Xjj

)
, 1 ≤ i < j ≤ nx,

that X̂ � 0. By using Lemma 2.2, this implies that

Xii − X2
ij /Xjj > 0,

which is equivalent to the requirement that

−
√
XiiXjj < Xij <

√
XiiXjj ,

and we have that

−M < Xij < M.

This shows that each element in X is bounded. A similar argument proves that
each element in Y is bounded.
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To make sure that the set defined by the inequalities in (4.4a)–(4.4c) is bounded,
we can use Lemma 5.1 and add the inequality in (5.4) with M chosen as a large
number. This corresponds to a fourth LMI for the problem in (5.1). The constant
M should be chosen large enough such that the solution to the modified problem
is the same as the solution to the original problem.

To derive the fourth LMI for the problem in (5.1), write the inequality in (5.4) as

M − trace(X + Y ) > 0. (5.5)

Then by using the half-vectorization operator vech, see Definition 4.1, we make
the variable substitution

x =
(
vech(X)
vech(Y )

)
.

By defining

IXY =
(
vech(Inx )
vech(Inx )

)
, (5.6)

we can write the inequality in (5.5) as

F4(x) = M − ITXY x > 0.

Now we can construct an extra logarithmic barrier function as

ψ4(x) = − log F4(x), (5.7)

which is added to (5.2) and results in the following modified problem.

minimize
x

B(x, t) = t
cnx−nk−1(x)

cnx−nk (x)
−

∑
j=1,2,3

log det Fj (x) − log F4(x). (5.8)

One must make sure that the extra barrier function does not create any false
optimum. This may happen if the true optimum lies outside the extra barrier. In
case that happens, we can enlarge the extra barrier, i.e., increase M, and solve
again. However, M = 104 seems to work well in numerical evaluations.

5.5 Outlining a barrier based method

We will now focus on the problem in (5.8) and outline a barrier based method
for solving it iteratively as t → ∞. In the limit, the solution x∗ to the problem in
(5.8) will approach a local optimum of the problem in (5.1). The method inter-
changeably uses Algorithm 4 in Section 3.5.4 and a standard linear SDP solver
for finding the initial point. The decision of when to switch between the methods
is motivated by a mix of theory, intuition and experimental results. The impact
of balancing the system, as described in Section 2.4, has appeared to be of great
importance for the algorithm to work efficiently, and therefore has a central role
in the algorithm.
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5.5.1 Initial point calculation

Since Newton’s method (Algorithm 4) is applied to the problem in (5.8), it needs
to be initialized with a feasible starting point. An initial point x0 can be calcu-
lated by solving the following problem, which is also a heuristic method for ob-
taining low rank solutions, as mentioned in e.g. Iwasaki [1999], Orsi et al. [2006],
and Fazel et al. [2001].

x0 = argmin
x

ITXY x
(

= trace(X + Y )
)

(5.9a)

subject to Fj (x) = C(j) −
m∑
i=1

A
(j)
i xi � 0, j = 1, 2, 3. (5.9b)

This is the same optimization problem as in (5.1) but with another objective func-
tion. The problem in (5.9) is a standard linear SDP, and it can be solved using the
software packages SDPT3, Toh et al. [2006], and YALMIP, Löfberg [2004].

After solving the problem in (5.9), the system is balanced around X0, Y0, as de-
scribed in Section 2.4, in order to make the problem better conditioned. Then,
the problem is reformulated using the new system matrices and the initial point
calculation is done again.

5.5.2 Solving the main, nonconvex problem

Now we have a feasible starting point, and we can apply Newton’s method (Algo-
rithm 4), to the, now numerically balanced, problem in (5.8). However, we still
need to discuss the choice of t, and especially how to initialize t.

In order to simplify notation in later sections, we introduce the following defini-
tions. Let

f (x) =
cnx−nk−1(x)

cnx−nk (x)
and φ(x) = −

∑
j=1,2,3

log det Fj (x) − log F4(x). (5.10)

Choosing the barrier parameter

When starting the algorithm, we need to choose an initial value of the barrier
parameter, t0. In [Boyd and Vandenberghe, 2004, page 570], a method is sug-
gested which is based on a minimization of a measure of fulfilling the optimality
conditions for being on the central path with respect to t. The result is

t0 = argmin
t

(
t∇xf (x0) + ∇xφ(x0)

)T
H−1

(
t∇xf (x0) + ∇xφ(x0)

)
(5.11)

where x0 is the initial point and H � 0 is some matrix that defines a norm, for
instance the Hessian

∇2
xxB(x, t) = t∇2

xxf (x0) + ∇2
xxφ(x0)

could be used, where B(x, t) is defined in (5.8). The problem is, ∇2
xxf (x0) need

not be positive definite, which may cause problems. One may assume that in the
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beginning, t is usually small, and could be approximated as zero. This will also
guarantee that the minimization problem is convex, since we then have that

∇2
xxB(x, 0) = ∇2

xxφ(x0) � 0.

Here, the extra barrier in (5.7) need not be included, because its contribution
can be approximated as zero, if M is chosen appropriately big. If we simplify
notation by writing ∇f0 = ∇xf (x0) and ∇φ0 = ∇xφ(x0), the problem in (5.11) can
then be written as

t0 = argmin
t

t2(∇f0)TH−1∇f0 + 2t∇f T0 H
−1∇φ0 + (∇φ0)TH−1∇φ0, (5.12)

which is a scalar quadratic problem. The solution can be written explicitly as

t0 = −
∇f0H−1∇φ0

∇f T0 H−1∇f0
. (5.13)

For k ≥ 1, the barrier parameter is updated in a standard way as

tk = µtk−1, (5.14)

where µ = 10 has shown to work quite well.

Interference of bad scaling

We must make sure that the extra barrier, which was described in Section 5.4,
will not interfere with the convergence of the algorithm to an optimal point of
the original problem in (5.1) that we want to solve. Consequently, we test if

ITXY x > kMM,

where 0 < kM < 1. When this condition is satisfied, it is assumed that this is due
to bad scaling, since M is chosen to be big enough. Then we balance the problem
around Xk , Yk and restart the algorithm once again by choosing an initial point
as described in Section 5.5.1, and proceed from there.

Dealing with the nonconvexity

When using a Newton method, to get a descent direction, the Hessian must be
positive definite, as described in Section 3.5.1. If that is not the case, one may use
any of the methods presented in Section 3.5.3 to create an approximate Hessian
that is positive definite. An alternative to these methods is to use some special
properties of the problem. Since the constraints define a convex set, the barrier
function is convex, and hence the Hessian of the barrier function will be positive
definite. The total Hessian will be

∇2
xxB(x, t) = t∇2

xxf (x) + ∇2
xxφ(x), (5.15)

where the first term on the right hand side might be indefinite but the second one
is always positive definite. Therefore, we can modify the Hessian as

H(x, t, a) = taH t∇
2
xxf (x) + ∇2

xxφ(x), (5.16)
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where 0 < tH < 1 and a is a non-negative integer chosen such that H(x, t, a) � 0.
We know that at least in the limit, a→∞, this will be true.

5.5.3 Stopping criteria

The presented algorithm consists of inner and outer iterations. The inner itera-
tions are described by Algorithm 4, where the stopping criterion is some function
of the Newton decrement, Λ(x). For each outer iteration, the solution of (5.8)
gives a point on the central path. The stopping criteria are as follows.

1. The algorithm is exceeding the maximum number of inner or outer itera-
tions. This is the case if the algorithm has slow or no progress, thus the
algorithm terminates. A solution to this problem could be to reformulate
the problem, e.g. increase the performance measure γ , and restart the algo-
rithm. However, this needs to be done manually.

2. The extra barrier is interfering as discussed in the previous section, i.e.,

ITXY x > kMM, 0 < kM < 1.

Re-balance the problem around the current iterate (Xk , Yk) and restart the
algorithm by following the procedure described in Section 5.5.1, and pro-
ceed from there.

3. The objective function value is close to zero,

cnx−nk−1(x)

cnx−nk (x)
< ε,

i.e., we have found an optimum to the problem (5.1) with accuracy ε.

5.6 The logarithmic barrier based algorithm

Now all parts of the algorithm have been described, and we can put them together
into a complete algorithm, which is presented as Algorithm 8.

5.6.1 Optimality of the solution

Note that the optimality conditions are not necessarily satisfied when this algo-
rithm finishes. This is due to the inner loop stopping criterion, which is a direc-
tional derivative. The only KKT condition for the unconstrained problem is that
the gradient should be zero, which need not be true just because a directional
derivative is.

However, the point x∗ need not be optimal, just sufficiently good. When the algo-
rithm finishes with success, the achieved solution is always feasible for (5.1) and
the objective function is sufficiently small, i.e., near zero, which means that we
have found a solution (with accuracy ε), to the original feasibility problem (4.4).
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5.6.2 Finding the controller

When we have found a local optimal point x∗ or equivalently, (X∗, Y ∗), we now
need to find a controller, which is a convex problem. To do so we proceed from
Step 2 in Algorithm 2, i.e., recover the variable P as described in Section 2.5.

5.6.3 Algorithm performance

The performance of the algorithm will be investigated in Chapter 8, where we
will apply Algorithm 8 to a set of test problems. Comparisons will be made with
a primal-dual method, which will be described in Chapter 6, as well as with a
method from literature, Hifoo, which is briefly presented in Section 8.1.2.

5.7 Chapter summary

In this chapter a primal logarithmic barrier method for design of low order H∞
controllers is suggested. The algorithm is initialized by solving a semidefinite pro-
gramming problem corresponding to a heuristic for finding low rank solutions.
In each outer iteration the main algorithm attempts so find a local minimum to an
unconstrained problem using Newton’s method with a line search. As the barrier
parameter tends to infinity, the aim is to find a feasible solution that corresponds
to a low order controller with performance measure γ . A numerical evaluation
of the algorithm is presented in Chapter 8.
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Algorithm 8 The barrier algorithm

Given performance criteria γ and system matrices A, B, C, D, formulate the
problem.
Choose parameter M.
Calculate an initial point x0, as in Section 5.5.1.
Calculate an initial value t0, of the barrier parameter as in Section 5.5.2.
kinner := 0, kouter := 0
while cnx−nk−1(xk)/cnx−nk (xk) < ε do
kouter := kouter + 1
while 1 do

Calculate gradient, gk = ∇xB(xk , tk) and Hessian Hk = H(xk , tk , ak).
Find integer ak ≥ 0 such that Hk � 0, according to (5.16).
Solve for the Newton step: Hkpk = −gk .
Perform backtracking line search to find α.
xk+1 := xk + αpk
Calculate Newton decrement: Λ =

√−gkpk
kinner := kinner + 1
if Λ < Λtol then

Satisfying tolerance for the Newton decrement, exit inner loop.
end if
if kinner ≥ kinner, max then

Abort, too many inner iterations.
end if

end while (Inner loop)
if kouter ≥ kouter, max then

Abort, too many outer iterations.
end if
Check for bad scaling, see Section 5.5.2. Re-balance and restart if necessary.
t := µt

end while (Outer loop)
Success!





6
A primal-dual method

In this chapter we will describe a primal-dual interior point method for low order
H∞ controller synthesis. The method appears in two versions that are named the
primal-dual method and the quasi-Newton method. The second method is based
on the first one and the main difference is that the Hessian calculations are carried
out using damped BFGS updating.

The presentation in this chapter is based on relevant chapters in Nocedal and
Wright [2006] and Todd et al. [1998].

This chapter is structured as follows. We begin in Section 6.1 by presenting
published work for solving semidefinite programming problems with focus on
primal-dual methods. Then we present the problem formulation in Section 6.2
and the optimality conditions in Section 6.3. In Section 6.4 and Section 6.5 we de-
scribe the different parts of a Mehrotra primal-dual method. We summarize our
method in Algorithm 9 in Section 6.6 and conclude the chapter by a summary in
Section 6.7.

6.1 Introduction

Since primal-dual methods are also interior point methods, they share their early
history with primal logarithmic barrier methods, which is briefly presented in
Section 5.1. In Meggido [1988] a framework for primal-dual algorithms was
described, which was originally published in 1987. Mehrotra [1992] presented
a practical algorithm for linear programming that remains the basis for most
current software. This work was extended to semidefinite programming (SDP)
and second-order cone programming (SOCP) in the work by Nesterov and Todd
[1997, 1998].
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Forsgren and Gill [1998] and Vanderbei and Shanno [1999] present methods that
extend primal-dual interior theory for linear and quadratic programming to non-
convex nonlinear programming. For a survey on interior point methods for non-
linear optimization, see Forsgren et al. [2002].

A method for solving nonconvex semidefinite programming was proposed in
Jarre [2000]. It combines features of trust-region methods, sequential quadratic
programming (SQP) methods and predictor-corrector interior point methods. In
Freund et al. [2007] a sequential semidefinite programming (SSP) method was
presented, which generalizes the SQP method for standard nonlinear programs.
This method have some parts in common with primal-dual methods for semidef-
inite programming.

One approach for solving nonconvex semidefinite programming problems is Kan-
zow et al. [2005], which is a successive linearization method for nonlinear semi-
definite programs with a trust-region framework. Another approach is presented
in Correa and Hector Ramirez [2005], which is a method inspired by the SQP
method. It solves a quadratic SDP in each iteration to get the search direction
and then uses a nondifferentiable merit function combined with a line search
strategy.

Algorithms for solving optimization problems defined on a subset of the cone
of symmetric positive matrices are presented in Burer and Monteiro [2003] and
Journée et al. [2010]. Those algorithms rely on the factorization X = Y Y T , where
Y ∈ Rn×r and r < n, hence resulting in low rank solutions of the problem.

In Yamashita et al. [2011], a primal-dual interior point method is presented that
minimizes a nonconvex function subject to linear semidefinite constraints. They
suggest two versions of their method, where one uses an exact Hessian while the
other uses a BFGS update of the Hessian. The approach in this chapter is similar,
however we were unaware of this work until very recently.

For a reference on primal-dual interior point methods for linear programming,
see e.g. the book by Wright [1997]. For a survey of sequential quadratic program-
ming, see Boggs and Tolle [1995], for a survey on semidefinite optimization, see
Todd [2001] and for a more general survey on interior point methods for opti-
mization, see Nemirovski and Todd [2008].

6.2 Problem formulation

As described in Chapter 4, the problem of finding an H∞ controller of order
nk such that the closed loop system satisfy ‖Hc(s)‖∞ ≤ γ can be formulated as
solving the following nonconvex semidefinite program, which is a restatement of
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(4.7) or (5.1).

minimize
x

cnx−nk−1(x)

cnx−nk (x)
(6.1a)

subject to C(j) −
m∑
i=1

A
(j)
i xi � 0, j = 1, 2, 3. (6.1b)

If the solution x∗ to (6.1) is such that cnx−nk−1(x)/cnx−nk (x) = 0 and cnx−nk (x) , 0,
this means that x∗ satisfies (4.4) and we can obtain the controller by continuing
from step 2 in Algorithm 2 from Chapter 2. To keep the notation simple, define

f (x) =
cnx−nk−1(x)

cnx−nk (x)
,

and merge the three semidefinite constraints in (6.1b) into one constraint by plac-

ing the matrices C(j) and A(j)
i in block diagonal matrices consisting of three blocks,

one for each value of j. This results in

minimize
x

f (x)

subject to C −
m∑
i=1

Aixi � 0.
(6.2)

Note that the constraints are merged to simplify notation. It is advisable to utilize
the block structure in order not to increase the number of variables at a later stage
when dual and slack variables are introduced.

6.3 Optimality conditions

The first-order necessary conditions for optimality, see Theorem 3.1, have a very
central role in primal-dual methods. The Karush-Kuhn-Tucker conditions for
(6.2) are given by

df (x)
dxi

+ 〈Ai , Z〉 = 0, i = 1, . . . , m (6.3a)

C −
m∑
i=1

Aixi − S = 0, (6.3b)

ZS = 0, (6.3c)

Z � 0, S � 0, (6.3d)

where Z ∈ Sp is a dual variable and S ∈ Sp is a slack variable of appropriate
dimension p. Note that (6.3a) consists of m scalar equations, while (6.3b)–(6.3c)
are matrix equations. Since f (x) is a nonconvex function, these are only necessary
and not sufficient conditions for an optimal solution of (6.2).
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6.4 Solving the KKT conditions

As mentioned previously, the main idea of primal-dual methods is to find a solu-
tion to the KKT conditions. The way it is usually done is to search for solutions
along the central path.

6.4.1 Central path

The central path (as defined in Definition 3.12) for the problem in (6.2) is the
solution points for

df (x)
dxi

+ 〈Ai , Z〉 = 0, i = 1, . . . , m (6.4a)

C −
m∑
i=1

Aixi − S = 0, (6.4b)

ZS = νI, (6.4c)

Z � 0, S � 0, (6.4d)

where ν ≥ 0. The difference from (6.3) is the third equation. When solving the
equations for the KKT conditions in (6.3), we generate a sequence of iterates

x̄(k) = (x(k), Z(k), S(k)),

that solve (6.4a)–(6.4c) for values of ν that tend to zero. The iterates need not
necessarily be feasible, except for (6.4d), which always must hold.

6.4.2 Symmetry transformation

Since the domain and range of the function defined by the left hand side of
the equation in (6.4c) is not the same space, we cannot directly apply Newton’s
method, as described in Section 3.6.1, to the system of equations defined by
(6.4a)–(6.4c). A solution for this is to use the symmetry transformation in Zhang
[1998] which is defined as

HP (M) =
1
2

(PMP −1 + (PMP −1)T ) (6.5)

for a given invertible matrix P . It is shown that if M is similar to a symmetric
positive definite matrix, then

HP (M) = νI ⇔ M = νI.

This means that (6.4c) can be replaced by

HP (ZS) = νI (6.6)

without affecting the definition of the central path, since ZS is similar to the
positive definite matrix S1/2ZS1/2. The equations in (6.4a), (6.4b) and (6.6) can
be written as F(x̄) = 0 for some F and x̄. Now we can apply Newton’s method for
nonlinear equations to F(x̄). We denote the step that minimizes the linear model
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as (∆x,∆Z,∆S) and obtain the follow equations that define the step.

df (x)
dxi

+ 〈Ai , Z〉 +
d
dxi
∇Tx f (x)∆x + 〈Ai ,∆Z〉 = 0, i = 1, . . . , m (6.7a)

C −
m∑
i=1

Aixi − S −
m∑
i=1

Ai∆xi − ∆S = 0, (6.7b)

HP (ZS) +HP (∆ZS + Z∆S) − νI = 0. (6.7c)

The scaling matrix P which is used in the symmetrization operator, can be chosen
in several ways which has given rise to different methods, e.g. the Nesterov-Todd
(NT) method, given in Nesterov and Todd [1997, 1998], the AHO method in Al-
izadeh et al. [1998] and the H..K..M method, see Helmberg et al. [1996], Kojima
et al. [1997], Monteiro [1997]. For a presentation of how to calculate these scaling
matrices and some numerical experiments using them, see Todd et al. [1998].

In this work, we chose the Nesterov-Todd (NT) scaling matrix since it has shown
to perform well in applications, see e.g. Todd et al. [1998]. To compute the NT
scaling matrix, begin by Cholesky factorizing Z and S as

Z = LLT , S = RRT , (6.8)

and let UDV T = RT L be the SVD of RT L. Then the NT scaling matrix is given by

P = LVD−1/2. (6.9)

As can be seen here, the scaling matrix depends on Z and S and must therefore
be recalculated in each iteration.

6.4.3 Definitions

Before we move on, we define the symmetric vectorization operator svec and the
symmetric Kronecker product.

Definition 6.1 (svec). The operator svec : Sn → R
n(n+1)/2 is defined by

svec(U ) = (u11,
√

2u21, . . . ,
√

2un1, u22,
√

2u32, . . . ,
√

2un2, . . . , unn)T , (6.10)

i.e., svec is an operator that maps symmetric matrices into vectors. The factor
√

2
is introduced so that svec is an isometry between S

n×n and R
n(n+1)/2 with their

respective standard inner products. Let the inverse of svec be denoted smat.

Note that the operator svec is different from the operator vech in Definition 4.1,
since svec scales the nondiagonal entries by

√
2.

Example 6.1
Let us illustrate the operator svec by a simple example. If we let

U =

1 2 3
2 4 5
3 5 6

 ,
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then

svec(U ) =
(
1, 2
√

2, 3
√

2, 4, 5
√

2, 6
)T
,

and the inner products

〈U,U〉 = trace(U TU ) = 129,

〈svec(U ), svec(U )〉 = svec(U )T svec(U ) = 129,

are the same.

Definition 6.2 (Symmetric Kronecker product). Let A and B be two real ma-
trices of dimension n × n. The symmetric Kronecker product of A and B is then
defined as

A ⊗S B =
1
2
U (A ⊗ B + B ⊗ A)U T , (6.11)

where U ∈ Rn(n+1)×n2
is a matrix created in the following way. If we label the

rows of U in the order (1, 1), (2, 1), . . . , (n, 1), (2, 2), (3, 2), . . . , (n, 2), (3, 3) . . . , (n, n)
and its columns in the order (1, 1), (2, 1), . . . , (n, 1), (1, 2), . . . , (n, 2), (1, 3), . . . , (n, n),
then

U(i,j),(k,l) =


1 if i = j = k = l,

1/
√

2 if i = k , j = l, or i = l , j = k,

0 otherwise.

See e.g. the appendix of Todd et al. [1998] for properties and details regarding
the symmetric Kronecker product.

Example 6.2
When n = 3, the matrix U in (6.11) is given by

U =



1 0 0 0 0 0 0 0 0
0 1/

√
2 0 1/

√
2 0 0 0 0 0

0 0 1/
√

2 0 0 0 1/
√

2 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1/

√
2 0 1/

√
2 0

0 0 0 0 0 0 0 0 1


.

6.4.4 Computing the search direction

To compute the Newton step (∆x,∆Z,∆S), it is convenient to express the linear
systems of equations in the standard matrix vector form. Using the previously
defined symmetric vectorization operator and symmetric Kronecker product, we
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can now write the Newton step equations (6.7) as a 3 × 3 block equationH AT 0
A 0 I
0 E F


 ∆x
svec(∆Z)
svec(∆S)

 =

 rp
svec(Rd)
svec(Rc)

 , (6.12)

where H is a positive definite approximation of the Hessian of f (x),

A = [svec(A1), . . . , svec(Am)], (6.13)

E = P ⊗s P −T S, F = P Z ⊗s P −T , (6.14)

and I is the identity matrix of appropriate dimension. Also we have the residuals

rp = ∇xf (x) + AT Z, Rd = C − S −
m∑
i=1

Aixi , Rc = νI − HP (ZS). (6.15)

By solving (6.12), we get the search direction (∆x,∆Z,∆S).

6.4.5 Choosing a positive definite approximation of the Hessian

Since the objective function f (x) is a nonconvex function, its Hessian needs not be
positive definite. Two ways of convexifying the Hessians have been implemented
for the primal-dual method. These are briefly described next.

Adding a multiple of the identity

An approximate Hessian can be chosen as in (3.18), i.e.

H = ∇2
xxf (x) + dI, (6.16)

where d ≥ 0 such that H becomes positive definite. If ∇2
xxf (x) � 0, we can choose

d = −(1 + δλ)λmin

(
∇2
xxf (x)

)
, (6.17)

where λmin( · ) denotes the minimum eigenvalue and δλ is a small positive con-
stant. The version of the algorithm using this way of approximating the Hessian
is referred to as the primal-dual method or PD later in the thesis.

Damped BFGS updating

Instead of calculating the exact Hessian and convexifying it as done in the pre-
vious section, an approximation of the Hessian can be calculated using damped
BFGS updating. This procedure is described in Section 3.5.5. The approximation
of the Hessian that results from damped BFGS updating is positive definite, thus
suitable here. The version of the algorithm using this way of approximating the
Hessian is referred to as the quasi-Newton method or QN later in the thesis.
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6.4.6 Uniqueness of symmetric search directions

To prove that the symmetric search directions that we obtain from solving (6.12)
are unique, we show that the only solution to the 3 × 3 block equationH AT 0

A 0 I
0 E F


 ∆x
svec(∆Z)
svec(∆S)

 = 0 (6.18)

is the trivial zero solution. Since P is an invertible matrix and Z, S � 0, by Theo-
rem 3.2 in Todd et al. [1998], we have that E−1F � 0. Further, we can assume that
E and F are invertible, by using properties of the symmetric Kronecker product
(see Appendix of Todd et al. [1998] for details). Using block Gaussian elimination
we can reduce (6.18) to a Schur complement equation

(H +AT E−1FA)∆x = 0. (6.19)

Since H � 0 and AT E−1FA � 0 regardless of the rank of A, (H + AT E−1FA) � 0
is invertible and the only solution to (6.19) is the trivial solution. Now the second
block equation of (6.18) gives that ∆S = − smat(A∆x) = 0, and the third one
gives that ∆Z = −E−1F∆S = 0. This shows that the solution to (6.12) exists and
is unique.

6.4.7 Computing step lengths

Once a search direction (∆x,∆Z,∆S) is found, the next step is to determine how
far to go in that direction. Step lengths 0 < α ≤ 1 and 0 < β ≤ 1 are chosen such
that

Z(k+1) = Z(k) + α∆Z � 0, S(k+1) = S(k) + β∆S � 0, (6.20)

i.e., such that the positive definiteness is maintained for the symmetric variables
Z and S. The variable x is updated as

x(k+1) = x(k) + β∆x.

We use the fraction to boundary rule, see e.g. Nocedal and Wright [2006], which
means that we do not let the next iterate end up at the boundary of semidefinite-
ness, but instead only near it. One way to do this is to choose the step lengths
as

α(k) = min
(
1,

−τ (k)

λ−min(L−1∆ZL−T )

)
, β(k) = min

(
1,

−τ (k)

λ−min(R−1∆SR−T )

)
, (6.21)

with L and R chosen as in (6.8) and where λ−min(A) denotes the minimum eigen-
value of A. If all eigenvalues are positive the term is ignored, i.e., the step length
is chosen to be 1, regardless of the value of the min( · , · ) expressions. The param-
eter τ is chosen based on the step lengths taken in the previous iteration, i.e., by
setting

τ (k+1) = 0.9 + 0.09 min(α(k), β(k)), (6.22)
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Z1

Z2

Z

Z + ∆Z

(a)

Z1

Z2

Z

Z + ∆Z

Z + α∆Z

Z + ᾱ∆Z

(b)

Figure 6.1: The two figures above illustrate the case where the cone is R2
+.

To the left, the full step does not take us outside of the cone. In the figure
to the right we apply the fraction to boundary rule. If τ = 1, the resulting
step length parameter is ᾱ and we end up at the boundary. The number α is
calculated using τ < 1 and we end up at some distance from the boundary
instead.

where α(k) and β(k) are the step lengths in the kth iteration. An initial value
τ (0) = 0.98 has shown to work well. The fraction to boundary rule is illustrated
in Figure 6.1.

6.5 A Mehrotra predictor-corrector method

In this section we will describe the steps of an algorithm based on Mehrotra’s
algorithm, see Mehrotra [1992], however we follow the presentation in the papers
by Todd et al. [1998] and Toh et al. [1999] which extend Mehrotra’s algorithm to
semidefinite programming.

6.5.1 Initial point calculation

Always when solving optimization problems, a good initial point is important.
For convex problems it will have an impact on the number of iterations needed,
and for nonconvex problems it also determines which KKT-point the algorithm
will converge to.

The initial point calculation used for the primal-dual method is based on what is
suggested in Toh et al. [1999] and will be described below.

Assume the matrices Ai and C are block-diagonal of the same structure, each

consisting of L blocks of square matrices of dimensions n1, n2, . . . , nL. Let A(j)
i
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and C(j) denote the jth block of Ai and C, respectively. Then the initial point can
be chosen as

x(0) = 1̄,

Z(0) = blkdiag(ξ1In1
, ξ2In2

, . . . , ξLInL ),

S(0) = blkdiag(η1In1
, η2In2

, . . . , ηLInL ),

(6.23)

where 1̄ is a column vector containing ones, Inj is the identity matrix with dimen-
sion nj and

ξj = nj max
1≤i≤m

1 + |bi |

1 + ||A(j)
i ||F

, ηj =
1 + max[maxi{||A

(j)
i ||F}, ||C

(j)||F]
√
nj

,

where b is referring to the linear objective function which in our case is

b =
(
vech(In)
vech(In)

)
(6.24)

so that

bT x = trace(X + Y ), (6.25)

i.e., we follow the heuristics for minimizing rank as mentioned in e.g. Iwasaki
[1999], Orsi et al. [2006], and Fazel et al. [2001]. The only difference from Toh
et al. [1999] is that the authors suggest x(0) = 0, but our choice has shown to work
better in our applications. By multiplying the identity matrix Inj by the factors
ξj and ηj for each j, the initial point has a better chance of having the same order
of magnitude as an optimal solution of the SDP according to Toh et al. [1999].

Note that the assumption that Ai and C are block-diagonal is valid since we
merged three constraints into one, as explained in Section 6.2.

6.5.2 The predictor step

Set ν = 0 in (6.15), solve the system of equations in (6.12) and denote the solution
(∆xaff,∆Zaff,∆Saff). This step is sometimes called the predictor step or affine
scaling step. Then calculate step lengths αaff, βaff as done in (6.21). Define µ and
µaff as

µ = 〈Z, S〉/p, (6.26)

µaff = 〈Z + αaff∆Zaff, S + βaff∆Saff〉/p, (6.27)

and the centering parameter σ as

σ =
(µaff

µ

)e
, (6.28)

The exponent e is chosen according to

e =

max
(
1, 3 min(αaff, βaff)2

)
if µ > 10−6,

1 if µ ≤ 10−6,
(6.29)
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which is a heuristic suggested in Toh et al. [1999] that does not have a solid ana-
lytical justification, but appears to work well in practice.

Note that the algorithm does not update the iterate with the predictor step. It is
only used to calculate the centering parameter, σ , which is needed for the com-
putation of the corrector step, which will be described next.

6.5.3 The corrector step

The search direction is now calculated by solving (6.12) again but replacing Rc
with

Rs = σµI − HP (ZS) − HP (∆Zaff∆Saff), (6.30)

where µ and σ are calculated as in (6.26) and (6.28) respectively. The previously
calculated predictor step (∆Zaff,∆Saff) is used in a second-order correction, see
Todd et al. [1998], where it is assumed that the predictor step is a decent approx-
imation of the corrector step. This will result inH AT 0

A 0 I
0 E F


 ∆x
svec(∆Z)
svec(∆S)

 =

 rp
svec(Rd)
svec(Rs)

 , (6.31)

with the submatrices and vectors defined in (6.13)–(6.15). The coefficient matrix
in (6.31) is the same as in the calculation of the predictor step in (6.12), and hence
the cost of solving the second system can be made relatively small since the same
matrix factorization can be used in both cases.

6.6 The primal-dual algorithm

By summarizing the last few sections we can now state an algorithm as Algo-
rithm 9. Define the residual

r(x, Z, S, ν) =


rp(x, Z)

svec
(
Rd(S, x)

)
svec

(
Rc(Z, S, ν)

)
 (6.32)

with ν = 0, where rp, Rd and Rc are calculated as in (6.15). This expression is
used in a stopping criterion in the algorithm.

6.6.1 Finding the controller

If the algorithm finishes with f (x) = 0, we can recover the controller parameters
by solving a convex problem. To do so we proceed from Step 2 in Algorithm 2 in
Chapter 2, i.e., recover the variable P as described in Section 2.5.

6.6.2 Algorithm performance

The performance of the algorithm is evaluated in Chapter 8 where two evalu-
ations are made. In the first evaluation, the primal-dual method is compared
with the primal logarithmic barrier method from Chapter 5 and with a method
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Algorithm 9 The primal-dual algorithm

Calculate the initial point (x(0), Z(0), S(0)) as explained in Section 6.5.1.
Set τ (0) = 0.98, k := 0.

while ||r(x(k), Z(k), S(k), 0)||2 < rtol do
if k > kmax then

Abort, too many iterations.
end if

Predictor step:
Set (x, Z, S) = (x(k), Z(k), S(k)).
Solve (6.12) for (∆xaff,∆Zaff,∆Saff) with ν = 0.
Calculate step lengths αaff, βaff using (6.21).
Calculate µ and µaff using (6.26) and (6.27).
Set centering parameter to σ = (µaff/µ)e where e is calculated as in (6.29).

Corrector step:
Solve (6.31) for (∆x,∆Z,∆S).
Calculate step lengths α, β using (6.21).
Set (x(k+1), Z(k+1), S(k+1)) = (x + β∆x, Z + α∆Z, S + β∆S).
Calculate τ (k+1) using (6.22).
Set k := k + 1.

end while

from literature, Hifoo, which is briefly presented in Section 8.1.2. In the second
evaluation, the quasi-Newton method is compared with Hifoo.

6.7 Chapter summary

I this chapter a primal-dual method for design of low order H∞ controllers is
suggested. The starting point of the algorithm is chosen based on heuristics for
finding low rank solutions. When the starting point has been chosen, a Mehrotra
predictor-corrector is applied to the problem. When the algorithm finishes with
success, the KKT conditions are satisfied to a specified accuracy, and a controller
of low order with performance measure γ is found. A numerical evaluation of
the algorithm is presented in Chapter 8.



7
A partially augmented Lagrangian

method

In this chapter we will present a partially augmented Lagrangian method for low
order H∞ synthesis. It is a similar method to the augmented Lagrangian method
that was presented in Section 3.7.2, but partially refers to the fact that some, and
in our case only one of the constraints is relaxed while the others are kept as
constraints. References on the standard augmented Lagrangian method can be
found in Section 3.7.2.

One main difference in the approach as compared to the algorithms that were
presented in Chapter 5 and Chapter 6 is that this algorithm explicitly tries to
minimize the performance measure γ instead of finding a controller that satisfies
a pre-specified value. Parts of this chapter was also presented in Ankelhed et al.
[2011b].

This chapter is structured as follows. In Section 7.1 we present published work
related to partially augmented Lagrangian methods. Then the problem formu-
lation is presented in Section 7.2, and how the partially augmented Lagrangian
method is applied is described in Section 7.3. In Section 7.4 we present how
the search direction is calculated, and in Section 7.5 the suggested algorithm is
outlined. In Section 7.6 the chapter is summarized.

7.1 Introduction

In Conn et al. [1991] the problem of minimizing an augmented Lagrangian func-
tion subject to simple bound constraints was considered. In Conn et al. [1996]
the work was extended to include linear inequality constraints, where also local
and global convergence of the algorithm were proved.

73
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In Fares et al. [2001] a partially augmented Lagrangian method for a class of
LMI-constrained problems in robust control was considered. A modified Newton
method and a trust-region method were considered for solving the semidefinite
optimization problem in each iteration. The trust-region method was considered
inferior to the modified Newton method for this problem formulation. In Fares
et al. [2002] a sequential semidefinite programming algorithm was considered
for a similar problem formulation.

In Apkarian et al. [2003] a partially augmented Lagrangian method for low order
H∞ controller synthesis was described, which relaxed the constraint ‖XY − I‖F =
0. This corresponds to the case where a static controller (nk = 0) is searched for.
In each iteration, a semidefinite problem was solved where a modified Newton
method was used. A spectral quadratic-SDP method for solving this semidef-
inite problem was developed in Apkarian et al. [2004] using the same frame-
work. However, it was indicated that a good implementation was critical for it to
work properly. In Noll et al. [2004] the framework was generalized to optimiza-
tion problems with general matrix inequality constraints, where also convergence
proofs are provided.

The method described in this chapter is similar to the one in Apkarian et al.
[2003], but here the equality constraint is the quotient of the two coefficients
of the characteristic polynomial in (4.4d). Compared to the approach in Apkar-
ian et al. [2003], our approach does not lead to a problem with more variables in
the case when a controller with more states than zero is desired. In that case we
simply choose another equality constraint, while the approach in Apkarian et al.
[2003] is to augment the system with extra states as explained in Section 4.5.

7.2 Problem formulation

As mentioned in the beginning of this chapter, the problem we wish to solve here
is slightly different compared to previous chapters, but it is related. Instead of
choosing a γ beforehand, we now wish to minimize γ subject to the constraints.
Formally this can be stated as the following optimization problem.

minimize
γ,X,Y

γ

subject to
cnx−nk−1(I − XY )

cnx−nk (I − XY )
= 0,

(γ, X, Y ) ∈ X,

(7.1)

where X is a convex set defined by the three LMIs in (4.4a)–(4.4c). A change
of variables is made in order to simplify notation as follows. Let x include the
half-vectorizations of X and Y as well as γ stacked on top of each other as in

x =

vech(X)
vech(Y )

γ

 ∈ Rnx(nx+1)+1,
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where vech is defined in Definition 4.1. This is similar to what is done in Sec-
tion 4.3.2 but the difference is that we include γ in x, since γ is now an optimiza-
tion variable. This results in the following equivalent problem formulation.

minimize
x

bT x

subject to
cnx−nk−1(x)

cnx−nk−1(x)
= 0,

x ∈ X,

(7.2)

where b is the last unit vector, i.e.

bT =
(
0 . . . 0 1

)
,

such that bT x = γ . We realize that stating the equivalence of (X, Y , γ) ∈ X to
x ∈ X is abuse of notation.

7.3 The partially augmented Lagrangian

After defining ĉ(x) as

ĉ(x) =
cnx−nk−1(x)

cnx−nk (x)
,

the problem in (7.2) is approached by using the partially augmented Lagrangian
method, where the equality constraint is relaxed and added to the objective func-
tion in the following way.

minimize
x

Φ(x, λ, µ) = bT x + λĉ(x) +
µ

2
ĉ2(x)

subject to x ∈ X,
(7.3)

where λ is a Lagrangian multiplier and µ is a penalty multiplier. As mentioned
earlier in the chapter, the word partially refers to the fact that only the equality
constraint is used in the augmentation while the LMIs are kept as constraints.
This is a nonconvex problem, since ĉ(x) is a nonconvex function. However X is
a convex set which makes the problem somewhat less difficult to solve than a
general nonconvex problem.

Similarly to the augmented Lagrangian method in Section 3.7.2, the idea is to
approximately solve (7.3) for a sequence of increasing values of µk using New-
ton’s method. However, since the optimization problem in (7.3) still includes
constraints, we must make sure that the next point also satisfies the constraints.
How to calculate a search direction that accomplishes this is the topic of next
section.
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7.4 Calculating the search direction

To calculate the search direction, approximate Φ(x + p, λ, µ) by a quadratic func-
tion related to the first three terms in the Taylor series expansion around the
point x. Similarly to what is done in regular Newton methods, we intend to find
a step direction p that minimizes this second order model, but the difference is
that we also require that x + p ∈ X, i.e. that the next point also lies in the feasible
set. This problem can be formulated as

argmin
p

∇xΦ(x, λ, µ)T p +
1
2
pTH(x, λ, µ)p

subject to x + p ∈ X,
(7.4)

which can be reformulated as a conic programming problem that can be solved
using e.g. YALMIP, Löfberg [2004] with SDPT3, Toh et al. [1999]. The sym-
metric matrix H(x, λ, µ, δ) is a positive definite approximation of the Hessian of
Φ(x, λ, µ).

7.4.1 Calculating the derivatives

Differentiating Φ(x, λ, µ) with respect to x we get

∇xΦ(x, λ, µ) = b + λ∇x ĉ(x) + µĉ(x)∇x ĉ(x),

∇xxΦ(x, λ, µ) =
(
λ + µĉ(x)

)
∇2
xx ĉ(x) + µ∇x ĉ(x)∇Tx ĉ(x),

where the gradient and Hessian of ĉ(x), are derived in Section 4.4.3.

Since the constraint function ĉ(x) is nonconvex, the Hessian ∇2
xx ĉ(x) is not always

positive definite which in turn might lead to that ∇2
xxΦc(x, λ, µ) is not necessarily

positive definite, which has to be dealt with. Two common ways are to either use
Newton methods in which the Hessian is convexified or to use trust-region meth-
ods where the nonconvexity is dealt with by optimizing over a limited region in
each iteration. The authors of Apkarian et al. [2003] advice against using trust-
region methods since the complexity of such a method is too big in their case.
Since we use a similar approach to theirs, we proceed by suggesting two different
ways to calculate and convexify the Hessian ∇xxΦ(x, λ, µ).

7.4.2 Hessian modifications

Two options for convexifying the Hessian are to

1. Use BFGS to approximate the Hessian, see Section 3.5.5. There is no need
to convexify, since the BFGS approximation is positive definite.

2. Calculate the exact Hessian and then use the modified symmetric indefi-
nite factorization so that it becomes positive definite as explained in Sec-
tion 3.5.3. This was done in Apkarian et al. [2003], however they calculated
the Gauss-Newton approximation instead of the exact Hessian.
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We have tried both options listed above and found that the second alternative
was the one that performed best. The parameter δ in (3.22) was chosen as

δ = 10−4‖∇2
xxΦ‖∞,

where the matrix norm ‖A‖∞ denotes the largest row sum of A.

7.5 An outline of the algorithm

The algorithm can be outlined as follows.

1. Initial phase.

(a) Find a good point to balance the system around, see Definition 2.5.
With IXY defined as in (5.6), solve the convex SDP

minimize
x

ITXY x
(

= trace(X + Y )
)

subject to x ∈ X,

i.e., use the heuristics for minimizing rank as mentioned in e.g. Orsi
et al. [2006], Iwasaki [1999] and Fazel et al. [2001].

(b) Balance the plant system around this solution to get good numeric
properties, as explained in Section 2.4.

(c) Find a starting point by solving the convex SDP

minimize
x

bT x + ITXY x

subject to x ∈ X
(7.5)

and denote the solution (X(0), Y (0)). The objective function in (7.5) re-
flects our desire to find a low rank solution that, at the same time, has
a low value of γ .

(d) Set k := 0. Choose starting values for λ(0) and µ(0), the parameters
ρ > 1 and 0 < ρ0 < 1 and the tolerance ε.

2. Optimization phase.
Set k := k + 1 and let pX , pY ∈ Snx , pγ ∈ R.

(a) Using λ = λ(k−1) and µ = µ(k−1)), solve (7.4) for the solution

p =

vech(pX )
vech(pY )

pγ

 ,
which is the step direction.

(b) Update the variables as

X(k) = X(k−1) + αpX , Y (k) = Y (k−1) + αpY , γ (k) = γ (k−1) + αpγ ,
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or equivalently

x(k) = x(k−1) + αp,

where α = 0.98.

3. Update phase.
Update the Lagrangian multiplier λ using the following update rule.

λ(k) = λ(k−1) + µ(k−1) ĉ(x(k)) (7.6)

If ĉ(x(k)) > ε, update µ as follows.

µ(k) =

ρµ(k−1) if ĉ(x(k)) > ρ0 ĉ(x(k−1))
µ(k−1) if ĉ(x(k)) ≤ ρ0 ĉ(x(k−1))

(7.7)

The first option in (7.7) reflects our thought that the decrease in the equal-
ity constraint function value was not enough. Therefore we increase the
penalty parameter. The second option reflects our content with the value of
the constraint function, and we leave the penalty parameter at its current
value.

4. Terminating phase.
If ĉ(x(k)) > ε, go to phase 2, otherwise we check the following.

• if γ (k) < 0.99γ (k−1) for three consequent iterates, it is likely we are
close enough to a local optimum. Proceed to phase 5.

• Otherwise, the objective function value is still decreasing, hence we
continue the optimization, i.e., go back to phase 2.

5. Recover controller phase.
Recover the matrix P from X and Y as explained in Section 2.5 and con-
struct an nkth order H∞ controller as explained in Section 2.6.

Remark 7.1. Note that in the optimization phase, one normally choose α in the interval
0 < α ≤ 1 by performing a line search. However, we noticed that very small step-lengths
α were taken which resulted in bad performance that might be caused by the Maratos
effect. A solution could be to use a watchdog strategy to remedy this, but we have chosen
to simply use α = 0.98 which seem to work well. For more details on the Maratos effect
and watchdog strategies, see Nocedal and Wright [2006].

The performance of the algorithm will be investigated in Chapter 8, where we
will apply the algorithm to a set of problems. Comparisons will be made with the
methods Hifoo and Hinfstruct, which are briefly presented in Section 8.1.2
and Section 8.1.3, respectively.

7.6 Chapter summary

In this chapter a partially augmented Lagrangian algorithm for design of low
order H∞ controllers is suggested. The algorithm calculates the search direction
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in each iteration by solving a convexified conic problem. A numerical evaluation
is presented in Chapter 8.
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8
Numeric evaluations

In this chapter we will present the numeric evaluations of the suggested methods
in chapters 5–7. This chapter consists of the following sections.

• In Section 8.1 we describe the benchmark problem library COMPleib and
two methods from the literature, Hifoo and Hinfstruct, which will be
compared with our suggested methods.

• In Section 8.2 we evaluate the barrier method from Chapter 5 and the
primal-dual method from Chapter 6. This version of the primal-dual me-
thod calculates a positive definite approximation of the Hessian by adding
a multiple of the identity, as described in Section 6.4.5.

• In Section 8.3 we evaluate the primal-dual method from Chapter 6 that
uses damped BFGS updating to approximate the Hessian as described in
Section 6.4.5. This method is labeled the quasi-Newton method or QN in
order to distinguish it from the above mentioned version of the primal-dual
method.

• In Section 8.4 we evaluate the partially augmented Lagrangian method
from Chapter 7.

The reason why the evaluations are presented separately, instead of all together,
is that they were carried out at different points in time. Also the software that we
use in the different sections of the evaluation are different versions.

83
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8.1 Evaluation setup

Before the evaluation of the methods, we will present the evaluation setup. A
core element of the evaluation is the problem library COMPleib, which will be
presented next. After that follows a brief presentation of two methods from the
literature, Hifoo and Hinfstruct, that are used in the evaluation for compari-
son.

8.1.1 COMPleib

Evaluation of the methods will be done using the benchmark problem library
COMPleib (Constrained matrix-optimization problem library), which is present-
ed in Leibfritz [2004, 2006]. This library contains problems collected from the
engineering literature and also pure academic problems. The set of problems
include e.g. models of aircraft, helicopters, jet engines and reactors. The difficulty
of solving these problems varies, as well as the dimensions of the problems. The
library is easily obtainable from a web page, which makes it a natural choice
when choosing benchmark problems.

8.1.2 HIFOO

Hifoo1 (H-infinity fixed-order optimization) is a software package that can be
run in Matlab. Hifoo is described in Gumussoy and Overton [2008a], Burke
et al. [2006] Gumussoy et al. [2009]. The supporting package Hanso, which is
used for nonconvex, nonsmooth optimization, uses a hybrid algorithm that com-
bines a quasi-Newton algorithm (BFGS) for the initial phase and a local bundle
phase which tries to verify local optimality for the best points that BFGS finds.
If the bundle phase does not succeed, a gradient sampling phase, see Burke et al.
[2005], is used to improve the approximation of the local minimizer, and it re-
turns a rough local optimality measure. One of the options available is to run
Hifoo in fast mode, where the output is the best controller found after the BFGS
phase of the algorithm.

Hifoo first chooses three random starting points with which the algorithm is
initialized. Then it tries to find stabilizing controllers before it optimizes locally
with respect to the closed loop H∞ norm. Both optimization problems are nons-
mooth and nonconvex. The latter optimization problem can be written as

minimize
KA,KB,KC ,KD

‖Hc(s)‖∞

where KA, KB, KC , KD and Hc(s) are defined by (2.2)–(2.5). When Hifoo has fin-
ished the optimization, the controller with the best H∞ norm of the three candi-
dates is the output. Due to randomization of the initial points and the random-
ization in the gradient sampling phase, see Gumussoy and Overton [2008a], the
experiments are not repeatable with the same result each time. In Gumussoy and
Overton [2008a,b] the authors suggest that Hifoo is evaluated by running it ten
times on each problem and choosing the best result. The results from applying

1Available from: http://www.cs.nyu.edu/overton/software/hifoo/.

http://www.cs.nyu.edu/overton/software/hifoo/
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Hifoo 2.0 on the system AC6 are found in Table B.2 in Appendix B, which is an
extract from Ankelhed et al. [2010].

In Gumussoy and Overton [2008a], Hifoo is shown to perform very well com-
pared to several other methods, and it has also been used several times in differ-
ent applications, e.g. Robu et al. [2010], Dotta et al. [2009] and Wildschek et al.
[2009].

The current version of the software is Hifoo 3.0, and it has been extended to also
include H2 controller synthesis, see Arzelier et al. [2011]. Since some parts of the
evaluation here were carried out at earlier points in time, the version of Hifoo
differs between the different evaluations.

8.1.3 HINFSTRUCT

Hinfstruct is included in the Robust Control Toolbox in Matlab, ver-
sion 7.11 (R2010b), and based on the paper by Apkarian and Noll [2006b]. The
method uses subgradient calculus, see Clarke [1990], to solve the problem by first
minimizing the spectral abscissa of the closed loop system to find parameters for
a stable controller. These parameters are then used as a starting point when op-
timizing locally to minimize the H∞ norm. Thus Hinfstruct uses the same
problem formulations as Hifoo but solves them in a different way. Since this
software was released in the fall of 2010, it is only used in the evaluation of our
latest contribution, the partially augmented Lagrangian method in Section 8.4.

Hinfstruct is a deterministic technique which does not involve any random el-
ements, however extra starting points can be randomized upon request. Accord-
ing to Apkarian [2011], Hinfstruct should be initialized with two extra starting
points when comparing its performance with Hifoo, since Hifoo uses three ran-
domized starting points. However it is claimed that running Hinfstruct ten
times is not needed. An extensive comparison of Hinfstruct and Hifoo can
be found in Apkarian [2010]. More details on Hinfstruct can be found on the
internet2.

8.2 The barrier method and the primal-dual method

In this section we present the evaluation of the barrier method from Chapter 5
and the primal-dual method from Chapter 6 that calculates a positive definite
approximation of the Hessian by adding a multiple of the identity, as described
in Section 6.4.5.

All experiments in this section were performed on a Dell Optiplex GX620 with
2GB RAM, Intel P4 640 (3.2 GHz) CPU running under Windows XP using
Matlab, version 7.4 (R2007a).

2See: http://pierre.apkarian.free.fr/Software.html.

http://pierre.apkarian.free.fr/Software.html


86 8 Numeric evaluations

8.2.1 Benchmarking problems

We chose to focus on two sets of problems in the benchmark library COMPleib.
The first set is the aircraft (AC) problems. The AC problems were chosen because
they are often used in articles for benchmarking purposes. This kind of problems
can be stabilized by a static controller, i.e., a controller with no states. The prob-
lems AC10, AC13 and AC14 have quite high number of states, and therefore are
very complex to solve. The methods of this thesis were applied to these problems,
but they failed due to large scale issues. However, Hifoo manages to find a ze-
roth and first order controller for AC10, if initialized by a stable controller, as
presented in Gumussoy and Overton [2008a]. The optimal H∞ norm of AC1 is
almost zero, regardless of the order of the controller. For this reason it was not
included in the comparisons in this section, even though the barrier method, the
primal-dual method and Hifoomanage to find controllers for this system.

The second set is the reduced order controller (ROC) problems. The ROC prob-
lems were chosen because they are interesting in the sense that they cannot be
stabilized by static output feedback controllers. Therefore a dynamic controller
is required, i.e., a controller with at least nc states, where nc can be found in
Table 8.8.

8.2.2 Evaluated methods

In this evaluation the following methods are compared.

• The barrier method from Chapter 5. The following parameter values were
used.

ε = 10−4, Λtol = 10−4, M = 104, tH = 0.1,

km = 0.1, kouter, max = 15, kinner, max = 103

• The primal-dual method from Chapter 6 that calculates a positive definite
approximation of the Hessian by adding a multiple of the identity, as de-
scribed in Section 6.4.5. The following parameter values were used.

rtol = 10−5, δλ = 10−4, kmax = 1000

• Hifoo 1.0 with Hanso 1.0 using default values of the parameters. For a
brief description of Hifoo see Section 8.1.2.

8.2.3 The tests

First, the full order controller (nominal controller) was computed. In these com-
putations γ was minimized, which is a convex problem since there is no rank
constraint. Note that the controller found this way may not always be stable,
even though the closed loop system is. The nominal controller was computed us-
ing the Control System Toolbox in Matlab, using the hinfsyn command, with
the ’lmi’ option. The minimized upper bound on the performance measure ob-
tained using the nominal controller is denoted γ∗ and the achieved closed loop
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performance is denoted ‖H ∗c‖∞.

Secondly, a reduced order controller was searched for, by first trying the same
γ as the full order controller, and then decreasing the order of the controller by
one each time. Then the performance measure was relaxed, i.e., by increasing γ .
This was done in four steps, 5 %, 10 %, 20 % and 50 % increase of γ . For each of
these steps, controllers were searched for with decreasing order. An increase of
the upper bound of the H∞ norm, γ , by more than 50% was considered not to be
relevant, since the sacrificed performance is too big.

The evaluation of Hifoowas performed as follows. For each system, controller of
orders from nx−1 down to nc was searched for. For each order, Hifoowas applied
ten times, see Section 8.1.2 for a motivation. The median closed loop performance
‖Hc‖∞ was calculated, sorted and placed in the appropriate group depending on
its deviation from the nominal performance measure, γ∗. The different groups
were 0%, 5%, 10%, 20% and 50%, analogously to what was done when evaluating
the other two methods. The reason for choosing the median value is that for the
benchmarking problem sets used, it requires as much time or more to run Hifoo
once, as required to run the barrier method or the primal-dual method, as can be
seen in Tables A.1–A.6 in Appendix A.

The required time for the algorithms to run was computed using the command
cputime. By using the command norm(H,inf,1e-6) the H∞ norm was com-
puted, where H is the plant and the third argument is the tolerance used in the
norm calculations (1e-2 by default).

None of the methods that were investigated found a lower order controller for
AC12 or ROC4 within +50 % of γ∗, which is why we have excluded those systems
from the tables of results.

Remark 8.1. We are aware of that this way of comparing the methods may favor the bar-
rier method and the primal-dual method. However it is difficult to design objective tests
when the methods have different approaches to finding low order H∞ controllers as is the
case here.

8.2.4 An in-depth study of AC8 and ROC8

We will now take a deeper look into how the evaluation was done in two cases.
The first system in the study is AC8, followed by ROC8.

AC8

The system AC8 has nine states, four inputs and five outputs. The system can,
as we will see, be stabilized by a zeroth order controller but the closed loop H∞
norm will increase dramatically compared to a full order controller.

The barrier method
The barrier method was applied to the problem AC8. The results are summarized
in Table 8.1, which is an extract from Table A.1. The barrier method starts by
using heuristics to find a good starting point, as described in Section 5.5.1. The
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starting point evaluated this way has shown to solve the problem completely for
several cases in this study, however, this is not the case for this system. The
barrier method is able to find a third order controller with the same value of γ
as the nominal controller, i.e. γ = 1.6220. This is a drop in controller order of
six states without any impact on the performance. If we are satisfied with a 10 %
performance loss, we can get a controller of first order. Not until γ is increased
by 50 %, a zeroth order controller can be found.

Table 8.1: The table shows the results from running the barrier method on AC8. In
the leftmost column the nominal performance data is listed. The second column from
the right shows the required time to find the controller, and the rightmost column
the number of iterations (#It) and restarts (#Rs) required.

AC8, nx = 9 γ nk ||Hc ||∞ t(s) #It(#Rs)

γ∗ = 1.6220 +0 % (1.6220) 3 1.6216 573.5 432(1)
||H∗c ||∞ = 1.6194 +5 % (1.7031) 2 1.6923 618.5 737(1)

+10 % (1.7842) 1 1.7456 107.6 254(1)
+50 % (2.4330) 0 2.1088 73.6 331(1)

The primal-dual method
For AC8, the primal-dual method did not perform as good as the barrier method.
The results are summarized in Table 8.2, which is an extract from Table A.3. If we
accept an increase in γ by 5 %, the method found a controller of order five, and
an increase of 20 % resulted in a controller of order one. Similar to the barrier
method, an increase in γ by 50 % resulted in that the primal-dual method found
a zeroth order controller. The conclusion for AC8 is that the barrier method
performed better, even though the primal-dual method found the zeroth order
faster than the barrier method.

Table 8.2: The table shows the results from running the primal-dual method on
AC8. In the leftmost column the nominal performance data is listed. The second col-
umn from the right shows the required time to find the controller, and the rightmost
column the number of iterations (#It) required.

AC8, nx = 9 γ nk ||Hc ||∞ t(s) #It

γ∗ = 1.6220 +5 % (1.7031) 5 1.6787 354.3 130
||H∗c ||∞ = 1.6194 +20 % (1.9464) 1 1.8654 99.2 139

+50 % (2.4330) 0 2.2806 18.4 34

Hifoo
Hifoo was also applied to AC8. The results are summarized in Table 8.3, which
is an extract from Table A.5. Without any performance loss the method was able
to find a fourth order controller, i.e., one order more was required compared to
the barrier method. When the required performance was relaxed by 5 %, Hifoo
found a controller of order one, which is one order lower than what the barrier
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method managed for this system. When the performance requirement was re-
laxed by 50 %, the order of the controller dropped down to zero.

Table 8.3: The table shows the results from running Hifoo on AC8. In the leftmost
column the nominal performance data is listed. The rightmost column shows the
required time to find the controller.

AC8, nx = 9 γ nk ||Hc ||∞ t(s)

γ∗ = 1.6220 +0 % (1.6220) 4 1.6202 429.3
||H∗c ||∞ = 1.6194 +5 % (1.7031) 1 1.6516 130.2

+50 % (2.4330) 0 2.0050 30.4

ROC8

We now turn to another system, ROC8, which is a sixth order system with four
inputs and four outputs that requires a controller of order at least three to be
stabilized.

The barrier method
The efficiency of the heuristics that the barrier method uses becomes evident here
as it found a fifth order controller for ROC8 after 2.5 s using zero iterations of the
main algorithm. It was needed to relax the performance requirement by 50 % in
order to drop the order down to four. The results are shown in Table 8.4, which
is an extract from Table A.2.

Table 8.4: The table shows the results from running the barrier method on ROC8. In
the leftmost column the nominal performance data is listed. The second column from
the right shows the required time to find the controller, and the rightmost column
the number of iterations (#It) and restarts (#Rs) that were required.

ROC8, nx = 6 γ nk ||Hc ||∞ t(s) #It(#Rs)

γ∗ = 3.4876 +0 % (3.4876) 5 3.4870 1.7 0(0)
||H∗c ||∞ = 3.4870 +50 % (5.2314) 4 5.2291 1.6 0(0)

The primal-dual method
For ROC8, the primal-dual method found a fifth order controller after 8.8 s using
only 14 iterations without any performance loss. By relaxing the performance by
10 % the order dropped down to four, and to order three at 20 %. The results are
summarized in Table 8.5, which is an extract from Table A.4.

Hifoo
When Hifoo was run on ROC8, the fifth order controller with no performance
loss was not found. (It was not found consistently, since we are looking at median
values.) A fourth order controller with 5 % performance loss and a third order
one with 10 % respectively were found. The results are summarized in Table 8.6,
which is an extract from Table A.6.



90 8 Numeric evaluations

Table 8.5: The table shows the results from running the primal-dual method on
ROC8. In the leftmost column the nominal performance data is listed. The second
column from the right shows the required time to find the controller, and the right-
most column the number of iterations (#It) that were required.

ROC8, nx = 6 γ nk ||Hc ||∞ t(s) #It

γ∗ = 3.4876 +0 % (3.4876) 5 3.4870 8.8 14
||H∗c ||∞ = 3.4870 +10 % (3.8363) 4 3.8343 127.9 303

+20 % (4.1851) 3 4.1594 18.9 54

Table 8.6: The table shows the results from running Hifoo on ROC8. In the left-
most column the nominal performance data is listed. The rightmost column shows
the required time to find the controller.

ROC8, nx = 6 γ nk ||Hc ||∞ t(s)

γ∗ = 3.4876 +5 % (3.6613) 4 3.5638 255.5
||H∗c ||∞ = 3.4870 +10 % (3.8356) 3 3.7595 144.7

8.2.5 Concluding the results

In this evaluation, the barrier method, the primal-dual method and Hifoo were
applied to a total of 22 different systems. All the numeric values can be found in
Appendix A and in this section we summarize the results.

The results for the AC systems and ROC systems can be seen in Table 8.7 and
Table 8.8, respectively. The third, fourth and fifth columns in the tables show
the minimum order of the controller that was found using the method listed in
the first row of the table. The γ values are listed in the second column. A dash
(−) means that no controller was found. An empty spot means that no controller
with lower order was found, hence the controller listed above that spot can be
used (since it satisfies stricter requirements). The notation (u) indicates that the
found controller is unstable (but the closed loop system is still stable).

Next, some conclusions are made from the results. We begin with the AC prob-
lems and proceed with the ROC problems.

AC problems

Some points of interest concerning the AC problems are listed below.

• In general, all three methods find a controller with less than full order with
the same performance as the nominal controller, or at least with a slightly
relaxed performance requirement.

• All nominal controllers are stable, except the ones for AC4, AC11 and AC18.

• All the lower order controllers listed in Table 8.7 are stable, except for a few
cases. The controllers for AC18 (found by the barrier method and Hifoo)
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Table 8.7: The table summarizes the evaluations of all three tested methods on the
AC problems. See Section 8.2.5 for details.

System γ Barr.(nk) PD(nk) Hifoo (nk)

AC2, nx=5 +0 % (0.1115) 0 0 0

AC3, nx=5 +0 % (2.9701) 1 1 -
+5 % (3.1186) 3

+10 % (3.2671) 2
+20 % (3.564) 0 0 1

+50 % (4.4551) 0

AC4, nx=4 +0 % (0.5579) 1 2 2 (u)
(u) +5 % (0.5858) 1 1 (u)

AC5, nx=4 +0 % (658.8393) 1 1 -
+5 % (691.7813) 0 0 0

AC6, nx=7 +0 % (3.4328) 2 - -
+5 % (3.6045) 1 3

+10 % (3.7761) 1
+20 % (4.1194) 0 0 0

AC7, nx=9 +0 % (0.0384) 6 - -
+5 % (0.0403) 5 2 2

+10 % (0.0422) 3
+20 % (0.0461) 2
+50 % (0.0576) 1 1

AC8, nx=9 +0 % (1.6220) 3 - 4
+5 % (1.7131) 2 5 1

+10 % (1.7842) 1
+20 % (1.9464) 1
+50 % (2.4330) 0 0 0

AC9, nx=10 +0 % (1.0004) 3 - -
+5 % (1.0504) 2 3 0

+10 % (1.1004) 0

AC11, nx=5 +0 % (2.8121) 1 1 -
(u) +5 % (2.9527) 0 1 (u)

+50 % (4.2181) 0 0

AC15, nx=4 +0 % (14.8759) 1 1 -
+5 % (15.6197) 0 0 0

AC16, nx=4 +0 % (14.8851) 0 0 0

AC17, nx=4 +0 % (6.6125) 0 0 0

AC18, nx=10 +0 % (5.3967) 8 (u) - -
(u) +10 % (5.9364) 7 (u)

+20 % (6.4760) 5 (u)
+50 % (8.0950) 6 (u) 1 (u)
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Table 8.8: The table summarizes the evaluations of all three tested methods on the
ROC problems. See Section 8.2.5 for details.

System γ Barr.(nk) PD(nk) Hifoo (nk)

ROC1, nx=8 +0 % (1.1311) 7 7 -
(nc=1) +5 % (1.1877) 6 5 -

+10 % (1.2442) 2 2
+20 % (1.3574) 3
+50 % (1.6967) 1 1 1

ROC2, nx=9 +0 % (0.0414) 5 (u) - -
(nc=1), (u) +5 % (0.0435) 3 (u) 3 (u) -

+10 % (0.0454) 3 (u)
+50 % (0.0621) 2 (u) 2 (u)

ROC3, nc=9 +0 % (46.4986) - - -
(nc=2), (u) +5 % (48.8235) 6 (u) - -

ROC5, nx=6 +0 % (4.98·10−5) - 2 -
(nc=1) +5 % (5.22·10−5) 5 -

+10 % (5.47·10−5) 1 -
+50 % (7.46·10−5) 2 -

ROC6, nx=3 +0 % (21.6040) 2 2 2
(nc=2)

ROC7, nx=4 +0 % (1.1247) 1 1 1
(nc=1)

ROC8, nx=6 +0 % (3.4876) 5 5 -
(nc=3) +5 % (3.6619) 4

+10 % (3.8363) 4 3
+20 % (4.1851) 3
+50 % (5.2314) 4

ROC9, nx=4 +0 % (2.2409) 3 3 -
(nc=2) +10 % (2.4612) 3

ROC10, nx=5 +0 % (0.0756) - - -
(nc=1), (u) +5 % (0.0794) 1 (u) 4 (u) -

+10 % (0.0829) 3 (u)
+20 % (0.0905) 1 (u)
+50 % (0.1134) 1 (u)

and some of the controllers of first order for AC11 found by Hifoo are not
stable.

• For the system AC12, none of the methods can find a controller with a per-
formance measure lower than +50 % of the nominal one. That system is
such that even a controller of order nx−1 cannot be found that satisfies the
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constraints.

• For almost all controllers found by the barrier method, the heuristics for
finding the initial point actually finds a solution to the problem. This means
that Algorithm 8 does not need to run, hence the problem is solved very
fast.

• According to Gumussoy and Overton [2008a], Hifoo is able to find con-
trollers for AC10. The barrier method and the primal-dual method cannot
find controllers for AC10, due to large-scale issues.

ROC problems

For the ROC problems, it is worthwhile to point out the following.

• The nominal controllers for ROC2, ROC3 and ROC10 are unstable.

• Neither of the three methods, that are investigated here, manage to find
a controller for ROC2 that is stable. The closed loop system is of course
stable, though.

• The barrier method is the only method that finds a controller for ROC3,
even though the controller is unstable.

• For ROC5, the barrier method and the primal-dual method find controllers
that are sufficiently good, while Hifoo does not.

• The heuristics used in the barrier method manage to find solutions for many
of the ROC problems, similar as for the AC problems, and hence solves
these problems very fast.

Quantifying the results

In this section we will attempt to quantify the results by grading the different
methods. We will take two aspects into account: the ability to find low order
controllers with no or little performance loss and the ability to find the lowest
order controller with at most 50 % performance loss. If a method has the best
result for a system, with respect to one of the criteria above, it will get one point.
If several methods have equal result, these methods get one point each. We will
base the grading on Table 8.7 and Table 8.8.

Prioritizing performance
The grading with respect to performance is done as follows. We look at the +0 %
row for each system and give a point to the method that found the lowest order
controller. If several methods have the same order, each method gets a point. If
no method found a controller with +0 % performance loss, continue to +5 %, and
so on. For example, all methods get a point for AC2, the barrier and the primal-
dual method get points for AC3, but only the barrier method gets a point for AC4.
The results from this grading procedure can be seen in Table 8.9. The results are
clearly in favor of the barrier method, followed by the primal-dual method and
last, Hifoo.
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Table 8.9: Grading with respect to closed loop performance. See Section 8.2.5 for
details on the grading procedure.

Method Grade

The barrier method 21
The primal-dual method 13
Hifoo 5

Prioritizing lowest order
The grading with performance with respect to lowest order is performed as fol-
lows. For each system, we look at the controller with the lowest order, but at the
same time having the least drop in performance. If several methods have found
controllers with the same order and performance, each of them get a point. For
example, for AC7 the primal-dual method and Hifoo get a point each. For AC9,
Hifoo gets a point. The results from this grading procedure can be seen in Ta-
ble 8.10. The results indicate that all three methods are equally good at finding
the lowest order controllers within +50 % of the nominal peformance.

Table 8.10: Grading with respect to lowest order of the controller. See Section 8.2.5
for details on the grading procedure.

Method Grade

The barrier method 15
The primal-dual method 16
Hifoo 14

8.2.6 Concluding remarks on the evaluation

• For some systems, ROC3 and ROC5, Hifoo cannot find any controller
within at least 50 % of the nominal performance, while the barrier method
succeeds in both cases, and the primal-dual method succeeds in the ROC5
case.

• Hifoo has shown to be able to solve problems with large dimensions as
reported in Gumussoy and Overton [2008a]. This certainly favors Hifoo
when systems of this kind are addressed.

• The interface for Hifoo is more developed than the interfaces for the bar-
rier method and the primal-dual method. Since it is not needed to supply a
value of γ when running, Hifoo certainly has an edge in terms of simplicity
for the user.

• The random elements in Hifoo can cause unexpected and unreliable re-
sults. A solution for that is to calculate a large batch of controllers for the
system to be controlled so that the random elements have less impact on
the results. This, however, requires more computational time.



8.3 The quasi-Newton method 95

• The approach in the barrier method is somewhat ad hoc, but to the author
it is quite remarkable that the performance is as good as it is, compared to
the primal-dual method and Hifoo.

• The framework for the primal-dual method is thoroughly studied in the
literature, so the fact that it performs quite well is not a big surprise.

• The barrier method is the best method at finding lower order controllers
when performance is prioritized. The primal-dual method is second best
followed by Hifoo. This statement is supported by the results in Table 8.9.

• When the aim is to find the lowest order controller that has a closed loop
H∞ norm no worse than +50 % of the nominal value, then the conclusion
is that the barrier method, the primal-dual method and Hifoo perform
equally well. This statement is supported by the results in Table 8.10.

This concludes the evaluation of the barrier method and the primal-dual method.

8.3 The quasi-Newton method

In this section we present the evaluation of the quasi-Newton method from Chap-
ter 6 that calculates a positive definite approximation of the Hessian by using
damped BFGS updating.

All experiments in this section were performed on a Dell Optiplex GX620 with
2GB RAM, Intel P4 640 (3.2 GHz) CPU running under Windows XP using
Matlab, version 7.4 (R2007a).

8.3.1 Benchmarking problems

We have chosen to evaluate this method on a total of 48 different systems from
the benchmarking problem library COMPleib with the number of states ranging
from 4 to 24. These systems are AC1-18, ROC1-10, NN11, REA3, CM1, EB1-4,
HE6, HE7, JE2-3, AGS, BDT1, IH, CSE1, TG1, WEC1-3 and DLR1. Some systems
resulted in too complex matrix computations for the quasi-Newton method to
handle and therefore no controller was calculated for these systems. These sys-
tems are AC10, AC13-14, and JE2. This results in 44 systems being part of the
evaluation.

8.3.2 Evaluated methods

In this evaluation the following methods are compared.

• The quasi-Newton method (QN for short).

• Hifoo 2.0 with Hanso 1.01. For a brief description of Hifoo, see Sec-
tion 8.1.2. Both default mode and fast mode are evaluated.
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8.3.3 The tests

The tests were carried out as follows. First, the full order controller (nominal
controller) was computed. In these computations γ was minimized, which is a
convex problem since there is no rank constraint involved. This controller was
computed using the Control System Toolbox in Matlab, using the hinfsyn com-
mand, with the ’lmi’ option. The minimized upper bound on the performance
measure obtained using the nominal controller is denoted γ∗ and the achieved
closed loop performance is denoted ‖H ∗c‖∞.

Define a vector of multipliers

γ̄ =
(
1 1.05 1.1 1.2 1.35 1.5 2 3 5 10

)
,

where each element in the vector γ̄ refers to different degrees of relaxations of the
performance requirement, i.e. +5 %, +10 %, etc. An increase of the upper bound
of the H∞ norm, γ , by more than a factor 10 is considered not to be of any interest
here because the performance we sacrifice then is too much.

The quasi-Newton primal-dual method was applied in order to find reduced or-
der controllers with nc ≤ nk ≤ nk,max states, where nc is a lower bound on the
number of states of the controller required to stabilize the system and where
nk,max = min(10, nx−1). Let γ = γ∗γ̄i , where 1 ≤ i ≤ 10 is the index of the vector
γ̄ and i = 1 at start. This procedure is described by Algorithm 10.

Algorithm 10 An algorithm for iterating through orders and performance

Calculate nominal controller and calculate γ∗ = ‖H ∗c‖∞.
Set i := 1, nk := min(10, nx−1).
while nk ≥ nc and i ≤ 10 do

Apply the QN algorithm using γ = γ∗γ̄n
if success, save controller, set nk := nk−1
else, set i := i+1
end if

end while

If the QN algorithm is successful, a controller of a lower order is found. If not,
the performance requirement is relaxed (i is increased). Note however that the
above algorithm of iterating through orders and performance is just one way of
evaluating the QN algorithm, and that no initial controller is needed to run the
algorithm, just a value of γ .

The evaluation of Hifoo was performed as follows. For each system, controllers
of orders from nk,max down to nc were searched for. For each order, Hifoo was
applied ten times and the closed loop H∞ norm and the computational time
was saved for each run. The reason for applying it ten times is explained in
Section 8.1.2.

The minimum and median H∞ norm that was achieved by Hifoo for each system
and controller order (nk) was calculated. These are denoted min and med. The as-
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sociated required computational time is sum of the required time for all ten runs,
while for the median H∞ norm the mean time of these ten runs are calculated.

The required time for the algorithms to run was computed using the command
cputime. Using the command norm(Gc,inf,1e-6) the H∞ norm was com-
puted, where Gc is the closed loop system and the third argument is the tolerance
used in the calculations. Note that we take all the time needed into account, even
QN runs that fail to find a controller.

Remark 8.2. In contrast to the evaluation of the barrier method and the primal-dual
method in Section 8.2.3, this way of evaluating the methods may favor Hifoo. The reason
is that the quasi-Newton method is now applied without any knowledge of the closed loop
H∞ norm that may be achieved. In order to even out the odds somewhat, we tolerate a
higher level of relaxation of the performance requirement in this evaluation compared to
the evaluation in Section 8.2. However, in cases where the closed loop H∞ norm when us-
ing a reduced order controller is close to the closed loop H∞ norm when using a full-order
controller it may instead favor the quasi-Newton method. Though, without any knowl-
edge of the system it is impossible to draw any conclusions regarding this issue.

8.3.4 A case study, AC6

For the system AC6 with seven states (nx = 7), the closed loop H∞ norms are
listed in Table 8.11. The time required to compute the results was 218 s using
the QN algorithm and 50033 s using Hifoo in default mode, i.e., almost a factor
of 230. When using Hifoo in fast mode, the required time is 8221 s, i.e. almost
a factor of 38 compared to QN. Figure 8.1 and Figure 8.2 illustrate the achieved
norms for the system AC6 using Hifoo default mode and fast mode, respectively.

In Table 8.11 we can see that the minimum values from Hifoo are lower than
those from QN in 3 out of 7 cases, while ending in a draw in 3 cases resulting in
a win ratio of 64 % for Hifoo and 36 % for QN. However, if we use the median
values, the win ratio is only 43 % for Hifoo, but then the time required should be
divided by 10, resulting in a factor ≈ 4 in time compared to QN. For Hifoo fast
mode the H∞ norms are higher in general as expected, but for nk = 2 the norm
is actually lower than what is achieved when using default mode, which is the
result of the nonconvexity of the problem combined with the nondeterministic
behavior of Hifoo.

In Appendix B an extract from Ankelhed et al. [2010] is presented. It shows de-
tailed results from the evaluation of the quasi-Newton method and Hifoo, nor-
mal mode for the system AC6.

8.3.5 Extensive study

The quasi-Newton algorithm, Hifoo default and fast modes were applied to a
total of 44 systems, as mentioned in Section 8.3.1. Note that the same tuning
parameters in the quasi-Newton algorithm were used for all systems in the study,
i.e., no individual tuning for different systems was done.

For each system in this study the win percent values were calculated and aver-
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Figure 8.1: The plot shows the closed loop H∞ norm for the quasi-
Newton method (QN) algorithm and Hifoo default mode, when applied to
COMPleib system AC6.
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Figure 8.2: The plot shows the closed loop H∞ norm for the quasi-Newton
method (QN) algorithm and Hifoo fast mode, when applied to COMPleib
system AC6.
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aged over all systems. In cases where the quasi-Newton algorithm cannot find a
controller but Hifoo can, it was assumed a win for the latter. If the difference in
norm obtained by the different methods was less than 1% it was declared a draw,
so that minor numerical differences are not a big factor in the results. Also, any
calculated controller that resulted in an unstable closed loop system, regardless
of the used method, was counted as a failure.

The results from applying the algorithms on all 44 systems used in the evalua-
tion can be seen in Ankelhed et al. [2010], but are summarized in Table 8.12 and
Table 8.13. We can see that the default mode of Hifoo is better than the quasi-
Newton algorithm in 61 % of the cases when the minimum H∞ norm of the ten
runs are chosen, but the required time is more than a factor of 17 of what is re-
quired by the quasi-Newton algorithm. However, if we compare the median H∞
norm of the ten runs instead, the number is only 55 % of the cases but the re-
quired time is now approximately 1.7 times more compared to the quasi-Newton
algorithm.

As for the fast mode option of Hifoo, the required time is about a quarter needed
compared to the default mode, but the difference in the results is quite small. The
best achieved norm is approximately the same but the median values are better.

Table 8.11: Results from computing controllers for the COMPleib system AC6 with
7 states. The best results (within an interval of 1 % of the best value if there are several
close to each other) for each controller order are marked with bold font. Required
computational time is 218 s for the quasi-Newton method (QN), 50033 s for Hifoo
default mode and 8221 s for Hifoo fast mode.

Hifoo, Default mode Hifoo, Fast mode

nk QN, ‖H‖∞ ‖H‖med
∞ ‖H‖min

∞ ‖H‖med
∞ ‖H‖min

∞
6 3.4325 3.5301 3.4967 3.6132 3.5519
5 3.4328 3.5349 3.4481 3.6119 3.5444
4 3.5944 3.5602 3.5019 3.6709 3.6273
3 3.5948 3.5851 3.5069 3.7186 3.5539
2 3.5831 3.5960 3.5725 3.7023 3.5601
1 3.7649 3.6438 3.5859 3.7863 3.6772
0 4.1189 4.1140 4.1140 4.1140 4.1140

Table 8.12: Summary for all systems when comparing the quasi-Newton method
(QN) and Hifoo, default mode. More details can be found in Section 8.3.5.

QN Hifoo, min Hifoo, med

Average win, min 39 % 61 % -
Average win, med 45 % - 55 %
Time required 8.25 · 104 s 1.44 · 106 s 1.44 · 105 s
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Table 8.13: Summary for all systems when comparing the quasi-Newton method
(QN) and Hifoo, fast mode. More details can be found in Section 8.3.5.

QN Hifoo, min Hifoo, med

Average win, min 38 % 62 % -
Average win, med 50 % - 50 %
Time required 8.25 · 104 s 3.45 · 105 s 3.45 · 104 s

To summarize the evaluation, we have drawn the following conclusions. The
quasi-Newton algorithm is very fast for low order systems, as seen in the example
(AC6) in Section 8.3.4. Though for higher order systems with more than 10 states,
Hifoo is faster for most systems. The difference between the default mode and
the fast mode options of Hifoo is not very significant, but the variance in the
results is less when using the default mode.

8.3.6 Concluding remarks on the evaluation

The quasi-Newton algorithm has been evaluated and the results have been com-
pared with Hifoo. The conclusion is that the quasi-Newton algorithm has com-
parable performance and speed, but Hifoo has an edge for higher order systems.
For lower order systems (≤ 10 states), e.g. AC6, the proposed algorithm is much
faster than Hifoo. When trying to synthesize controllers for some high order sys-
tems (> 20 states), it resulted in too big matrices for the quasi-Newton method to
handle, while according to Gumussoy and Overton [2008a], Hifoo is able to find
controllers for AC10 (55 states), which is one of these systems. How to handle
systems with higher dimensions is something we are going to look into when de-
veloping the proposed method further. It would also be interesting to investigate
if the calculation of the initial point can be done in a better way.

8.3.7 A comparison with the other methods

A similar comparison as was done in Section 8.2.5 was carried out but with the dif-
ference that Hifoo was replaced with the quasi-Newton method. In other words,
the quasi-Newton method was compared with the barrier method and the primal-
dual method. This comparison is presented in Appendix C. Also a grading when
prioritizing the performance and when prioritizing the lowest order is presented
in Table C.3 and Table C.4, respectively. The outcome is that the quasi-Newton is
equally good as the barrier method but better than the primal-dual method when
prioritizing the performance, while all three methods are equal when the lowest
order is prioritized.

8.4 The partially augmented Lagrangian method

In this section we present the evaluation of the augmented Lagrangian method
from Chapter 7.
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All experiments were performed on a DellOptiplexGX620 with 2GB RAM, In-
tel P4 640 (3.2 GHz) CPU running under Windows XP using Matlab, version
7.11 (R2010b).

8.4.1 Benchmarking problems

A collection of systems with different number of states ranging from 4 to 24 were
chosen from the benchmarking library COMPleib. These are AC2, AC5, AC18,
CM1, EB4, JE3 and IH.

8.4.2 Evaluated methods

In this evaluation the following methods are compared.

• The augmented Lagrangian method.

• Hifoo 3.0 with Hanso 2.0.

• Hinfstruct (from Matlab version 7.11).

For a brief description of Hifoo and Hinfstruct, see Section 8.1.

8.4.3 The tests

Since all methods in this evaluation attempts to minimize the closed loop H∞
norm in the optimization while searching for a stabilizing controller, the evalua-
tion procedure in this section is quite straight-forward. Next, the obtained closed
loop H∞ norms and required computational times are compared.

The results from the evaluation is presented in Table 8.14, where the H∞ norms
and required computational times for the respective methods are displayed. Note
that the same settings were used throughout the whole evaluation for the aug-
mented Lagrangian method. Cases where the augmented Lagrangian method
had numerical problems are marked by ∗. Hifoo was run ten times for every
combination of system and controller order using the default settings. The rea-
son for applying it ten times is explained in Section 8.1.2. The best H∞ norm
from these ten runs is displayed in Table 8.14 while the required time is the sum
of all ten runs. The options for Hinfstruct were modified in order to add two
extra randomized starting points for reasons that are explained in Section 8.1.3.

The upper part of Table 8.14 shows the results from when controllers of either
order zero or three were synthesized in order to evaluate both static output feed-
back controllers and reduced order feedback controllers. In cases where only the
static output feedback controller is shown it is due to the fact that the higher or-
der controllers turned out to have the same performance, thus there is no gain in
using these results.

Since the computational complexity of Hifoo and Hinfstruct depend on the
number of parameters in the controller while the augmented Lagrangian method
does not, we chose to also include a system (IH) which has 11 input signals and
10 output signals in order to check if the results would differ. The number of
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decision variables for Hinfstruct and Hifoo is n2
k + nkny + nunk + nuny while

for the augmented Lagrangian method it is nx(nx + 1) + 1, which means that the
number of decision variables in our method is not affected by the number of
states of the controller (nk), inputs (nu) or outputs (ny), while the other methods
are. The results of this evaluation are shown in the lower part of Table 8.14. For
this example we also synthesized controllers of higher order than for the other
examples.

As comparison we also included the results from the quasi-Newton method in
Table 8.14. These results are taken from Ankelhed et al. [2010].

Table 8.14: Results from evaluation on a collection of systems from COMPleib.
The first column displays the system name, the order of the system, the number of
inputs and outputs and the order of the controller that was synthesized. The sec-
ond, third, forth and fifth columns show the H∞ norm and required time for the
augmented Lagrangian method (AL), Hinfstruct (HS), Hifoo (HF) and the quasi-
Newton method (QN) respectively. Cases where the augmented Lagrangian method
had numerical problems are marked by ∗.

Sys, (nx,nu ,ny ,nk) ‖ · ‖AL
∞ , tAL ‖ · ‖HS

∞ , tHS ‖ · ‖HF
∞ , tHF ‖ · ‖QN

∞ , tQN

AC2 (5,3,3,0) 0.11, 19.1 s 0.11, 3.47 s 0.11, 168 s 0.11, 2.89 s
AC5 (4,2,2,0) 670, 20.8 s 665, 1.80 s 669, 24.8 s 691, 3.81 s
AC5 (4,2,2,3) 660∗, 10.3 s 658, 3.88 s 643, 1100 s 664, 3.70 s
AC18 (10,2,2,0) 14.8, 37.4 s 10.7, 2.97 s 12.6, 124 s Fail, -
AC18 (10,2,2,3) 8.09, 36.9 s 6.51, 8.22 s 6.54, 3860 s 18.4, 13.9 s
CM1 (20,1,2,0) 0.84, 278 s 0.82, 1.91 s 0.82, 125 s 0.82, 142 s
EB4 (20,1,1,0) 2.46∗, 460 s 2.06, 3.94 s 2.06, 10.5 s 2.32, 647 s
EB4 (20,1,1,3) 2.14, 370 s 1.82, 7.78 s 1.82, 1160 s 2.05, 192 s
JE3 (24,3,6,0) 8.74, 645 s 5.10, 5.31 s 5.10, 4880 s 9.62, 1080 s
JE3 (24,3,6,3) 2.89∗, 1403 s 2.90, 11.6 s 2.89, 5910 s 3.11, 1210 s

IH (21,11,10,0) 1.88, 367 s 1.59, 38.0 s 1.90, 2450 s 0.00045, 255 s
IH (21,11,10,1) 1.86, 523 s 1.80, 43.0 s 1.80, 2410 s 0.00058, 288 s
IH (21,11,10,3) 1.49, 373 s 1.57, 51.0 s 1.74, 2170 s 0.00018, 386 s
IH (21,11,10,5) 1.39∗, 868 s 1.15, 65.3 s 1.69, 2620 s 0.00021, 374 s
IH (21,11,10,7) 1.61∗, 169 s 0.79, 86.2 s 1.72, 2450 s 0.00023, 1030 s

8.4.4 Results and conclusions

The results in the upper part of Table 8.14 indicate that the augmented Lagrang-
ian method achieves comparable results in most cases. However Hinfstruct
obtains the best results overall and is by far the fastest algorithm. However it
does not always find the best result of the three methods. Hifoo achieves good
results, but it requires a lot of computational time.

The results in the lower part of Table 8.14 shows that even if the number of pa-
rameters in the controller are many, Hinfstruct achieves better results than the
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augmented Lagrangian method in all cases but one. For these problems Hifoo
does not perform as well as for the problems in the upper part of the table and
the required time is far more than required by the other methods. However, if
time is an issue, either using fast mode or just running it once would reduce the
required computational time.

The remarkable point for the results regarding the system IH, is that the quasi-
Newton method finds controllers in all cases that obtains a closed loop H∞ norm
that is almost zero, e.g. 0.00045 for the controller with zero states. In this case
this can be explained by the fact that the full order controller has an H∞ norm
that is almost zero. Since the quasi-Newton method starts from the performance
measure obtained using the full order controller and then relaxes it, it tries to
find lower order controllers that, to begin with, has the same H∞ norm. In this
case there is even a controller with zero states that obtains this H∞ norm. This
controller seem to be very hard to find for the other three methods that attempts
to minimize the H∞ norm during the optimization. This indicates that the quasi-
Newton method has an edge in cases where the obtainable H∞ norm for a low
order controller is close to the full order controller.





9
Conclusions and further work

In this chapter we present conclusions regarding evaluation of the suggested
methods together with some concluding remarks. Some directions for future re-
search are also suggested.

9.1 Summary

We have developed and implemented three different methods for solving the non-
convex problem related to low order H∞ controller synthesis using linear matrix
inequalities with a rank constraint.

The approach used in the thesis is based on formulating the rank constraint in
the classical LMI formulation as a rational equation. By using the fact that the
quotient in this equation is nonnegative on the feasible set, we can reformulate
this as an optimization problem where a nonconvex rational function is to be
minimized over a convex set defined by linear matrix inequalities.

To solve this optimization problem, we have proposed three different methods,
namely a barrier method, a primal-dual method and a partially augmented La-
grangian method. A slight modification of the primal-dual method resulted in an
additional method called the quasi-Newton method. These methods have been
evaluated on a set of different examples and compared with two methods in the
literature, Hifoo and Hinfstruct.
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9.2 Conclusions

The following conclusions can be drawn. These conclusions answer the questions
in Section 1.2.

• The barrier method performs well, at least for systems with 10 states or less
as is seen in the evaluation in Section 8.2.

• The quasi-Newton method has shown to perform well for systems with
around 20 states or less as seen in the evaluation in Section 8.3.

• The quasi-Newton method achieves slightly better performance than the
primal-dual method and has similar performance as the barrier method, as
indicated by the comparison in Section 8.3.7. However, the quasi-Newton
method requires less computational time than both the other methods.

• The partially augmented Lagrangian method achieves good results for sys-
tems of around 25 states or less as seen in the evaluation in Section 8.4. For
most systems this method performs better than the quasi-Newton method.
Thus the partially augmented Lagrangian method obtains the best results
overall among the suggested methods.

• Under certain circumstances, as for the system IH in Section 8.4, the quasi-
Newton method achieves better results than the partially augmented La-
grangian method, Hinfstruct and Hifoo.

• The barrier method, the primal-dual method and the quasi-Newton method
require an upper bound on the performance, γ , before the algorithms can
start. This is in general a disadvantage compared to the partially augment-
ed Lagrangian method, Hifoo and Hinfstruct. To some extent this can be
dealt with by using e.g. Algorithm 10 (An algorithm for iterating through
orders and performance).

• All the suggested methods in this thesis use symmetric matrix variables
since their approach is based on Theorem 2.1. The size of these variables
grows with the square of the order of the system. This fact makes these
methods less suitable for systems of higher order.

• Methods that do not use approaches involving symmetric matrix variables,
like Hifoo and Hinfstruct, seem better fitted for synthesizing low order
controllers for systems of very high order. The reason for this is that the
number of variables in these methods are equal to the number of free pa-
rameters in the controller. However, the associated optimization problems
are not only nonconvex, but also nonsmooth and therefore difficult to solve.

• The evaluation in this thesis indicate that Hinfstruct obtains the best re-
sults overall, but not in all cases. Hifoo is a good alternative, but may re-
quire considerable computational time if it needs to be run 10 times. These
are two of the best software packages for low order H∞ controller synthesis
that are available.
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9.3 Future work

Since all suggested methods are local methods, the initial point is important for
the performance of the algorithms. It would be interesting to look further into
how to choose the initial point in a better way.

In cases where the barrier method does not find a local minimum and γ needs
to be increased, warmstarting procedures could be implemented. Here we could
use the point at which the algorithm terminated as a starting point in the new
problem since the new problem is merely a relaxation of the previous one.

The impact of using other scaling matrices P for the primal-dual algorithm would
be interesting to investigate.

A more efficient algorithm for calculating the derivatives of the coefficients of the
characteristic polynomial was presented in Ankelhed [2011]. This algorithm was
used together with a modified symmetric indefinite factorization in the partially
augmented Lagrangian algorithm. It would be interesting to use this combination
in the barrier method and in the primal-dual method to investigate what results
that can be achieved.

The primal-dual method, the quasi-Newton method and the partially augmented
Lagrangian method do not use a merit function combined with a line search. By
using a proper merit function and implementing a line search with step lengths
that satisfy the Wolfe conditions, better convergence properties of the algorithms
could be obtained, see Nocedal and Wright [2006].

The termination criterion that is used in the partially augmented Lagrangian
method is ad hoc and could be replaced with a more elaborate one, e.g. the one
in Noll et al. [2004].

It would be interesting to apply a trust-region method to the problem formula-
tions in e.g. (4.7) and (7.2) and investigate what performance that can be achieved.





Part IV

Tables with additional results
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Barrier, primal-dual and HIFOO

A.1 Contents

In this appendix we present the tables with results from the evaluation described
in Section 8.2. Those are as follows.

Table A.1: The barrier method: AC systems.

Table A.2: The barrier method: ROC systems.

Table A.3: The primal-dual method: AC systems.

Table A.4: The primal-dual method: ROC systems.

Table A.5: Hifoo: AC systems.

Table A.6: Hifoo: ROC systems.

A.2 Notation

In the first column, data about the system and the nominal controller is listed.
The order of the system is denoted nx, γ∗ is the nominal value of γ and ‖H ∗c‖∞ is
the closed loop infinity norm.

In the second column, the γ-values for the lower order controllers are listed, with
percent values describing how much bigger the γ-values are compared to the
nominal values. In the third column, the order of the controllers are listed, and in
the fourth column, the closed loop infinity norms are listed. In the fifth column
the required time to find the controller is listed, and in the sixth column, the
number of iterations used (and the number of restarts for the barrier method, see
Section 5.5.2) are listed. The sixth column is not included in the tables for Hifoo.
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Table A.1: Results from running the barrier method on the AC problems.

AC2, nx = 5 γ nk ||Hc ||∞ t(s) #It(#Rs)
γ∗ = 0.1115 +0 % (0.1115) 0 0.1115 1.8 0(0)
||H∗c ||∞ = 0.1115

AC3, nx = 5
γ∗ = 2.9701 +0 % (2.9701) 1 2.9700 2.2 0(0)
||H∗c ||∞ = 2.9601 +20 % (3.5641) 0 3.4783 16.8 338(0)

AC4, nx = 4
γ∗ = 0.5579, (u) +0 % (0.5579) 1 0.5577 6.2 69(2)
||H∗c ||∞ = 0.5575

AC5, nx = 4
γ∗ = 658.8 +0 % (658.8393) 1 658.8390 2.0 0(0)
||H∗c ||∞ = 658.2 +5 % (691.7813) 0 666.8880 10.2 277(0)

AC6, nx = 7
γ∗ = 3.4328 +0 % (3.4328) 2 3.4328 2.7 0(0)
||H∗c ||∞ = 3.4314 +20 % (4.1194) 0 4.1155 68.8 648(0)

AC7, nx = 9
γ∗ = 0.0384 +0 % (0.0384) 6 0.0383 3.0 0(0)
||H∗c ||∞ = 0.0380 +5 % (0.0403) 5 0.0400 3.0 0(0)

+10 % (0.0422) 3 0.0413 2.6 0(0)
+20 % (0.0461) 2 0.437 2.7 0(0)

AC8, nx = 9
γ∗ = 1.6220 +0 % (1.6220) 3 1.6216 573.5 432(1)
||H∗c ||∞ = 1.6194 +5 % (1.7031) 2 1.6923 618.5 737(1)

+10 % (1.7842) 1 1.7456 107.6 254(1)
+50 % (2.4330) 0 2.1088 73.6 331(1)

AC9, nx = 10
γ∗ = 1.0004 +0 % (1.0004) 3 1.0004 4.0 0(0)
||H∗c ||∞ = 1.0003 +5 % (1.0504) 2 1.0312 3.5 0(0)

AC11, nx = 5
γ∗ = 2.8121, (u) +0 % (2.8121) 1 2.8120 2.1 0(0)
||H∗c ||∞ = 2.8111 +50 % (4.2181) 0 4.1211 1.6 0(0)

AC15, nx = 4
γ∗ = 14.8759 +0 % (14.8759) 1 14.8759 2.0 0(0)
||H∗c ||∞ = 14.8714 +5 % (15.6197) 0 15.5977 1.6 0(0)

AC16, nx = 4
γ∗ = 14.8851 +0 % (14.8851) 0 14.8849 1.6 0(0)
||H∗c ||∞ = 14.8666

AC17, nx = 4
γ∗ = 6.6125 +0 % (6.6125) 0 6.6124 1.5 0(0)
||H∗c ||∞ = 6.6124

AC18, nx = 10
γ∗ = 5.3967, (u) +0 % (5.3967) 8 5.4004, (u) 4.4 0(0)
||H∗c ||∞ = 5.3938 +10 % (5.9364) 7 5.9121, (u) 3.6 0(0)

+50 % (8.0950) 6 7.8395, (u) 3.5 0(0)
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Table A.2: Results from running the barrier method on the ROC problems.

ROC1, nx = 8 γ nk ||Hc ||∞ t(s) #It(#Rs)
γ∗ = 1.1311 +0 % (1.1311) 7 1.1311 5.6 0(0)
||H∗c ||∞ = 1.1304 +5 % (1.1877) 6 1.1686 1.9 0(0)

+10 % (1.2442) 2 1.2440 134.4 276(0)
+50 % (1.6967) 1 1.5716 66.9 271(0)

ROC2, nx = 9
γ∗ = 0.0414, (u) +0 % (0.0414) 5 0.0413, (u) 2.7 0(0)
||H∗c ||∞ = 0.0413 +5 % (0.0435) 3 0.0427, (u) 2.3 0(0)

ROC3, nx = 9
γ∗ = 46.4986, (u) +5 % (48.8235) 6 48.7953, (u) 4.5 0(0)
||H∗c ||∞ = 46.4906

ROC5, nx = 6
γ∗ = 4.98·10−5 +5 % (5.22·10−5) 5 1.85·10−5 20.4 37(1)
||H∗c ||∞ = 4.05·10−5 +50 % (7.46·10−5) 2 6.72·10−5 2.5 0(0)

ROC6, nx = 3
γ∗ = 21.604 +0 % (21.6040) 2 21.5550 1.4 0(0)
||H∗c ||∞ = 21.557

ROC7, nx = 4
γ∗ = 1.1247 +0 % (1.1247) 1 1.1247 1.5 0(0)
||H∗c ||∞ = 1.1233

ROC8, nx = 6
γ∗ = 3.4876 +0 % (3.4876) 5 3.4870 1.7 0(0)
||H∗c ||∞ = 3.4870 +50 % (5.2314) 4 5.2291 1.6 0(0)

ROC9, nx = 4
γ∗ = 2.2409 +0 % (2.2409) 3 2.2409 1.7 0(0)
||H∗c ||∞ = 2.2375

ROC10, nx = 5
γ∗ = 0.0756, (u) +5 % (0.0794) 1 0.0791, (u) 2.2 0(0)
||H∗c ||∞ = 0.0754
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Table A.3: Results from running the primal-dual method on the AC problems.

AC2, nx = 5 γ nk ||Hc ||∞ t(s) #It
γ∗ = 0.1115 +0 % (0.1115) 0 0.1115 2.5 11
||H∗c ||∞ = 0.1115

AC3, nx = 5
γ∗ = 2.9701 +0 % (2.9701) 1 2.9700 7.8 44
||H∗c ||∞ = 2.9601 +20 % (3.5641) 0 3.5637 30.7 306

AC4, nx = 4
γ∗ = 0.5579, (u) +0 % (0.5579) 2 0.5575 5.5 41
||H∗c ||∞ = 0.5575 +5 % (0.5858) 1 0.5844 9.0 108

AC5, nx = 4
γ∗ = 658.8 +0 % (658.8393) 1 658.7662 21.7 251
||H∗c ||∞ = 658.2 +5 % (691.7813) 0 670.7818 3.1 18

AC6, nx = 7
γ∗ = 3.4328 +5 % (3.6045) 1 3.6038 110.3 279
||H∗c ||∞ = 3.4314 +20 % (4.1194) 0 4.1161 12.6 33

AC7, nx = 9
γ∗ = 0.0384 +5 % (0.0403) 2 0.0400 254.8 245
||H∗c ||∞ = 0.0380 +50 % (0.0576) 1 0.0568 87.5 149

AC8, nx = 9
γ∗ = 1.6220 +5 % (1.7031) 5 1.6787 354.3 130
||H∗c ||∞ = 1.6194 +20 % (1.9464) 1 1.8654 99.2 139

+50 % (2.4330) 0 2.2806 18.4 34

AC9, nx = 10
γ∗ = 1.0004 +5 % (1.0504) 3 1.0298 454.9 200
||H∗c ||∞ = 1.0003 +10 % (1.1004) 0 1.0954 120.2 185

AC11, nx = 5
γ∗ = 2.8121, (u) +0 % (2.8121) 1 2.8120 7.4 56
||H∗c ||∞ = 2.8111 +5 % (2.9527) 0 2.9478 3.7 30

AC15, nx = 4
γ∗ = 14.8759 +0 % (14.8759) 1 14.8758 3.9 34
||H∗c ||∞ = 14.8714 +5 % (15.6197) 0 15.5450 2.8 26

AC16, nx = 4
γ∗ = 14.8851 +0 % (14.8851) 0 14.8849 2.5 23
||H∗c ||∞ = 14.8666

AC17, nx = 4
γ∗ = 6.6125 +0 % (6.6125) 0 6.6124 2.2 13
||H∗c ||∞ = 6.6124

AC18, nx = 10
γ∗ = 5.3967, (u) - - - - -
||H∗c ||∞ = 5.3938
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Table A.4: Results from running the primal-dual method on the ROC problems.

ROC1, nx = 8 γ nk ||Hc ||∞ t(s) #It
γ∗ = 1.1311 +0 % (1.1311) 7 1.1305 81.0 36
||H∗c ||∞ = 1.1304 +5 % (1.1877) 5 1.1537 34.3 20

+20 % (1.3574) 3 1.3549 399.4 465
+50 % (1.6967) 1 1.6717 92.4 262

ROC2, nx = 9
γ∗ = 0.0414, (u) +5 % (0.0435) 3 0.0425, (u) 136.5 87
||H∗c ||∞ = 0.0413 +50 % (0.0621) 2 0.0595, (u) 771.1 668

ROC3, nx = 9
γ∗ = 46.4986, (u) - - - - -
||H∗c ||∞ = 46.4906

ROC5, nx = 6
γ∗ = 4.98·10−5 +0 % (4.98·10−5) 2 8.85·10−6 34.1 159
||H∗c ||∞ = 4.05·10−5 +10 % (5.47·10−5) 1 8.89·10−6 114.0 929

ROC6, nx = 3
γ∗ = 21.604 +0 % (21.6040) 2 21.5523 2.0 18
||H∗c ||∞ = 21.557

ROC7, nx = 4
γ∗ = 1.1247 +0 % (1.1247) 1 1.1246 2.5 23
||H∗c ||∞ = 1.1233

ROC8, nx = 6
γ∗ = 3.4876 +0 % (3.4876) 5 3.4870 8.8 14
||H∗c ||∞ = 3.4870 +10 % (3.8363) 4 3.8343 127.9 303

+20 % (4.1851) 3 4.1594 18.9 54

ROC9, nx = 4
γ∗ = 2.2409 +0 % (2.2409) 3 2.2408 3.2 19
||H∗c ||∞ = 2.2375

ROC10, nx = 5
γ∗ = 0.0756, (u) +5 % (0.0794) 4 0.0775, (u) 11.5 46
||H∗c ||∞ = 0.0754 +50 % (0.1134) 1 0.1071, (u) 10.9 134
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Table A.5: Results from running Hifoo on the AC examples.

AC2, nx = 5 γ nk ||Hc ||∞ t(s)
γ∗ = 0.1115 +0 % (0.1115) 0 0.1115 5.2
||H∗c ||∞ = 0.1115

AC3, nx = 5
γ∗ = 2.9701 +5 % (3.1186) 3 3.0373 197.3
||H∗c ||∞ = 2.9601 +10 % (3.2671) 2 3.2199 141.1

+20 % (3.5641) 1 3.4331 38.7
+50 % (4.4551) 0 3.6535 22.8

AC4, nx = 4
γ∗ = 0.5579, (u) +0 % (0.5579) 2 0.5573, (u) 37.8
||H∗c ||∞ = 0.5575 +5 % (0.5858) 1 0.5589, (u) 33.0

AC5, nx = 4
γ∗ = 658.8393 +5 % (691.7813) 0 689.7123 1.2
||H∗c ||∞ = 658.2496

AC6, nx = 7
γ∗ = 3.4328 +5 % (3.6045) 3 3.5783 441.1
||H∗c ||∞ = 3.4314 +10 % (3.7761) 1 3.6610 265.3

+20 % (4.1194) 0 4.1140 67.9

AC7, nx = 9
γ∗ = 0.0384 +5 % (0.0403) 2 0.0400 71.0
||H∗c ||∞ = 0.0380 +50 % (0.0576) 1 0.0525 18.5

AC8, nx = 9
γ∗ = 1.6220 +0 % (1.6220) 4 1.6202 429.3
||H∗c ||∞ = 1.6194 +5 % (1.7031) 1 1.6516 130.2

+50 % (2.4330) 0 2.0050 30.4

AC9, nx = 10
γ∗ = 1.0004 +5 % (1.0504) 0 1.0054 150.8
||H∗c ||∞ = 1.0003

AC11, nx = 5
γ∗ = 2.8121, (u) +5 % (2.9527) 1 2.8281, (u) 89.1
||H∗c ||∞ = 2.8111 +50 % (4.2181) 0 3.5283 14.2

AC15, nx = 4
γ∗ = 14.8759 +5 % (15.6197) 0 15.1702 35.9
||H∗c ||∞ = 14.8714

AC16, nx = 4
γ∗ = 14.8851 +0 % (14.8851) 0 14.8728 15.4
||H∗c ||∞ = 14.8666

AC17, nx = 4
γ∗ = 6.6125 +0 % (6.6125) 0 6.6124 0.8
||H∗c ||∞ = 6.6124

AC18, nx = 10
γ∗ = 5.3967, (u) +20 % (6.4760) 5 6.4722, (u) 385.2
||H∗c ||∞ = 5.3938 +50 % (8.0950) 1 7.7691, (u) 48.2
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Table A.6: Results from running Hifoo on the ROC examples.

ROC1, nx = 8 γ nk ||Hc ||∞ t(s)
γ∗ = 1.1311 +10 % (1.2442) 2 1.2438 56.1
||H∗c ||∞ = 1.1304 +50 % (1.6967) 1 1.4256 21.3

ROC2, nx = 9
γ∗ = 0.0414, (u) +10 % (0.0455) 3 0.0448, (u) 310.4
||H∗c ||∞ = 0.0413 +50 % (0.0621) 2 0.0506, (u) 147.2

ROC3, nx = 9
γ∗ = 46.4986, (u) - - - -
||H∗c ||∞ = 46.4906

ROC5, nx = 6
γ∗ = 4.98·10−5 - - - -
||H∗c ||∞ = 4.05·10−5

ROC6, nx = 3
γ∗ = 21.604 +0 % (21.6040) 2 21.5437 62.0
||H∗c ||∞ = 21.557

ROC7, nx = 4
γ∗ = 1.1247 +0 % (1.1247) 1 1.1224 18.0
||H∗c ||∞ = 1.1233

ROC8, nx = 6
γ∗ = 3.4876 +5 % (3.6619) 4 3.5638 255.5
||H∗c ||∞ = 3.4870 +10 % (3.8363) 3 3.7595 144.7

ROC9, nx = 4
γ∗ = 2.2409 +10 % (2.4649) 3 2.4175 162.9
||H∗c ||∞ = 2.2375

ROC10, nx = 5
γ∗ = 0.0756, (u) +10 % (0.0832) 3 0.0826, (u) 62.7
||H∗c ||∞ = 0.0754 +20 % (0.0907) 1 0.0878, (u) 31.0





B
The quasi-Newton method, AC6

B.1 Contents

This appendix is an extract from Ankelhed et al. [2010] showing the results of
the evaluation of the quasi-Newton method and Hifoo 2.0 with Hanso 1.01 on
the system AC6 from the benchmark library COMPleib.

B.2 Notation

In Table B.1 the first column lists the γ-values, starting with the nominal value
for the full order controller, and then the percentage increase of that value fur-
ther down the first column. The other columns list the values obtained for the
controllers of the order displayed at the top of the column. A dash (-) means
that the corresponding controller was not calculated and an underlined value
indicates that a controller of that order was calculated but failed to satisfy the re-
quirements regarding stability, feasibility etc. These controllers are not counted
as successful controllers. However all the time spent on these attempts are still
summed up and counted. The bottom part of the tables shows the required time
to calculate the controllers corresponding to the values on the upper part of the
tables. At the bottom row, the total amount of time is summed up for the whole
table.

In Tables B.2 the first column of the upper part lists the number of each of the
ten runs. The other columns list the achieved H∞ norms. The middle part lists
the statistics regarding the achieved H∞ norm, such as the minimum value, the
maximum value, the mean value, the median value and the standard deviation.
The lower part lists the same statistics, but for the required time.
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Table B.1: The table shows the results obtained when applying the quasi-Newton
method on COMPleib system AC6, 7 states.

γ / k 6 5 4 3 2 1 0
3.433 3.432 3.433 2.795·101 - - - -
+5% - - 3.594 3.595 3.583 3.687 -
+10% - - - - - 3.765 4.891
+20% - - - - - - 4.119

t [s]
+0% 3.652·101 3.497·101 3.456·101

+5% 8.422 1.019·101 9.078 3.217·101

+10% 8.594 3.208·101

+20% 1.163·101

Total: 2.182·102s

Table B.2: The table shows the results obtained when applying Hifoo, normal
mode on COMPleib system AC6, 7 states.

Run / k 6 5 4 3 2 1 0
1 3.525 3.533 3.545 3.567 3.579 3.600 4.114
2 3.516 3.556 3.544 3.604 3.585 3.658 4.114
3 3.549 3.563 3.568 3.507 3.759 3.653 4.114
4 3.528 3.597 3.564 3.541 3.573 3.586 4.114
5 3.533 3.555 3.502 3.812 3.601 3.649 4.114
6 3.577 3.519 3.685 3.596 3.699 3.753 4.114
7 3.507 3.479 3.568 3.575 3.582 3.638 4.114
8 3.497 3.537 3.529 3.596 3.591 3.804 4.114
9 3.551 3.448 3.556 3.599 3.658 3.612 4.114
10 3.544 3.528 3.633 3.546 3.630 3.616 4.114
min 3.497 3.448 3.502 3.507 3.573 3.586 4.114
max 3.577 3.597 3.685 3.812 3.759 3.804 4.114
mean 3.533 3.532 3.569 3.594 3.626 3.657 4.114
med 3.530 3.535 3.560 3.585 3.596 3.644 4.114
std 2.371·10−2 4.260·10−2 5.271·10−2 8.275·10−2 6.186·10−2 6.934·10−2 4.296·10−5

t [s]
tmin 1.249·103 8.141·102 8.086·102 6.695·102 3.620·102 3.883·102 5.470·101

tmax 1.408·103 1.143·103 9.928·102 7.649·102 5.868·102 4.810·102 1.662·102

tmean 1.337·103 1.030·103 8.704·102 7.095·102 5.198·102 4.350·102 1.018·102

tmed 1.331·103 1.049·103 8.599·102 7.020·102 5.336·102 4.358·102 9.108·101

tstd 4.916·101 8.688·101 4.849·101 3.042·101 6.350·101 2.893·101 3.691·101



C
Barrier, primal-dual and quasi-Newton

C.1 Contents

In this appendix we present a comparison of the following methods.

• The barrier method from Chapter 5.

• The primal-dual method from Chapter 6 that calculates a positive definite
approximation of the Hessian by adding a multiple of the identity, as de-
scribed in Section 6.4.5.

• The quasi-Newton method from Chapter 6 that uses damped BFGS updat-
ing to approximate the Hessian as described in Section 6.4.5.

This evaluation is built on the evaluation of the barrier method and the primal-
dual method in Section 8.2, but the results for Hifoo has been replaced with the
results from the quasi-Newton method in order to able to compare these three
methods. In other words, Table C.1 is similar to Table 8.7 and Table C.2 is similar
to Table 8.8. The results for the quasi-Newton method is extracted from Ankel-
hed et al. [2010].

C.2 Quantifying the results

In this section the grading procedure that is explained in Section 8.2.5 are us to
grade the barrier method, the primal-dual method and the quasi-Newton method.
The grading is based on the results in Tables C.1 and Table C.2 and are presented
in Table C.3 and Table C.4.
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Table C.1: The table summarizes the evaluations of all three tested methods on the
AC problems. See Section 8.2.5 for details.

System γ Barr.(nk ) PD(nk ) QN(nk )
AC2, nx =5 +0 % (0.1115) 0 0 0
AC3, nx =5 +0 % (2.9701) 1 1 1

+20 % (3.564) 0 0
+50 % (4.4551) 0

AC4, nx =4 +0 % (0.5579) 1 2 2
(u) +5 % (0.5858) 1

+10 % (0.6137) 1
AC5, nx =4 +0 % (658.8393) 1 1 -

+5 % (691.7813) 0 0 0
AC6, nx =7 +0 % (3.4328) 2 - 5

+5 % (3.6045) 1 2
+10 % (3.7761) 1
+20 % (4.1194) 0 0 0

AC7, nx =9 +0 % (0.0384) 6 - 7
+5 % (0.0403) 5 2 2

+10 % (0.0422) 3
+20 % (0.0461) 2
+50 % (0.0576) 1 1

AC8, nx =9 +0 % (1.6220) 3 - 4
+5 % (1.7131) 2 5 1

+10 % (1.7842) 1
+20 % (1.9464) 1
+50 % (2.4330) 0 0 0

AC9, nx =10 +0 % (1.0004) 3 - 3 (u)
+5 % (1.0504) 2 3 1

+10 % (1.1004) 0
+20 % (1.2005) 0

AC11, nx =5 +0 % (2.8121) 1 1 1
(u) +5 % (2.9527) 0 0

+50 % (4.2181) 0
AC15, nx =4 +0 % (14.8759) 1 1 1

+5 % (15.6197) 0 0 0
AC16, nx =4 +0 % (14.8851) 0 0 0
AC17, nx =4 +0 % (6.6125) 0 0 0
AC18, nx =10 +0 % (5.3967) 8 (u) - -
(u) +5 % (5.6665) 8 (u)

+10 % (5.9364) 7 (u) 7 (u)
+50 % (8.0950) 6 (u)
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Table C.2: The table summarizes the evaluations of all three tested methods on the
ROC problems. See Section 8.2.5 for details.

System γ Barr.(nk ) PD(nk ) QN(nk )
ROC1, nx =8 +0 % (1.1311) 7 7 6
(nc =1) +5 % (1.1877) 6 5 5

+10 % (1.2442) 2 4
+20 % (1.3574) 3 2
+50 % (1.6967) 1 1

ROC2, nx =9 +0 % (0.0414) 5 (u) - 4 (u)
(nc =1), (u) +5 % (0.0435) 3 (u) 3 (u) 3 (u)

+50 % (0.0621) 2 (u) 2 (u)
ROC3, nc =9 +0 % (46.4986) - - -
(nc =2), (u) +5 % (48.8235) 6 (u) - 6 (u)
ROC5, nx =6 +0 % (4.98·10−5) - 2 1
(nc =1) +5 % (5.22·10−5) 5

+10 % (5.47·10−5) 1
+50 % (7.46·10−5) 2

ROC6, nx =3 +0 % (21.6040) 2 2 2
(nc =2)
ROC7, nx =4 +0 % (1.1247) 1 1 1
(nc =1)
ROC8, nx =6 +0 % (3.4876) 5 5 5
(nc =3) +10 % (3.8363) 4

+20 % (4.1851) 3 3
+50 % (5.2314) 4

ROC9, nx =4 +0 % (2.2409) 3 3 3
(nc =2)
ROC10, nx =5 +0 % (0.0756) - - 1 (u)
(nc =1), (u) +5 % (0.0794) 1 (u) 4 (u)

+50 % (0.1134) 1 (u)

Table C.3: Grading with respect to closed loop performance. See Section 8.2.5 for
details on the grading procedure.

Method Grade
The barrier method 18
The primal-dual method 11
The quasi-Newton method 16

Table C.4: Grading with respect to lowest order of the controller. See Section 8.2.5
for details on the grading procedure.

Method Grade
The barrier method 15
The primal-dual method 17
The quasi-Newton method 17
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