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Abstract

In this paper, we discuss a spectral quadratic-SDP method for the iterative resolution

of fixed-order H2 and H∞ design problems. These problems can be cast as regular SDP

programs with additional nonlinear equality constraints. When the inequalities are absorbed

into a Lagrangian function the problem reduces to solving a sequence of SDPs with quadratic

objective function for which a spectral SDP method has been developed. Along with a

description of the spectral SDP method used to solve the tangent subproblems, we report a

number of computational results for validation purposes.
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1 Introduction

Algebraically or rank-constrained LMI problems frequently arise in control engineering applica-
tions. A typical example is fixed- and reduced-order synthesis of output feedback controllers. The
present paper is mainly concerned with this challenging problem, but our solution strategy applies
to many other practical problems in control (see e.g. [24, 12, 11]).

We present an iterative technique which allows to compute solutions of the fixed-order H2 and
H∞ synthesis problem. Our method computes a stabilizing reduced-order controller whose H2

or H∞ performance channel is locally optimal among all such controllers. We have previously
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presented two classes of nonlinear programming procedures which achieve similar goals: an aug-
mented Lagrangian (AL) method [26, 2, 11] and a sequential semidefinite programming (S-SDP)
algorithm [12], which expands on the classical SQP method. SQP and AL have been known at
least since the 1970s in the context of mathematical programming with classical equality and
inequality constraints. Their local and global convergence properties have been extensively stud-
ied over the years, see for instance [7, 9, 8] for AL or [4, 5] for SQP. In [12] and [26] we have
established similar convergence features for the more general programs under matrix inequality
constraints. Proving global and fast local convergence of these methods is important since an
increasing number of problems in control is identified as suited for optimization programs under
matrix inequality constraints. The discussion in [26] focuses on convergence properties of the AL
method. Here we dwell on a number of practical features aiming at a more efficient and reliable
implementation of the AL algorithm in the specific setting of fixed-order H2 and H∞ synthesis.
Specifically, the AL method relies on the solution of tangent subproblems in the form of the min-
imization of a quadratic objective subject to SDP constraints. When suitably convexified, these
problems can be solved using standard SDP codes. This option, however, is practically inefficient
since the rearrangement of the tangent subproblem into a standard SDP requires an additional
large and dense SDP constraint which in turn leads to prohibitive running times when standard
primal-dual interior-point solvers are employed. This holds even for problem of modest sizes. In
the interest of efficiency, we therefore propose a spectral quadratic SDP approach to solve the
tangent subproblems directly. This is examined in sections 4 and 5 subsequently to a brief de-
scription of the AL algorithm in section 3. Finally, numerical examples are presented in section 6
to validate the proposed techniques.

Notation

Our notation is standard. We let S
n denote the set of n×n symmetric matrices, MT the transpose

of the matrix M and Tr M its trace. For Hermitian or symmetric matrices , M � N means that
M −N is positive definite and M � N means that M −N is positive semi-definite. ‖A‖F denotes
the Frobenius norm of the matrix A. The symbol ⊗ stands for the usual Kronecker product of
matrices and vec stands for the columnwise vectorization on matrices. We shall make use of the
properties:

vec (AXB) = (BT ⊗ A) vec X, Tr (AB) = vec T AT vec B

which hold for any matrices A, X and B of compatible dimensions. The Hadamard or Schur
product is defined as

A ◦ B = ((AijBij)) .

The following holds for matrices of the same dimension:

vec A ◦ vec B = diag(vec A)vec B ,

where the operator diag forms a diagonal matrix with vec A on the main diagonal.

2 Characterizations for fixed-order syntheses

In this section, we give suitable conditions for H2 and H∞ syntheses. Since these results are
fairly standard, we simply recap the central facts. We start with the simpler static output feed-
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back and show how the more general fixed-order case can be handled through straightforward
transformations of the problem data.

The general setting of the fixed-order synthesis problem is as follows. We consider a linear
time-invariant plant P (s) described in “standard form” by the state-space equations:

P (s) :





ẋ
z
y



 =





A B1 B2

C1 D11 D12

C2 D21 D22









x
w
u



 , (1)

where

• x ∈ R
n is the state vector,

• u ∈ R
m2 is the vector of control inputs,

• w ∈ R
m1 is a vector of exogenous inputs,

• y ∈ R
p2 is the vector of measurements,

• z ∈ R
p1 is the controlled or performance vector.

• D22 = 0 is assumed without loss of generality.

Let Tw,z(s) denote the closed-loop transfer functions from w to z for some static output-feedback
control law

u = Ky . (2)

Our aim is to compute K subject to the following design constraints:

• internal stability: for w = 0 the state vector of the closed-loop system (1) and (2) tends to
zero as time goes to infinity.

• performance: the H∞ norm ‖Tw,z(s)‖∞ respectively the H2 norm ‖Tw,z(s)‖2 is minimized
where the closed-loop transfer ‖Tw,z(s)‖ is described as

Tw,z(s) :

{

ẋ = (A + B2KC2) x + (B1 + B2KD21) w
z = (C1 + D12KC2) x + (D11 + D12KD21) w .

2.1 Static H∞ synthesis

With the above ingredients, the static H∞ synthesis problem is first transformed into a matrix
inequality condition using the bounded real lemma [1]. Then the projection lemma from [15] is
used to eliminate the unknown controller data K from the cast. This gives:

Proposition 2.1 A stabilizing static output feedback controller K with H∞ gain ‖Tw,z(s)‖∞ ≤ γ
exists provided there exist X, Y ∈ S

n such that

N T
Q





AT X + XA XB1 CT
1

BT
1 X −γI DT

11

C1 D11 −γI



NQ ≺ 0 (3)

N T
P





Y AT + AY B1 Y CT
1

BT
1 −γI DT

11

C1Y D11 −γI



NP ≺ 0 (4)

[

X I
I Y

]

� 0, XY − I = 0 (5)
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where NQ and NP denote bases of the nullspaces of Q := [ C2 D21 0 ] and P := [BT
2 DT

12 0 ],
respectively. 2

The reader is referred to [15, 3] for proofs and further details.

2.2 Static H2 synthesis

The fixed-order H2 synthesis follows similar lines. Again, the projection lemma [15] is the key tool
to eliminate variable redundancies and turns a nonlinear SDP program into the more accessible
form below. Recall that in the H2 case, some feedtrough terms must be nonexistent in order for
the H2 performance to be well defined. We therefore have to assume

D11 = 0, D21 = 0

for the plant in (1).
With this extra condition we have the following

Proposition 2.2 A stabilizing static output feedback controller K with H2 performance ‖Tw,z(s)‖2 ≤√
γ exists provided there exist X, Y ∈ S

n such that

N T
Q

[

AT X + XA CT
1

C1 −I

]

NQ ≺ 0 (6)

N T
P

[

Y AT + AY Y CT
1

C1Y −I

]

NP ≺ 0 (7)

Tr (BT
1 XB1) ≤ γ (8)

[

X I
I Y

]

� 0, XY − I = 0 (9)

where NQ and NP denote bases of the nullspaces of Q := [ C2 0 ] and P := [ BT
2 DT

12 ], respec-
tively. 2

2.3 Fixed-order synthesis

Fixed-order synthesis is concerned with the design of a dynamic controller K(s) = CK(sI −
AK)−1BK + DK where AK ∈ R

k×k and k < n. It can be regarded as a static gain synthesis
problem for an augmented system. Consequently, propositions 2.1 and 2.2 apply if we perform
the following substitutions:

K →
[

AK BK

CK DK

]

, A →
[

A 0
0 0k

]

B1 →
[

B1

0

]

, C1 → [ C1 0 ]

B2 →
[

0 B2

Ik 0

]

, C2 →
[

0 Ik

C2 0

]

, D12 → [ 0 D12 ] , D21 →
[

0
D21

]

.

(10)

The Lyapunov variables X and Y now lie in the augmented space S
n+k. Recall that when a so-

lution (X, Y, γ) in proposition 2.1 or 2.2 has been computed, the corresponding optimal controller,
static or dynamic, is reconstructed in an extra step by solving a single LMI problem [15].
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3 Augmented Lagrangian with explicit LMIs

In this section, we describe how a local optimal solution of the fixed-order synthesis problem is
computed. The problem is cast as an optimization problem with cost function the performance
index γ minimized subject to nonlinear equality and inequality constraints in propositions 2.1 and
2.2

minimize f(x) := γ
subject to h(x) := XY − I = 0 ,

A(x) � 0 .
(11)

Here x ∈ R
N , N = (n+k)(n+k+1)+1 regroups x = (γ, X, Y ) and should not be confused with the

state vector in (1). The dimension of the equality constraint h : R
N → R

M is M = (n+k)2. For a
static controller we have k = 0. For notational ease the LMI constraints in (3) – (5), respectively
(6) – (9), have been condensed into the single LMI A(x) � 0, where ≺ 0 have systematically been
replaced with � −εI for a suitable small threshold ε > 0 to guarantee strict feasibility of the
LMIs.

Following the idea of a partially augmented Lagrangian method, program (11) is now solved
by a succession of simpler programs:

(Pc,Λ)
minimize Lc(x, Λ)
subject to A(x) � 0

(12)

where Lc(x, Λ) is the augmented Lagrangian function

Lc(x, Λ) = γ +
∑

ij

Λij(XY − I)ij +
c

2

∑

ij

(XY − I)2
ij ,

equivalently expressed in matrix form as:

Lc(x, Λ) = γ + Tr
(

ΛT (XY − I)
)

+
c

2
Tr

(

(XY − I)T (XY − I)
)

. (13)

Here c is a positive penalty and Λ is a matrix-valued Lagrange multiplier estimate. In order to
drive the solutions xc,Λ of (Pc,Λ) to a solution of the original program (11), a suitable updating
strategy c → c+, Λ → Λ+ has to be used. The algorithm below shows how this is done.

The rationale in (Pc,Λ) is that removing the difficult equality constraints h = 0 in (5) by putting
them into the augmented objective leads to a program (Pc,Λ) which is easier to solve. Classical
AL strategies would even recommend a similar augmentation for the matrix inequality constraints
A(x) � 0 in order to end up with an unconstrained program. We prefer to keep the LMIs as
explicit constraints due to their simpler affine structure. This could be referred to as a partially
augmented Lagrangian approach (see [9, 26]).

Each of the new optimization problems (12) is itself solved by a succession of SDPs. This
requires that at the current point x, a new iterate x+ = x + dx is obtained by minimizing the
suitably convexified second-order Taylor series approximation of Lc(x+dx, Λ) about the current x
and subject to the LMI A(x + dx) � 0. Without convexification of the Hessian L′′

c , these tangent
problems would remain difficult to solve. More details on how the SDP subproblems are solved
will be presented in sections 4 and 5.

It is important to keep in mind that the motivation for using AL is that, for an appropriate
choice of (Λ∗, c∗), a local optimal solution x∗ of the original program (11) can be found by simply
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optimizing the function Lc∗(x, Λ∗) with respect to x. A thorough discussion on this mechanism
for classical constraints is given in [13]. Of course, the central task is to determine (Λ∗, c∗), and
the AL algorithm achieves this goal by forming a sequence (Λk, ck) converging to (Λ∗, c∗). Notice
that the fact that the penalty parameter c needs not be driven to +∞ is a key property of our
approach.

Since the proposed algorithm is of second-order type, we need to compute the gradient and
Hessian of (13). The first order information at the point x = (X, Y, γ) is easily obtained. With T
the transformation matrix mapping the vectorized lower triangle of the symmetric matrix X into
its vec representation, the Jacobian of the matrix function h(x) = XY − I is

J(x) = [ (Y ⊗ I)T (I ⊗ X)T 0 ] ,

and the gradient of the augmented Lagrangian ∇xLc(x, Λ) is computed as

∇xLc(x, Λ) =





T T vec (ΛY )
T T vec (XΛ)

1



 + c J(x)T vec (XY − I) . (14)

The Gauss-Newton approximation ∇GN
xx Lc(x, Λ) of the Hessian is

∇GN
xx Lc =





0 T T (I ⊗ Λ)T 0
T T (I ⊗ ΛT )T 0 0

0 0 0



 + c J(x)T J(x) . (15)

By definition it is obtained by omitting the term

c

M
∑

i=1

hi(x)∇2
xxhi(x) (16)

from the full Hessian expansion ∇2
xxLc(x, Λ). The rationale in (15) is that (16) is small when

iterates x get close to feasibility, where hi(x) get smaller. The Gauss-Newton approximation has
the further advantage that it is easier to compute than ∇2

xxLc, is more positive definite than the
true Hessian and asymptotically converges to the true Hessian, as h(x) gets closer to zero by
virtue of expression (16). With these preparations, a general description of the algorithm is now
the following.
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AL-Algorithm for Fixed-Order Synthesis

1. Initial phase. Choose a starting point x0 such that A(x0) � 0. This can be done
by simply solving a feasibility SDP. Then initialize the penalty parameter c0 > 0 and the
Lagrange multiplier Λ0. Fix ρ < 1, 0 < µ < 1 and ε > 0.

2. Optimization phase. Given xj, cj > 0 and the multiplier estimate Λj, solve the sub-
problem (Pcj ,Λj ), i.e., minimize Lcj(x, Λj) over {x : A(x) � 0}. Let xj+1 be the solution so
obtained. Possibly use xj as a starting point for the inner optimization.

3. Update penalty and multiplier.

Λj+1 = Λj + cj(Xj+1Y j+1 − I). (17)

cj+1 =

{

ρcj if ‖Xj+1Y j+1 − I‖F > µ‖XjY j − I‖F

cj if ‖Xj+1Y j+1 − I‖F ≤ µ‖XjY j − I‖F

(18)

4. Stopping test. Dispense with the iteration if ‖X j+1Y j+1 − I‖F < ε and the necessary
optimality conditions are satisfied or if the progress of the algorithm is negligible. Otherwise
increase counter j and go back to step 2.

5. Terminating phase. Given the solution x = (γ, X, Y ) with ‖XY − I‖F < ε, try to
reconstruct a k-th-order controller. If the reconstruction fails, reduce ε, increase counter j
and go back to step 2.

4 Tangent subproblems

The optimization phase in our algorithm solves program (Pc,Λ) for fixed c and Λ. This minimization
is performed iteratively by generating search directions dx about the current iterate x through
the tangent quadratic model

min ∇Lc(x, Λ)T dx + 1
2
dxT H dx

s.t A(x + dx) � 0 .
(19)

In our present implementation, H is a convexified version of the Hessian of the Lagrangian of
(Pc,Λ), which by the linearity of the constraint A(x) � 0 is just a convexified version of L′′

c .
The resolution of the tangent subproblems (Pc,Λ) is the major computational load of the AL

algorithm. It is therefore of the essence to avoid numerical fallacies. For instance, with H � 0 it
is tempting to replace the quadratic term in the objective xT Hx by an additional LMI constraint.
This is achieved through a Schur complement transformation:

min t

s.t.

[

t −∇Lc(x, Λ)T dx dxT

dx 2 H−1

]

≥ 0

A(x + dx) � 0 ,
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In this form, the subproblem can be solved by currently available SDP solvers [16, 28]. However,
this reformulation is inefficient as it creates an additional large and dense SDP constraint, which
is usually even larger than the genuine LMIs A(x) � 0. It is therefore recommended to solve (19)
directly, and the next section shows how this can be done.

5 A spectral quadratic SDP method

As we have just stressed, the resolution of the tangent subproblem (19) requires special attention as
it is a critical component which determines both accuracy and efficiency of the proposed technique.
We now discuss our Fortran 90 implementation of a spectral quadratic SDP method for programs
of the form:

minimize cT x + 1
2
xT H x

subject to A(x) � 0 .
(20)

As before, A : R
n → S

m is affine. Whenever convenient, we will expand the SDP constraint

in the form A(x) = A0 +
n
∑

i=1

xiAi. Our method is an extension of a penalty/barrier multiplier

algorithm in [25] to quadratic objectives. A spectral penalty (SP) function for (20) is defined as

F (x, p) = cT x +
1

2
xT H x + Tr (φp(A(x)) . (21)

Here, φp is a scalar function which can be classically extended to a matrix function on the set of
symmetric matrices by defining:

φp(A(x)) := S diag(φp(λ1(A(x)), . . . , λm(A(x)))ST , (22)

where λi(A(x)) stands for the ith eigenvalue of A(x) and S is the orthonormal matrix of associated
eigenvectors. An alternative expression is then readily derived from (21) and (22)

F (x, p) = cT x +
1

2
xT H x +

m
∑

i=1

φp(λi(A(x)) . (23)

The rationale in (21) is that (20) and

min cT x + 1
2
xT H x

s.t. φp(A(x)) � 0 .
(24)

are equivalent whenever φp is a strictly increasing scalar function such that φp(0) = 0. In our
implementation and following the recommendation in [25], we have used the log-quadratic penalty
function φp(t) = pφ1(t/p) where

φ1(t) =

{

t + 1
2
t2 if t ≥ −1

2

−1
4
log(−2t) − 3

8
if t < −1

2

.

The penalty parameter p could at worst be used to enforce feasibility by letting p → 0. As we
shall see, the AL approach serves just to avoid this by introducing suitable Lagrange multiplier
estimates.

So far, we have only discussed pure SP functions. As with more classical penalty functions, SP
functions lead to ill-conditioned minimization problems for small values of the penalty parameter.
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An effective technique to alleviate this difficulty is to introduce Lagrange multipliers associated
with the SDP constraints in (20). The resulting SP function is then an augmented Lagrangian
function and one such candidate is described as

F (x, V, p) = cT x+
1

2
xT H x+Tr (φp(V

TA(x)V )) = cT x+
1

2
xT H x+

m
∑

i=1

φp(λi(V
TA(x)V )) . (25)

In this expression, the variable V has the same dimension as A(x) and plays the role of a Lagrange
multiplier factor as explained in the sequel. Note that in contrast with classical (quadratic)
augmented Lagrangians, the Lagrange multiplier is not involved linearly in (25). Interestingly,
this is not at all troublesome and a suitable first-order update formula V → V + generalizing the
classical case will be derived in section 5.2. Schematically, the spectral quadratic SDP technique
is as follows:

Spectral Quadratic SDP Technique

1. Initial phase. Initialize the algorithm with x0, V 0 and a penalty parameter p0. Define ρ
with 0 < ρ ≤ 1.

2. Optimization phase. For fixed V j and pj, minimize F (x, V j, pj) and let xj+1 be the
solution. Use the previous iterate xj as a starting value for the inner optimization.

3. Update penalty and multiplier. Update Lagrange multiplier factor V j → V j+1 (see
below) and penalty parameter pj+1 = ρ pj. Increase j and go back to step 2.

Minimization of F (x, V j, pj) can be based on a Newton line search or a trust region approach.
The latter is preferable when nonconvex problems are allowed. In either case, it is necessary to
derive explicit formulas for the gradient and Hessian of F (x, V, p).

5.1 Derivatives of SP functions

In the sequel, we give a rigorous derivation for the gradient and Hessian of F (x, V, p).

As exposed in (25), a SP function is a function of eigenvalues g(λ1(x), . . . , λm(x)). According to
the beautiful theory of spectral functions [22, 23], see also [27], they are continuously differentiable
up to second-order whenever this is so for g at (λ1(x), . . . , λm(x)). Following the derivation in
Lewis [22, 23], given a symmetric function f : R

m → R and λ : S
m → R

m representing the
eigenvalue map λ(X) := (λ1(X), . . . , λm(X)), the gradient of f ◦ λ at X is obtained as

∇(f ◦ λ)(X) = S diag∇f (λ(X))ST ,

where S is an orthogonal matrix of eigenvectors, X = S diag λ(X)ST . Accordingly, its differential
is obtained as

d(f ◦ λ(X))[dX] = Tr (S diag∇f (λ(X))ST dX) .

9



Exploiting this result with f(x) :=
∑m

i=1 φp(xi) yields the differential of the SP functions in
(25)

dF (x, V, p)[dx] = (c + Hx)T dx + Tr (S diag φ′

p(λi(V
TA(x)V )) ST d(V TA(x)V ))

= (c + Hx)T dx + Tr (V S diagφ′

p(λi(V
TA(x)V ))(V S)TA0(dx)) ,

(26)

where S is an orthogonal matrix of eigenvectors of V TA(x)V and with the definition A0(x) =
∑n

i=1 xiAi, the linear part of A. A vector form suitable for computations is then readily obtained
as

dF (x, V, p)[dx] = dxT (c + Hx + AT vec (V S [diagφ′

p(λi(V
TA(x)V ))] (V S)T )) (27)

Here vecA0(dx) = A dx when we define A := [vec A1 . . . vec An].
For the Hessian we use again a central result in [23], which states that for f(x) =

∑m

i=1 φp(xi),

d2(f ◦ λ)(X)[dX, dX] = Tr (ST dX S H ◦ {ST dX S}) ,

where the symbol ◦ denotes the Hadamard or Schur product of 2 matrices and H is defined as

Hi,j :=

{

φ′

p(λi)−φ′

p(λj)

λi−λj
if λi 6= λj

φ′′

p(λi) if λi = λj

.

We obtain the quadratic form of the second order differential of the SP function as

d2F (x, V, p)[dx, dx] = dxT H dx + Tr ((V S)TA0(dx)V S[H ◦
{

(V S)TA0(dx)V S
}

]) ,

where S is as in (26). As before this is more conveniently rewritten in vector form

d2F (x, V, p)[dx, dx] = dxT H dx + dxTAT [V S ⊗ V S] diag vec H [(V S)T ⊗ (V S)T ] A dx (28)

where properties of the Kronecker and Hadamard products given in the introductory section have
been used.

Incidentally, expression (28) shows that the spectral component of F (x, V, p) is convex since
H has only nonnegative entries.

5.2 Multiplier update rule

The first-order multiplier update rule is derived similarly to the classical case of polyhedral con-
straints. Assume x+ is the solution of min F (x, V, p). A new multiplier factor estimate V + is then
obtained by simply equating the gradients of the augmented Lagrangian (25) and the traditional
Lagrangian of problem (20). The Lagrangian of (20) can be expressed as

L(x, V, p) := cT x +
1

2
xT H x + Tr (UA(x)) = cT x +

1

2
xT H x + Tr (V V TA(x))

with multiplier U := V V T . Its gradient at x+ computed at the sought estimate V + thus takes the
form

∇L(x+, V +, p) = c + Hx+ + AT vec V +V +T
.

Equating the latter expression with the gradient in (27) then gives

V +V +T
= V S [diag φ′

p(λi(V
TA(x+)V ))] (V S)T . (29)

Notice that by construction the right hand term is positive definite, so V + could for instance be
chosen as a Cholesky factor.
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5.3 Comments

We have introduced all ingredients for the implementation of the AL method of section 3. When
a Gauss-Newton approximation of the Hessian is used, the quadratic objective is convex in the
tangent subproblem and therefore a linesearch can be used within the spectral quadratic SDP
method. This is what has been implemented in the alpha version of our Fortran code. The step
length in the linesearch is required to satisfy the strong Wolfe conditions (see for instance [13]) in
order to guarantee global convergence.

We must keep in mind however that the function in (13) is inherently nonconvex and hence
a trust region approach [10] is more likely to produce good results with fewer iterations. An
important advantage of the spectral quadratic SDP approach lies in the fact that nonconvex
quadratic objectives can be handled when combined with a trust region technique. This promising
feature will be studied in a future version of the code.

To conclude, notice that the presented method appears highly complex, as three iterative levels
are needed. Naturally, we may consider the solutions of the SDP programs in (20) as black box
outputs, where any available SDP solver could be used. However, in the present context it seems
worthwhile to open this box and consider solvers tailored to the class of nonconvex quadratic SDP
programs (20). Most currently available SDP solvers are not suited and quickly succumb as the
problem size grows.

6 Numerical experiments

In this section, we evaluate the AL algorithm with the spectral quadratic SDP approach for
the innermost tangent subproblems using different synthesis problems. The state-space data of
theses applications are fully described in Appendix A. Both static and fixed-order syntheses
are considered. Table 1 displays the number of quadratic SDP tangent subproblems that were
necessary to construct a locally optimal controller (column ‘quad SDP’). Column ‘‖h‖∞’ provides
the infinity norm of the nonlinear equality constraints in (5), (9) and (11) right before controller
construction takes place. The last two columns show the achieved H∞ or H2 performances or
both when this applies. The reader is referred to [26] for a catalog of numerical experiments on
problems of larger size (up to 40 states).

6.1 Transport airplane

We consider the design of a static H∞ controller for a transport airplane. State-space data as well
as further details can be found in [17]. As reported in Table 1, a static H∞ controller K has been
computed after 24 quadratic SDP tangent subproblems of the AL algorithm:

K∞ = [ 0.66997 −0.63801 −0.80285 0.10263 1.59297 ]

The associated H∞ performance is 2.22 and represents 30% improvement over the result in
[21].

6.2 VTOL helicopter

The state-space data of the VTOL helicopter are borrowed from [20]. They are obtained by
linearizing the helicopter rigid body dynamics at given flight conditions. This leads to the fourth-
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order model described in Appendix A. Both H∞ and H2 static controllers are computed with the
AL method:

K∞ =

[

0.80656
14.94467

]

, K2 =

[

0.11630
5.67734

]

We note again that K∞ provides about 40% improvement over the H∞ performance obtained
in [21].

6.3 Chemical reactor

A model description for the chemical reactor can be found in [19]. Both H∞ and H2 static con-
trollers are computed with the AL method, which requires solving 18 and 12 tangent subproblems,
respectively. The static controllers are given as

K∞ =

[

−5.92970 −9.25089
−4.46382 −19.07289

]

for the H∞ performance criterion and

K2 =

[

0.35714 −2.62418
2.58159 0.77642

]

for the H2 performance criterion.

6.4 Piezoelectric actuator

In this section, we consider the design of static controller for a piezoelectric actuator system. A
comprehensive presentation of this system can be found in [6] and state-space data are reproduced
in the appendix. Static H∞ and H2 controllers are obtained as

K∞ = [−1.54662 −49.60093 −547.65762 ] , K2 = [−34.93970 −108.04828 −4280.63837 ] .

The H∞ controller improves the performance given in [21] by several orders of magnitude.

6.5 Dynamic H∞ controllers

This example is interesting since there does not exist any static controller for the stabilizing prob-
lem alone, hence a dynamic controller is required [14]. Without modification, the AL algorithm
runs forever when a controller with prescribed order does not exist. In order to force termination
in this situation, we allow a maximum number, say 150, of tangent subproblems. When this limit
is reached, this is interpreted as infeasibility of the problem or failure in the AL algorithm to
compute a satisfactory controller.

The AL algorithm has been used to design a first-order and a second-order controller. The
corresponding state-space data are the following:

AK = −49.22999, BK = 40.30850, CK = −51.54691, DK = 43.13098 .

12



AK =

[

−26.61064 8.84372
7.73264 −2.67573

]

, BK =

[

18.80730
−4.44757

]

, CK = [−30.21888 9.03326 ] , DK = 21.44923 .

As shown in Table 1, the AL algorithm was able to compute a first-order stabilizing controller,
but the associated H∞ performance significantly deteriorates compared to a full-order controller.
In contrast, if one allows second-order controllers, the achieved performance is globally optimal.
This again suggests, as with similar experiments conducted in [26] and [2], that the AL algorithm
often yields globally optimal solutions.

problem quad. SDP ‖h‖∞ H∞ full/static H2 full/static

Transport airplane 24 4.96e−5 1.60/2.22 -
VTOL helicopter H∞ 17 6.32e−5 9.57e−2/1.57e−1 -
VTOL helicopter H2 13 3.33e−7 - 8.71e−2/9.541e−2
Chemical reactor H∞ 18 6.90e−5 1.141/1.202 -
Chemical reactor H2 12 1.71e−7 - 1.881/1.937

Piezoelectric actuator H∞ 21 9.77e−5 9.633e−5/3.055e−3 -
Piezoelectric actuator H2 29 6.64e−6 - 1.923e−2/3.646e−2

Dynamic 1st-order H∞ design 31 3.61e−6 21.50/60.98 -
Dynamic 2nd-order H∞ design 42 1.71e−7 21.60/21.60 -

Table 1: Results for static/fixed-order H∞ and H2 syntheses

7 Conclusion

We have proposed an AL method for the fixed-order H∞ and H2 synthesis problem. As supported
by a number of numerical experiments, this is a very robust method provided that it is properly
implemented. At the core of the computation, is the minimization of a quadratic cost subject to
SDP constraints. This is one complication attached to the use of more elaborate subproblem mod-
els capturing second-order information from the original problem. A tailored spectral quadratic
SDP technique has been developed under Fortran 90 to carry out these elemental steps efficiently.
As emphasized in sections 4 and 5, efficiency is prone to dramatic deteriorations if one simply
reformulates the problem to fit current SDP codes. The spectral quadratic SDP technique is more
direct and offers scope for further development such as the use of a trust region strategy in place of
classical linesearches. As is widely accepted, but has never been experienced for SDP constraints,
this alternative strategy should provide both better numerical stability as well as better conver-
gence rates on the inherently nonconvex problems studied in this paper. This promising feature
is currently under investigation.

Overall, the AL method might appear quite involved as different computational levels are
necessary. We have tried to demonstrate that this is worth the effort both from practical and
theoretical viewpoints. See reference [26] for a detailed analysis of the latter. Simpler coordinate
descent schemes often fail [18] whereas more elaborate first-order techniques experience numerical
difficulties to reach local solutions [2].
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Most importantly for control designers, our approach is not only applicable to stabilization
(feasibility) problems, but also performance (linear objective minimization) problems, an option
which is crucial in applications.
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A Appendix

A.1 Transport airplane
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[
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A.2 VTOL helicopter

A =
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[
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]

C2 = [ 0 1 0 0 ] , D21 = 0, D22 = 0 .
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A.3 Chemical reactor
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A.4 Piezoelectric actuator
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A.5 Fixed H∞ 2nd-order controller
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