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Abstract— This paper describes an application of nonsmooth
optimization to the tuning of fixed-structure gain-scheduled
controllers. The gain schedule is tuned over the entire operating
range subject to standard frequency-domain requirements at
each design point. The result is a smooth, compact scheduling
formula that can be either implemented directly or turned into
a lookup table. The effectiveness of this approach is illustrated
on a gain-scheduled three-loop autopilot for the pitch axis of
an airframe.

I. INTRODUCTION

Gain scheduling is a well established practice in industry
with many applications in automotive, aerospace, and indus-
trial automation. It is commonly used to control nonlinear
systems or linear systems whose dynamics change with
time and/or operating condition. Typically, gain-scheduled
controllers are fixed single- or multi-loop control structures
where lookup tables specify gain values as a function of
the scheduling variables. The conventional approach consists
of dividing the system’s operating range into regions where
linear control is adequate, designing a linear controller for
each region, and ”interpolating” the resulting set of con-
trollers in some reasonable way (gain interpolation or control
signal blending). This ad-hoc strategy yields satisfactory
results as long as the linearized dynamics vary slowly
during operation [1]. Alternative approaches based on linear
matrix inequalities (LMI) have been proposed in [2]–[6].
While they provide stability and performance guarantees,
they come with various degrees of conservatism and also
dictate the controller structure and complexity. See [7], [8]
for a comprehensive survey of the state of the art.
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Fig. 1. Three-loop autopilot.

This paper is concerned with conventional gain scheduling
for fixed control structures. A classic example is the three-
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loop autopilot of Figure 1 for controlling the flight path and
vertical acceleration of an airframe. Because the aerodynamic
coefficients change significantly with speed V and angle of
attack α, the autopilot gains are typically scheduled as a
function of (α, V ). In practice, these gains are tuned either
manually or via optimization at each flight condition and
are then globally adjusted to avoid sudden changes and
provide smooth transition between flight conditions. In [9],
the authors use nonsmooth optimization to tune the gains
at each flight condition and discuss how to build a gain
schedule from these results. In this paper, we push this idea
one step further and show how nonsmooth optimization can
be used to directly tune the entire gain schedule without
need for post-processing or interpolation. This results in a
smooth gain schedule with consistent performance at all
design points. Moreover, the compact formula expressing the
dependence on the scheduling variables provides a memory-
friendly alternative to a large lookup table.

The paper is organized as follows. Section 2 describes
the proposed approach in the context of Linear Parameter-
Varying (LPV) systems. Section 3 reviews the rationale for
using nonsmooth optimization when tuning fixed-structure
controllers and discusses extensions to the tuning of gain-
scheduled controllers. Finally, Section 4 demonstrates the
effectiveness of our approach on a realistic aerospace ap-
plication.

II. PROBLEM SETUP

Our starting point is any control system where the plant
is nonlinear or time-varying, the feedback structure is pre-
defined, and the control elements are linear compensators
whose parameters must be adjusted as a function of some
scheduling variables. The autopilot of Figure 1 is one such
example, but what follows is by no means limited to this
specific architecture. Since any linear compensator can be



written as an interconnection of elementary gain and inte-
grator blocks, we assume without loss of generality that all
gain-scheduled elements are (SISO or MIMO) static gains.
Using simple block diagram manipulations, we can transform
any control structure into the Standard Form of Figure 2
where
• σ denotes the vector of scheduling variables. These

variables can include physical parameters and system
inputs, outputs, or states.

• K1(σ), . . . ,KN (σ) are the controller gains to be tuned
and scheduled as a function of σ

• P is the nonlinear model obtained by combin-
ing the plant with everything but the tunable gains
K1(σ), . . . ,KN (σ)

• w and z are signals of interest for expressing the control
objectives (see Section 3 for details).
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Fig. 2. Standard form for fixed-structure gain scheduling.

In this form, the gain scheduling problem consists of
finding functions K1(σ), . . . ,KN (σ) that achieve the per-
formance goals for the closed-loop system of Figure 2.
This remains a daunting task given that P is a nonlinear
system and K1(σ), . . . ,KN (σ) are unknown functions of
σ. Following the conventional gain scheduling approach, we
then approximate P by a Linear Parameter-Varying (LPV)
model P (s, σ) of the form

ẋ = A(σ)x+B1(σ)w +B2(σ)u (1)
z = C1(σ)x+D11(σ)w +D12(σ)u (2)
y = C2(σ)x+D21(σ)w +D22(σ)u. (3)

This family of linear models is usually obtained by
linearizing the plant dynamics at operating conditions
(x(σ), w(σ), u(σ)) parameterized by σ [7]. For example, the
airframe model in Figure 1) is linearized at trim conditions
α̇ = q̇ = 0 for a range of incidence and speed values
(σ = (α, V )).

Conventional gain scheduling proceeds by (a) selecting a
finite number of design points σ1, . . . , σM covering the oper-
ating range, (b) tuning the gains K1, . . . ,KN at each design
point for the linearized plant P (s, σm), and (c) smoothing
the resulting set of gains across design points. Note that this

process does not require explicit knowledge of the functions
A(σ), B1(σ), . . .. Instead we just need their values at the
design points σ1, . . . , σM , which can be obtained by M
linearizations of P .

To eliminate the need for a-posteriori smoothing and
obtain a compact scheduling formula, we propose using a
finite expansion of Kj(σ) of the form

Kj(σ) = Kj0 + fj1(σ)Kj1 + . . .+ fjL(σ)KjL (4)

where fj1(.), . . . , fjL(.) are user-selected ”basis” functions
and the coefficients Kj0, . . . ,KjL are the tunable parame-
ters. There are many possible choices of basis functions, from
generic choices such as polynomials to problem-specific
choices guided by engineering insight and past experience.
Using this expansion and replacing P by the linearized model
P (s, σm), we can rearrange the closed-loop system of Figure
2 to look like Figure 3 at the design point σm, where the
linear model Pm(s) depends on P (s, σm) and the basis
function values fjl(σm).
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Fig. 3. Linearized standard form at design point σm.

Summing up, by selecting a discrete set of design points
in the operating range, linearizing the plant dynamics at each
design point, and using a finite expansion of the tunable
gains, we have reduced the original gain scheduling problem
to the following multi-model ”robust” tuning problem:

(GST) Find Kjl values that ensure adequate
closed-loop performance in Figure 3 for all plant
models P1(s), . . . , PM (s).

Note that the coefficients Kjl are tuned against the entire
set of design points. We call this approach Gain Surface
Tuning (GST) since we are effectively shaping entire gain
surfaces. As shown next, this problem is tractable with
available nonsmooth optimization tools when using standard
frequency-domain performance criteria.

III. OPTIMIZATION-BASED TUNING

In principle, we could choose any number of performance
criteria and optimization algorithms to quantify and solve
the GST problem. In practice, tractability and effectiveness
vary widely with these choices. Here we propose using the



nonsmooth techniques of [10], [11]. While this may not be
the best choice in all situations, this approach has proven very
effective in solving similar fixed-structure tuning problems
[12]–[16]. There are two main components to this approach:

1) Performance is quantified using standard frequency-
domain metrics such as the H∞ norm (peak gain
across frequency), the H2 norm (average output power
for white noise inputs), and the damping and natural
frequency of the closed-loop poles. Different criteria
applying to different transfer functions can be mixed
together. For example, we can specify the bandwidth
and loop gain of a feedback loop, limit the sensitivity
and control effort, enforce adequate stability margins,
and regulate stochastic disturbances all at the same
time.

2) The resulting multi-objective, multi-model optimiza-
tion program is solved with dedicated optimizers ca-
pable of overcoming the nonsmooth nature of the H∞
norm and of competing objectives.

Specifically, let x denote the vector of optimization vari-
ables obtained by collecting all tunable entries in the co-
efficients Kjl of (4). At a given design point σm, the
performance objectives are of the form (ignoring spectral
constraints for simplicity):

‖WL(s)Tm(s, x)WR(s)‖ (5)

where Tm(s, x) denotes the closed-loop transfer function
from w to z in Figure 3, WL and WR combine frequency
weighting and I/O channel selection, and ‖.‖ stands for the
H2 or H∞ norm. Collectively, the GST problem is therefore
equivalent to the program:

min
x

max
i,m

fim(x) subject to max
j,m

gjm(x) ≤ 1 (6)

where the functions fim(x) and gjm(x) are of the form (5)
and the indices i and j are relative to the set of requirements.
We refer to the terms fim(x) as the soft requirements
(objectives to be minimized) and to the terms gjm(x) as
the hard requirements (constraints to be enforced). Note that
non-smoothness stems primarily from the fact that the H∞
norm is a maximum over frequency:

‖H(s, x)‖∞ = max
ω

σmax(H(jω, x))

As we try to push down the peak gain, other peaks arise
(waterbed effect) and we soon end up with multiple active
peaks. Jointly pushing them down then requires finding
a suitable descent direction in the subdifferential of the
maxω σmax(.) function.

The nonsmooth program (6) can be solved with an ap-
propriate extension of the algorithm described in [10] and
implemented in the systune function of [16]. Details of
the algorithm are beyond the scope of this paper. This
algorithm is guaranteed to find critical points (local minima)
of (6). While this is a non-convex program, a few runs
with randomized initial conditions are usually sufficient to
weed out undesirable local minima. By working with the
Standard Form of Figure 3 and exploiting the nature of the

performance criteria (5), this algorithm is amenable to high-
performance implementations.

A suitable solution x of (6) determines the coefficients Kjl

for the gain surface (4). As with the convential approach,
the resulting gain-scheduled controller comes with no global
guarantees of performance, so validation on a finer σ grid
and nonlinear simulations remain necessary to fully qualify
the results.

IV. EXAMPLE

This section applies the ”Gain Surface Tuning” method
described in Sections 2 and 3 to the three-loop autopilot
of Figure 1. A schematic of the airframe appears in Figure
4. The autopilot must track a command γref in flight path
angle by controlling the normal acceleration Az and the pitch
rate q. PI control is used for the pitch rate loop and static
gains are used for the acceleration and flight path loops.
Because the aerodynamic forces and moments vary with the
incidence angle α and the speed V , the autopilot gains must
be scheduled as a function of α and V . For the operating
range considered here, α varies between -20 and +20 degrees
and V varies between 700 to 1400 m/s. We use an airframe
model similar to the one described in [9], [17]. The 3-dof
equations for the longitudinal motion are

u̇ = −g sin θ + qw + (Fx(α, V, δ) + T )/m (7)
ẇ = −g cos θ − qu+ Fz(α, V, δ)/m (8)
q̇ = M(α, V, δ)/Iyy (9)

θ̇ = q (10)

where g is the gravitational acceleration, θ = γ + α is
the pitch angle, Fx, Fz,M are the aerodynamic forces and
moments, T is the thrust, and m and Iyy are the mass and
moment of inertia of the airframe. The actuator is modeled
as a second-order system with natural frequency ωn = 150
rad/s and damping ζ = 0.7. When neglecting gravity, the
airframe equations are symmetric in α and it is therefore
enough to consider positive values of α or, equivalently, to
use |α| as scheduling variable.
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Fig. 4. Airframe nomenclature.

For tuning purposes, we select a 5-by-9 grid of linearly
spaced design points with α ranging from 0 to 20 degrees
and V from 700 to 1400 m/s. To derive an LPV model of
the form (1)-(3), we linearize (7)-(10) at the 45 design points
for the trim condition ẇ = q̇ = 0 (zero normal acceleration



and pitching moment). The gain surfaces (4) are chosen to
be first-order polynomial in α and V :

Kp(α, V ) = Kp0 +α×Kp1 + V ×Kp2 +αV ×Kp3 (11)

and similarly for the other gains Ki,Ka,Kg . Finally, the
autopilot is tuned to meet the following requirements:

• The flight path angle γ should track the reference γref
with a response time of about 0.5 seconds. In terms of
the transfer function Sg from γ to the tracking error eg ,
this is expressed as ‖WgSg‖∞ < 1 where the weighting
function Wg(s) = 0.77(s + 2)/(s + 0.03) emphasizes
the frequency range from 0 to 1 rad/s.

• The Az loop should track well at low frequency and
should roll off past 10 rad/s. This is expressed as
‖WaSa‖∞ < 1 where Sa is the closed-loop transfer
from ea to Az and Wa(s) = 0.06(s+1.5)(s+13.7)/(s+
0.025).

• The autopilot should reject disturbances at the plant
input. This is quantified as ‖WdTd‖∞ < 1 where Td
is the closed-loop transfer from δ to Az and Wd(s) =
(0.25s + 1)/(150s) emphasizes rejection at low fre-
quency.

• The closed-loop poles should have a minimum damping
of 0.35. This is expressed as ψ(p) := maxp 2 +
Re(p)/(0.35|p|) < 1 where p are the closed-loop poles.

The resulting nonsmooth program (6) has objective function

f(x) = max(‖WgSg‖∞, ‖WaSa‖∞, ‖WdTd‖∞, ψ(p))
(12)

and no g(x) constraint. For comparison purposes, we per-
formed three separate designs:

1) Classic Gain Scheduling: Independently tune one set
of gains Kp, Ki, Ka, Kg at each design point (α, V )

2) Gain Surface Tuning: Tune the 16 coefficients of the
gain surfaces (11) for Kp(α, V ), ...,Kg(α, V ) to meet
the requirements at all design points

3) Robust Design: Tune a single set of gains
Kp,Ki,Ka,Kg to meet the requirements at all design
points

The first design establishes a baseline for the best achievable
performance at each design point. The optimized value for
f(x) was found to range between 0.99 and 1.11 (a value
less than 1 indicates that all requirements are met). The GST
approach achieved a best overall value of 1.13 and produced
the following gain surfaces (in terms of the normalized
scheduling variables ᾱ = (α − 0.1745)/0.349 and V̄ =
(V − 1050)/350):

Kp(α, V ) = 0.1(1 + 0.071 ᾱ+ 0.068 V̄ − 0.048 ᾱV̄ )
Ki(α, V ) = 3.6 − 0.054 ᾱ+ 0.39 V̄ − 0.27 ᾱV̄
Ka(α, V ) = 0.001(5.7 − 0.52 ᾱ− 3.3 V̄ + 0.076 ᾱV̄ )
Kg(α, V ) = −2700 − 340 ᾱ− 900 V̄ − 180 ᾱV̄

Finally, the robust design achieved a best overall value of
1.48, significantly worse than the first two which confirms
the benefits of gain scheduling for this application. The
three designs were performed with systune [16] with

computation times of 36, 27, and 20 seconds, respectively
(using a 3GHz Intel Xeon processor with 12 GB of RAM).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5
From: gammaref  To: gamma

 

 

Step Response

Time (seconds)

A
m

pl
itu

de

Classic
GST

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5
From: gammaref  To: gamma

 

 

Step Response

Time (seconds)

A
m

pl
itu

de

Robust
GST

Fig. 5. Tracking of step change in flight path angle.
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Figure 5-7 compare the tracking and disturbance rejection
performance for the three designs. Note that Gain Surface
Tuning yields homogenous responses free of ”outliers” and
on par with the pointwise optima. It also yields smooth gain
surfaces, which is not the case when the gains are tuned
independently at each design point as shown in Figure 8.
Finally, we implemented the gain schedules Kp(α, V ), . . .
from the second design and simulated the controller’s ability
to execute a maneuver that takes the airframe through a
large portion of its operating range. The simulation results
are summarized in Figure 9 and confirm good tracking
performance despite rapid changes in speed and incidence.
For more details on the model and results, see related
example in [16].
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Note: In the nonlinear simulation, our gain-scheduled con-
troller does not make use of the offsets associated with the
trim condition ẇ = q̇ = 0. This is justified by the fact that
for the model considered here, the short-period dynamics
are essentially described by a quasi-LPV model. To see
this, observe that V varies slowly compared to α and q so
ẇ ≈ −uα̇. Ignoring gravity and the slow dynamics along u
and using cosα ≈ 1, (7)-(10) simplify to

α̇ = q − Fz(α, V, δ)

mV
, q̇ =

M(α, V, δ)

Iyy
.

Using the particular structure of the aerodynamic coefficients
[17], this can be rewritten as

α̇ = q − Fα(α, V )

mV
α− Fδ(α, V )

mV
δ (13)

q̇ =
Mα(α, V )

Iyy
α+

Mδ(α, V )

Iyy
δ (14)

which is a quasi-LPV model of the short-period dynamics
with state (α, q), input δ, and varying parameter σ = (α, V ).
Consequently, we can ignore the trim offsets and act as if
we were controlling (13)-(14).



V. CONCLUSION

We have presented a novel way to tune gain-scheduled
controllers. Our approach closely follows the conventional
gain-scheduling workflow except that it seeks to tune the
entire gain schedule at once. Nonsmooth optimization tools
are used to optimize the gain surfaces, which enables us
to (1) tune fixed-structure control systems with pre-defined
feedback structure and control elements, and (2) use a variety
of well-established frequency-domain criteria to express the
control objectives. The validity and effectiveness of this
approach have been illustrated on a realistic three-loop
autopilot application.
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