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Abstract
Structured output feedback controller synthesis is an
exciting new concept in modern control design, which
bridges between theory and practice in so far as it al-
lows for the first time to apply sophisticated math-
ematical design paradigms like H∞- or H2-control
within control architectures preferred by practition-
ers. The new approach to structured H∞-control, de-
veloped during the past decade, is rooted in a change
of paradigm in the synthesis algorithms. Structured
design may no longer be based on solving algebraic
Riccati equations or matrix inequalities. Instead,
optimization-based design techniques are required. In
this essay we indicate why structured controller syn-
thesis is central in modern control engineering. We
explain why non-smooth optimization techniques are
needed to compute structured control laws, and we
point to software tools which enable practitioners to
use these new tools in high technology applications.

Keywords and Phrases
Controller tuning, H∞ synthesis, multi-objective de-
sign, nonsmooth optimization, structured controllers,
robust control

Introduction

In the modern high technology field control engi-
neers usually face a large variety of concurring design
specifications such as noise or gain attenuation in pre-
scribed frequency bands, damping, decoupling, con-
straints on settling- or rise-time, and much else. In ad-
dition, as plant models are generally only approxima-
tions of the true system dynamics, control laws have
to be robust with respect to uncertainty in physical pa-
rameters or with regard to un-modeled high frequency
phenomena. Not surprisingly, such a plethora of con-
straints presents a major challenge for controller tun-
ing, due not only to the ever growing number of such
constraints, but also because of their very different
provenience.

The dramatic increase in plant complexity is ex-
acerbated by the desire that regulators should be as
simple as possible, easy to understand and to tune
by practitioners, convenient to hardware implement,
and generally available at low cost. Such practical
constraints explain the limited use of black-box con-
trollers, and they are the driving force for the imple-
mentation of structured control architectures, as well
as for the tendency to replace hand-tuning methods by
rigorous algorithmic optimization tools.

1 Structured Controllers

Before addressing specific optimization tech-
niques, we introduce some basic terminology for con-
trol design problems with structured controllers. A
state-space description of the given P used for design
is given as

P :





ẋP = AxP + B1w + B2u
z = C1xP + D11w + D12u
y = C2xP + D21w + D22u

(1)

where A, B1, ... are real matrices of appropriate di-
mensions, xP ∈ RnP is the state, u ∈ Rnu the control,
y ∈ Rny the measured output, w ∈ Rnw the exogenous
input, and z ∈ Rnz the regulated output. Similarly, the
sought output feedback controller K is described as

K :
{

ẋK = AKxK + BKy
u = CKxK + DKy (2)

with xK ∈ RnK , and is called structured if the (real)
matrices AK ,BK ,CK ,DK depend smoothly on a de-
sign parameter x ∈ Rn, referred to as the vector of
tunable parameters. Formally, we have differentiable
mappings

AK = AK(x),BK = BK(x),CK =CK(x),DK = DK(x),

and we abbreviate these by the notation K(x) for short
to emphasize that the controller is structured with x
as tunable elements. A structured controller synthesis



problem is then an optimization problem of the form

minimize ‖Twz(P,K(x))‖
subject to K(x) closed-loop stabilizing

K(x) structured, x ∈ Rn
(3)

where Twz(P,K) = F`(P,K) is the lower feedback
connection of (1) with (2) as in Fig. 1 (left), also
called the Linear Fractional Transformation [Varga
and Looye, 1999]. The norm ‖ · ‖ stands for the H∞-
norm, the H2-norm, or any other system norm, while
the optimization variable x ∈ Rn regroups the tunable
parameters in the design.

Standard examples of structured controllers K(x)
include realizable PIDs, observer-based, reduced-
order, or decentralized controllers, which in state-
space are expressed as:



0 0 1
0 −1/τ −kD/τ

kI 1/τ kP + kD/τ


 ,
[

A−B2Kc−K fC2 K f
−Kc 0

]
,
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AK BK
CK DK

]
,
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
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CKi
q

diag
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DKi


 .

In the case of a PID the tunable parameters are
x = (τ,kP,kI ,kD), for observer-based controllers
x regroups the estimator and state-feedback gains
(K f ,Kc), for reduced order controllers nK < nP the
tunable parameters x are the n2

K +nKny +nKnu +nynu
unknown entries in (AK ,BK ,CK ,DK), and in the
decentralized form x regroups the unknown entries in
AK1, . . . ,DKq. In contrast, full-order controllers have
the maximum number N = n2

P + nPny + nPnu + nynu
of degrees of freedom and are referred to as unstruc-
tured or as black-box controllers.

contrast, full-order controllers have the maximum number
N = n2

P +nP ny +nP nu +nynu of degrees of freedom and
are referred to as unstructured or as black-box controllers.
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Fig. 1. Black-box full-order controller K on the left, structured 2-DOF
control architecture with K = block-diag(K1, K2) on the right.

More sophisticated controllers structures K(x) arise form
architectures like for instance a 2-DOF control arrangement
with feedback block K2 and a set-point filter K1 as in Fig.
1 (right). Suppose K1 is the 1st-order filter K1(s) = a/(s+
a) and K2 the PI feedback K2(s) = kP + kI/s. Then the
transfer Try from r to y can be represented as the feedback
connection of P and K(x) with

P :=

2
664

A 0 0 B
C 0 0 D
0 I 0 0

�C 0 I �D

3
775 , K(x) :=


K1(s) 0

0 K2(s)

�
,

where K(x, s) takes a typical block-diagonal structure fea-
turing the tunable elements x = (a, kP , kI).

In much the same way arbitrary multi-loop interconnec-
tions of fixed-model elements with tunable controller blocks
Ki(x) can be re-arranged as in Fig. 2, so that K(x) captures
all tunable blocks in a decentralized structure general enough
to cover most engineering applications.

Fig. 2. Synthesis of K = block-diag(K1, . . . , KN ) against multiple
requirements or models P (1), . . . , P (M). Each Ki(x) can be structured.

The structure concept is equally useful to deal with the
second central challenge in control design: system uncer-
tainty. The latter may be handled with µ-synthesis techniques
[2] if a parametric uncertain model is available. A less
ambitious but often more practical alternative consists in
optimizing the structured controller K(x) against a finite
set of plants P (1), . . . , P (M) representing model variations
due to uncertainty, aging, sensor and actuator breakdown,
un-modeled dynamics, in tandem with the robustness and
performance specifications. This is again formally covered by
Fig. 2 and leads to a multi-objective constrained optimization
problem of the form

minimize f(x) = max
k2SOFT,i2Ik

kT (k)
wizi(K(x))k

subject to g(x) = max
k2HARD,j2Jk

kT (k)
wjzj (K(x))k  1

K = K(x) closed-loop stabilizing
x 2 Rn

(4)

where T
(k)
wizi denotes the ith closed-loop robustness or per-

formance channel wi ! zi for the k-th plant model P (k)(s).
The rationale of (4) is to minimize the worst-case cost of
the soft constraints kT (k)

wizik, k 2 SOFT, while enforcing the
hard constraints kT (k)

wjzjk  1, k 2HARD.

III. OPTIMIZATION TECHNIQUES OVER THE YEARS

During the late 1990s the necessity to develop design
techniques for structured regulators K(x) was recognized
[3], and the limitations of synthesis methods based on
algebraic Riccati equations (AREs) or linear matrix inequal-
ities (LMIs) became evident, as these techniques can only
provide black-box controllers. Unfortunately, the lack of
appropriate synthesis techniques for structured K(x) led to
the unsatisfying situation, where sophisticated approaches
like the H1 paradigm developed by academia since the
1980s could not be brought to work for the design of those
controller structures K(x) preferred by practitioners. Design
engineers had to continue to rely on heuristic and ad-hoc
tuning techniques, with only limited scope and reliability. As
an example: post-processing to reduce a black-box controller
to a practical size is prone to failure. It may at best be
considered fill-in for a rigorous design method which directly
computes a reduced-order controller. Similarly, hand-tuning
of the parameter x remains a puzzling task because of the
loop interactions, and fails as soon as complexity increases.

In the late 1990s and early 2000s, a change of methods
was observed. Structured H2- and H1-synthesis problems
(3) were addressed by bilinear matrix inequality (BMI)
optimization, which used local optimization techniques based
on augmented Lagrangian [4]–[6], sequential semidefinite
programming methods [7], [8], and non-smooth methods for
BMIs [9], [10]. However, these techniques were based on the
bounded real lemma or similar matrix inequalities, and were
therefore of limited success due to the presence of Lyapunov
variables, whose number grows quadratically in nP +nK and
represents the bottleneck of this approach.

The epoch-making change occurs with the introduction of
non-smooth optimization techniques [11]–[14] to programs
(3) and (4). Today non-smooth methods have superseded
matrix inequality-based techniques and may be considered
the state-of-art as far as realistic applications are concerned.
The transition took almost a decade.

Alternative control-related local optimization techniques
and heuristics include the gradient sampling technique of
[15], derivative-free optimization discussed in [16], [17],
particle swarm optimization, see [18] and references therein,
and also evolutionary computation techniques [19]. The last
three classes do not take advantage of derivative information
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where K(x, s) takes a typical block-diagonal structure fea-
turing the tunable elements x = (a, kP , kI).

In much the same way arbitrary multi-loop interconnec-
tions of fixed-model elements with tunable controller blocks
Ki(x) can be re-arranged as in Fig. 2, so that K(x) captures
all tunable blocks in a decentralized structure general enough
to cover most engineering applications.
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Fig. 2. Synthesis of K = block-diag(K1, . . . , KN ) against multiple
requirements or models P (1), . . . , P (M). Each Ki(x) can be structured.

The structure concept is equally useful to deal with the
second central challenge in control design: system uncer-
tainty. The latter may be handled with µ-synthesis techniques
[2] if a parametric uncertain model is available. A less
ambitious but often more practical alternative consists in
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considered fill-in for a rigorous design method which directly
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of the parameter x remains a puzzling task because of the
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bounded real lemma or similar matrix inequalities, and were
therefore of limited success due to the presence of Lyapunov
variables, whose number grows quadratically in nP +nK and
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(3) and (4). Today non-smooth methods have superseded
matrix inequality-based techniques and may be considered
the state-of-art as far as realistic applications are concerned.
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and also evolutionary computation techniques [19]. The last
three classes do not take advantage of derivative information

Figure 2: Synthesis of K = block-diag(K1, . . . ,KN) against
multiple requirements or models P(1), . . . ,P(M). Each Ki(x)
can be structured.

The structure concept is equally useful to deal
with the second central challenge in control design:
system uncertainty. The latter may be handled with
µ-synthesis techniques [Stein and Doyle, 1991] if a
parametric uncertain model is available. A less am-
bitious but often more practical alternative consists
in optimizing the structured controller K(x) against
a finite set of plants P(1), . . . ,P(M) representing model
variations due to uncertainty, aging, sensor and ac-
tuator breakdown, un-modeled dynamics, in tandem
with the robustness and performance specifications.
This is again formally covered by Fig. 2 and leads to
a multi-objective constrained optimization problem of
the form

minimize f (x) = max
k∈SOFT,i∈Ik

‖T (k)
wizi(K(x))‖

subject to g(x) = max
k∈HARD, j∈Jk

‖T (k)
w jz j(K(x))‖ ≤ 1

K(x) structured and stabilizing
x ∈ Rn

(4)

where T (k)
wizi denotes the ith closed-loop robustness or

performance channel wi→ zi for the k-th plant model
P(k)(s). The rationale of (4) is to minimize the worst-
case cost of the soft constraints ‖T (k)

wizi‖, k ∈SOFT,



while enforcing the hard constraints ‖T (k)
w jz j‖ ≤ 1, k ∈

HARD. Note that in the mathematical programming
terminology, soft and hard constraints are classically
referred to as objectives and constraints. The terms
soft and hard point to the fact that hard constraints
prevail over soft ones and that meeting hard con-
straints for solution candidates is mandatory.

2 Optimization Techniques Over the
Years

During the late 1990s the necessity to develop de-
sign techniques for structured regulators K(x) was
recognized [Fares et al, 2001], and the limitations of
synthesis methods based on algebraic Riccati equa-
tions (AREs) or linear matrix inequalities (LMIs) be-
came evident, as these techniques can only provide
black-box controllers. The lack of appropriate syn-
thesis techniques for structured K(x) led to the unfor-
tunate situation, where sophisticated approaches like
the H∞ paradigm developed by academia since the
1980s could not be brought to work for the design
of those controller structures K(x) preferred by prac-
titioners. Design engineers had to continue to rely
on heuristic and ad-hoc tuning techniques, with only
limited scope and reliability. As an example: post-
processing to reduce a black-box controller to a prac-
tical size is prone to failure. It may at best be con-
sidered a fill-in for a rigorous design method which
directly computes a reduced-order controller. Simi-
larly, hand-tuning of the parameters x remains a puz-
zling task because of the loop interactions, and fails
as soon as complexity increases.

In the late 1990s and early 2000s, a change of
methods was observed. Structured H2- and H∞-
synthesis problems (3) were addressed by bilinear
matrix inequality (BMI) optimization, which used lo-
cal optimization techniques based on the augmented
Lagrangian method [Fares et al, 2001; Noll et al,
2002; Kocvara and Stingl, 2003], sequential semidef-
inite programming methods [Fares et al, 2002; Ap-
karian et al, 2003], and non-smooth methods for
BMIs [Noll et al, 2009; Lemaréchal and Oustry,
2000]. However, these techniques were based on
the bounded real lemma or similar matrix inequali-
ties, and were therefore of limited success due to the
presence of Lyapunov variables, i.e. matrix-valued
unknowns, whose dimension grows quadratically in
nP + nK and represents the bottleneck of that ap-
proach.

The epoch-making change occurs with the in-
troduction of non-smooth optimization techniques
[Noll and Apkarian, 2005; Apkarian and Noll, 2006b,

2007, 2006c] to programs (3) and (4). Today non-
smooth methods have superseded matrix inequality-
based techniques and may be considered the state-of-
art as far as realistic applications are concerned. The
transition took almost a decade.

Alternative control-related local optimization
techniques and heuristics include the gradient sam-
pling technique of [Burke et al, 2005], derivative-free
optimization discussed in [Kolda et al, 2003; Apkar-
ian and Noll, 2006a], particle swarm optimization, see
[Oi et al, 2008] and references therein, and also evo-
lutionary computation techniques [Lieslehto, 2001].
The last three classes do not exploit derivative infor-
mation and rely on function evaluations only. They
are therefore applicable to a broad variety of prob-
lems including those where function values arise from
complex numerical simulations. The combinatorial
nature of these techniques, however, limits their use
to small problems with a few tens of variable. More
significantly, these methods often lack a solid conver-
gence theory. In contrast, as we have demonstrated
over recent years, [Apkarian and Noll, 2006b; Noll
et al, 2008] specialized non-smooth techniques are
highly efficient in practice, are based on a sophisti-
cated convergence theory, capable of solving medium
size problems in a matter of seconds, and are still
operational for large size problems with several hun-
dreds of states.

3 Non-smooth optimization
techniques

The benefit of the non-smooth casts (3) and (4)
lies in the possibility to avoid searching for Lya-
punov variables, a major advantage as their number
(nP + nK)

2/2 usually largely dominates n, the num-
ber of true decision parameters x. Lyapunov variables
do still occur implicitly in the function evaluation pro-
cedures, but this has no harmful effect for systems up
to several hundred states. In abstract terms, a non-
smooth optimization program has the form

minimize f (x)
subject to g(x)≤ 0

x ∈ Rn
(5)

where f ,g : Rn → R are locally Lipschitz functions
and are easily identified from the cast in (4).

In the realm of convex optimization, non-smooth
programs are conveniently addressed by so-called
bundle methods, introduced in the late 1970s by
Lemaréchal [Lemarechal, 1975]. Bundle methods are
used to solve difficult problems in integer program-
ming or in stochastic optimization via Lagrangian re-



laxation. Extensions of the bundling technique to
non-convex problems like (3) or (4) were first devel-
oped in [Apkarian and Noll, 2006b, 2007, 2006c; Ap-
karian et al, 2008; Noll et al, 2009], and in more ab-
stract form, in [Noll et al, 2008].

Fig. 3 shows a schematic view of a non-convex
bundle method consisting of a descent-step generating
inner loop (yellow block) comparable to a line search
in smooth optimization, embedded into the outer loop
(blue box), where serious iterates are processed, stop-
ping criteria are applied, and the model tradition is
assured. Serious steps or iterates refer to steps ac-
cepted in a linesearch, while null steps are unsuccess-
ful steps visited during the search. By model tradi-
tion, we mean continuity of the model between (se-
rious) iterates x j and x j+1 by recycling some of the
older planes used at counter j into the new working
model at j+1. This avoid starting the first inner loop
k = 1 at j+1 from scratch, and therefore saves time.

At the core of the interaction between inner and
outer loop is the management of the proximity con-
trol parameter τ, which governs the stepsize ‖x−yk‖
between trial steps yk at the current serious iterate x.
Similar to the management of a trust region radius or
of the stepsize in a linesearch, proximity control al-
lows to force shorter trial steps if agreement of the
local model with the true objective function is poor,
and allows larger steps if agreement is satisfactory.

start

current iterate

stopping exit
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tangent
program

ρ ≥ γ

ρ ≥ Γ

yes
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Figure 3: Flow chart of proximity control bundle algorithm

Oracle-based bundle methods traditionally assure
global convergence in the sense of subsequences un-
der the sole hypothesis that for every trial point x
the function value f (x) and a Clarke subgradient φ ∈
∂ f (x) are provided. In automatic control applications
it is as a rule possible to provide more specific infor-
mation, which may be exploited to speed up conver-
gence.

Computing function value and gradients of the
H2-norm f (x) = ‖Twz (P,K(x))‖2 requires essentially

the solution of two Lyapunov equations of size nP +
nK , see [Apkarian et al, 2007; Rautert and Sachs,
1997]. For the H∞-norm, f (x) = ‖Twz (P,K(x))‖∞,
function evaluation is based on the Hamiltonian algo-
rithm of [Benner et al, 2012; Boyd et al, 1989]. The
Hamiltonian matrix is of size nP+nK , so that function
evaluations may be costly for very large plant state di-
mension (nP > 500), even though the number of outer
loop iterations of the bundle algorithm is not affected
by a large nP and generally relates to n, the dimension
of x. The additional cost for subgradient computation
for large nP is relatively cheap as it relies on linear
algebra [Apkarian and Noll, 2006b].

4 Computational Tools

The novel non-smooth optimization methods be-
came available to the engineering community since
2010 via the MATLAB Robust Control Toolbox [Ro-
bust Control Toolbox 4.2, 2012; Gahinet and Apkar-
ian, 2011]. Routines HINFSTRUCT , LOOPTUNE and
SYSTUNE are versatile enough to define and com-
bine tunable blocks Ki(x), to build and aggregate de-
sign requirements T (k)

wz of different nature, and to pro-
vide suitable validation tools. Their implementation
was carried out in cooperation with P. Gahinet (Math-
Works). These routines further exploit the structure of
problem (4) to enhance efficiency, see [Apkarian and
Noll, 2007] and [Apkarian and Noll, 2006b].

It should be mentioned that design problems with
multiple hard constraints are inherently complex. It
is well known that even simultaneous stabilization of
more than 2 plants P( j) with a structured control law
K(x) is NP-complete, so that exhaustive methods are
expected to fail even for small to medium problems.
The principled decision made in [Apkarian and Noll,
2006b], and reflected in the MATLAB routines, is to
rely on local optimization techniques instead. This
leads to weaker convergence certificates, but has the
advantage to work successfully in practice. In the
same vein, in (4) it is preferable to rely on a mix-
ture of soft and hard requirements, for instance, by
the use of exact penalty functions [Noll and Apkar-
ian, 2005]. Key features implemented in the men-
tioned MATLAB routines are discussed in [Apkar-
ian, 2013; Gahinet and Apkarian, 2011; Apkarian and
Noll, 2007].

5 Design example

Design of a feedback regulator is an interactive
process, in which tools like SYSTUNE , LOOPTUNEor



HINFSTRUCT support the designer in various ways. In
this section we illustrate their enormous potential by
solving a multi-model, fixed-structure reliable flight
control design problem.

In reliable flight control one has to maintain sta-
bility and adequate performance not only in nominal
operation, but also in various scenarios where the air-
craft undergoes outages in elevator and aileron actua-
tors. In particular, wind gusts must be alleviated in all
outage scenarios to maintain safety. Variants of this
problem are addressed in [Liao et al, 2002].

The open loop F16 aircraft in the scheme of Fig. 4
has 6 states, the body velocities u,v,w, pitch, roll, and
yaw rates q, p,r. The state is available for control as
is the flight-path bank angle rate µ (deg/s), the angle
of attack α (deg), and the sideslip angle β (deg). Con-
trol inputs are the left and right elevator, left and right
aileron, and rudder deflections (deg). The elevators
are grouped symmetrically to generate the angle of
attack. The ailerons are grouped anti-symmetrically
to generate roll motion. This leads to 3 control ac-
tions as shown in Fig. 4. The controller consists of
two blocks, a 3× 6 state-feedback gain matrix Kx in
the inner loop, and a 3× 3 integral gain matrix Ki in
the outer loop, which leads to a total of 27 = dimx
parameters to tune.

In addition to nominal operation, we consider 8
outage scenarios shown in Table 1.

Table 1: Outage scenarios where 0 stands for failure

Outage cases Diagonal of outage gain
nominal mode 1 1 1 1 1

right elevator outage 0 1 1 1 1
left elevator outage 1 0 1 1 1
right aileron outage 1 1 0 1 1
left aileron outage 1 1 1 0 1

left elevator and right aileron outage 1 0 0 1 1
right elevator and right aileron outage 0 1 0 1 1
right elevator and left aileron outage 0 1 1 0 1
left elevator and left aileron outage 1 0 1 0 1

The different models associated with the outage
scenarios are readily obtained by pre-multiplication
of the aircraft control input by a diagonal matrix built
from the rows in Table 1.

The design requirements are as follows:

• Good tracking performance in µ, α, and β with
adequate decoupling of the three axes.

• Adequate rejection of wind gusts of 5 m/s.

• Maintain stability and acceptable performance in
the face of actuator outage.

Tracking is addressed by an LQG-cost [Ma-
ciejowski, 1989], which penalizes integrated tracking

error e and control effort u via

J = lim
T→∞

E
(

1
T

∫ T

0
‖Wee‖2 +‖Wuu‖2dt

)
. (6)

Diagonal weights We and Wu provide tuning knobs
for trade-off between responsiveness, control effort,
and balancing of the three channels. We use We =
diag(20,30,20),Wu = I3 for normal operation and
We = diag(8,12,8),Wu = I3 for outage conditions.
Model-dependent weights allow to express the fact
that nominal operation prevails over failure cases.
Weights for failure cases are used to achieve limited
deterioration of performance or of gust alleviation un-
der deflection surface breakdown.

The second requirement, wind gust alleviation, is
treated as a hard constraint limiting the variance of the
error signal e in response to white noise wg driving the
Dryden wind gust model. In particular, the variance
of e is limited to 0.01 for normal operation and to 0.03
for the outage scenarios.

With the notation of section 3, the functions f (x)
and g(x) in (5) are f (x) := maxk=1,...,9 ‖T (k)

rz (x)‖2 and
g(x) := maxk=1,...,9 ‖T (k)

wge(x)‖2, where r denotes the
set-point inputs in µ, α and β. The regulated output z
is

zT :=
[
(W 1/2

e e)T (W 1/2
u u)T

]T
,

with x = (vec(Ki),vec(Kx)) ∈ R27. Soft constraints
are the square roots of J in (6) with appropriate
weightings We and Wu, hard constraints the RMS val-
ues of e, suitably weighted to reflect variance bounds
of 0.01 and 0.03. These requirements are covered
by the Variance and WeightedVariance options in
[Robust Control Toolbox 4.2, 2012].

With this setup, we tuned the controller gains Ki
and Kx for the nominal scenario only (nominal design)
and for all 9 scenarios (fault-tolerant design). The re-
sponses to setpoint changes in µ, α, and β with a gust
speed of 5m/s are shown in Fig. 5 for the nominal de-
sign and in Fig. 6 for the fault-tolerant design. As ex-
pected, nominal responses are good but notably dete-
riorate when faced with outages. In contrast, the fault-
tolerant controller maintains acceptable performance
in outage situations. Optimal performance (square
root of LQG cost J in (6)) for the fault-tolerant de-
sign is only slightly worse than for the nominal de-
sign (26 vs. 23). The non-smooth program (5) was
solved with SYSTUNEand the fault-tolerant design (9
models, 11 states, 27 parameters) took 30 seconds on
Mac OS X with 2.66 GHz Intel Core i7 and 8 GB
RAM. The reader is referred to [Robust Control Tool-
box 4.2, 2012] or higher versions, further examples,
and additional details.



Future directions

From an application viewpoint, non-smooth op-
timization techniques for control system design and
tuning will become one of the standard techniques in
the engineer’s toolkit. They are currently studied in
major European aerospace industries.

Future directions may include

• Extension of these techniques to gain-scheduling
in order to handle larger operating domains.

• Application of the available tools to integrated
system/control when both system physical charac-
teristics and controller elements are optimized to
achieve higher performance. Application to fault
detection and isolation may also reveal as an in-
teresting vein.
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Figure 4: Synthesis interconnection for reliable control
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Figure 5: Responses to step changes in µ, α and β for nominal design.
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Figure 6: Responses to step changes in µ, α and β for fault-tolerant design.


