
Structured H∞ Synthesis in MATLAB

P. Gahinet ∗ P. Apkarian ∗∗

∗MathWorks, 3 Apple Hill, Natick, MA 01760, USA (Tel: +1 508-647-7368;
e-mail: pascal@mathworks.com).

∗∗ ONERA-CERT, Centre d’études et de recherches de Toulouse, Control System
Department, 2 av. Edouard Belin, 31055 Toulouse, France - and - Institut de

Mathématiques, Université Paul Sabatier, Toulouse, France (Tel: +33
5.62.25.27.84 ; e-mail: apkarian@cert.fr)

Abstract: This paper presents new MATLAB-based tools for tuning fixed-structure linear
control systems using the H∞ methodology. Unlike traditional H∞ synthesis, these tools can
directly tune arbitrary control architectures consisting of one or more feedback loops and one or
more fixed-order, fixed-structure control elements. This makes them ideally suited for deploying
H∞ techniques in real-world applications.

Keywords: Structured controllers, decentralized control, H∞ synthesis, robustness, MATLAB.

1. INTRODUCTION

H∞ theory and its refinements Stein and Doyle [1991],
McFarlane and Glover [1992], Zhou et al. [1996] pro-
vide a powerful frequency-domain framework for capturing
standard control design requirements such as speed of
response, bandwidth, disturbance rejection, and robust
stability. This framework extends classical control tech-
niques such as Bode loop shaping or gain/phase margin
analysis to multi-loop and MIMO control architectures.
Design requirements are expressed in terms of H∞ gain
constraints, and efficient algorithms are available to syn-
thesize MIMO controllers that meet these requirements
Doyle et al. [1989], Robust Control Toolbox [2011]. Yet
traditional H∞ synthesis has practical limitations that
have slowed its adoption in industry. In particular, H∞
controllers are monolithic whereas most embedded control
architectures are decentralized collections of simple control
elements such as gains and PID controllers. In addition,
the order (complexity) of H∞ controllers tends to be high
whereas embedded controllers tend to have low complex-
ity. As a result, engineers must either abandon familiar
decentralized architectures, or painstakingly re-interpret
the results of H∞ synthesis in terms of their specific
architecture. Neither option being easy, hand-tuning or
optimization-based tuning tend to remain the norm.

This paper presents new tools for Structured H∞ Synthesis
that overcome the limitations listed above. These tools
leverage state-of-the-art nonsmooth optimizers Apkarian
and Noll [2006a], Apkarian et al. [2007], Burke et al.
[2006] to directly and efficiently tune arbitrary control
architectures. By ”arbitrary,” we mean any single- or
multiple-loop block diagram arrangement containing any
number and type of linear control elements, from simple
gains and PIDs to more complex notch filters and observer-
based controllers. Note that H∞ synthesis of fixed-order,
fixed-structure MIMO controllers is just a special case.
While the underlying optimization programs are typically
non-convex and NP-hard, the nonsmooth optimizers fare
well on a wide range of applications and often produce

results on par with full-order H∞ synthesis but for much
simpler controller structures. Finally, the optimization-
based nature of these tools makes them well suited to
tackle challenging extensions such as multi-model, multi-
objective H∞ synthesis with time-domain specifications
Bompart et al. [2008], Simoes et al. [2009].

The paper is organized as follows. Section 2 discusses
the standard formulation of structured H∞ synthesis and
the representation of tunable control elements. Section
3 reviews the basics of expressing design requirements
as H∞ constraints. Section 4 gives a brief overview of
the nonsmooth solvers at the heart of this approach.
Section 5 highlights the key features of related software
tools available in Robust Control Toolbox [2011]. Finally,
Sections 6 illustrates the potential of this technology on a
realistic example.

2. FRAMEWORK FOR TUNING FIXED
CONTROL STRUCTURES

As mentioned earlier, our starting point is any linear con-
trol architecture with one or more fixed-structure blocks to
tune. An example of such architecture is shown in Figure
6 where the shaded blocks are tunable. Since there are in-
finitely many possible architectures, we use a standardized
representation called Standard Form that is both general
and simple enough to work with. The Standard Form is
depicted in Figure 1 and consists of two main components:

• An LTI model P (s) which combines all fixed (non
tunable) blocks in the control system
• A structured controller C(s) = Diag(C1(s), . . . , CN (s))

which combines all tunable control elements. Each
control element Cj(s) is assumed to be linear time
invariant and to have some prescribed structure.

External inputs to the system such as reference signals and
disturbances are gathered in w and performance-related
outputs such as error signals are gathered in z (see Section
3 for more details).

w z

P(s)

C
1
(s)

.

 .

 .

.

.

.

0

0 . . .

.

.

.

 . . .

C
N
(s)

u y

C(s)

Fig. 1. Standard Form for Structured H∞ Synthesis

It is well known from Robust Control theory that any
block diagram can be rearranged into this Standard Form
by isolating the tunable blocks and collapsing the rest
of the diagram into P (s). The resulting model has the
same structure as the uncertain models used in µ analysis
with the uncertainty blocks ∆j(s) replaced by the control
elements Cj(s) Redheffer [1960], Doyle et al. [1991], Varga
and Looye [1999], Varga and Magni [2005]. Figure 1 is also
reminiscent of standard H∞ synthesis Doyle et al. [1989]
but differs in one key aspect, namely, the special structure
of the controller C(s). Since systematic procedures and
automated tools are available to transform any architec-
ture to the Standard Form of Figure 1, we assume that the
control architecture is specified in this form.

The next challenge is to describe the tunable control
elements. Again we are faced with a wide range of pos-
sible structures, from simple gains and PIDs to more
complex lead-lag compensators and observer-based con-
trollers. Since our approach is based on optimization, it
is natural to use parametric models of such components.
For example, a PID can be parameterized by four scalars
Kp,Ki,Kd, Tf as

Cj(s) = Kp +
Ki

s
+

Kds

Tfs+ 1
. (1)

Similarly, a state-space model with fixed order n can be
parameterized by four matrices A,B,C,D of suitable sizes.
For convenience we provide a library of basic tunable
blocks such as static gains, PIDs, and fixed-order transfer
functions. Yet this library leaves out many useful control
elements, e.g., it cannot model the lowpass and notch
filters

a

s+ a
,

s2 + 2ζ1ω0s+ ω2
0

s2 + 2ζ2ω0s+ ω2
0

(2)

because of the couplings between numerator and denomi-
nator parameters.

Rather than expanding the library of pre-defined tunable
blocks, a more scalable approach is to let users dynamically
create tunable structures that suit their needs. To do this,
we introduce a basic building block called ”real parameter”
(realp). If a is a real parameter, then any well-posed
rational function R(a) can be written as the LFT:

R(a) = Fl(M,a⊗ I) (3)

where M is a fixed matrix and a⊗I := Diag(a, . . . , a) Bett
and Lemmon [1997]. The LFT expression (3) corresponds
to the following static block diagram:

w zM
11

u y

M
12

M
21

M
22

a
.

 .

 .

.

.

.

0

0 . . .

.

.

.

 . . .

a

Fig. 2. LFT Model of Rational Expressions in a

More generally, we can model any rational function of
the scalar- or matrix-valued parameters a1, . . . , aM by
recasting arithmetic operations between these parameters
as interconnection operations between LFT models [Zhou
and Doyle, 1998, p. 165]. This results in an LFT model
similar to Figure 2 where a⊗ I is replaced by

Diag(a1 ⊗ Ik1 , . . . , aM ⊗ IkM). (4)

Since any interconnection of LFT models is an LFT model,
and the Standard Form of Figure 1 is itself an LFT model,
it is easily seen that if some tunable element Cj(s) is a
rational function of the parameters a1, . . . , aM , the Stan-
dard Form can be rearranged so that Cj(s) is replaced
by a1 ⊗ Ik1 , . . . , aM ⊗ IkM along the diagonal of C(s). In
other words, we can absorb the specific structure of Cj(s)
into P (s) and keep only the low-level tunable parameters
a1, . . . , aM in C(s). The resulting block-diagonal controller
C(s) is then a mix of predefined blocks (e.g., PID) and pos-
sibly repeated tunable parameters aj . Note that unlike µ-
analysis, ”repeated” blocks do not affect the optimization
outcome and only incur some negligible overhead.

To illustrate how this comes together in the software tools,
first consider the lowpass filter F (s) = a

s+a where a is
tunable. This tunable element is specified by the MATLAB
commands:

a = realp('a',1); % a is initialized to 1
F = tf(a,[1 a]); % creates a/(s+a)

This automatically builds the following LFT parameteri-
zation of F (s):

F (s) = Fl

((
0 0 1

1/s −1/s 0
1/s −1/s 0

)
,

(
a 0
0 a

))
. (5)

Next consider the observer-based controller
˙̂x = Ax̂+Bu+ L(y − Cx̂−Du)

= (A−BK − LC + LDK)x̂+ Ly
u = −Kx̂

(6)

where the gain matrices K,L are tunable. This observer
structure is specified as:

% For a plant with nx states, nu controls,
% and ny measurements:
K = realp('K',zeros(nu,nx));
L = realp('L',ones(nx,ny));
OBC = ss(A-B*K-L*(C-D*K),L,-K,0);

The resulting LFT parameterization OBC of the observer
structure has three copies of the parameter K and two
copies of the parameter L. Note that in both examples,

it is possible to construct more efficient parameterizations
using a single copy of a, K, L.

3. H∞ FORMULATION OF DESIGN
REQUIREMENTS

Now that we have a framework for describing arbitrary
control architectures and linear control elements, we turn
to the question of recasting the design requirements as
H∞ constraints. At the heart of H∞ synthesis is the H∞
norm, which measured the peak input/output gain of a
given transfer function:

‖H(s)‖∞ := max
ω

σ(H(jω)). (7)

In the SISO case, this norm is just the peak gain over
frequency. In the MIMO case, it measures the peak 2-norm
of the frequency response H(jω) over frequency.

From classical control, we know that most control design
requirements are equivalent to gain constraints on the
open- or closed-loop response. For example, good tracking
in a particular frequency band is equivalent to small gain
from reference to error signals in this band. Similarly,
bandwidth and roll-off requirements can be enforced by
shaping the open-loop response gain. For example, con-
sider the elementary feedback loop of Figure 3 and sup-
pose we want integral action with bandwidth ωc. Then
λ(s) = ωc/s is a suitable shape for the open-loop response
L(s) = G(s)C(s) as depicted in Figure 4. The zero dB
crossover frequency ωc dictates how fast the system re-
sponds and is limited by factors such as stability, delays,
actuator bandwidth, and modeling errors.

-

l(s)

r
+ e

ew

n
+

+

C(s) G(s) y

1/l(s) nw

Fig. 3. Loop Shaping Configuration

10
0

10
1

10
2

−20

−15

−10

−5

0

5

10

15

20

M
ag

ni
tu

de
 (

dB
)

Target loop shape

Frequency (rad/sec)

ω
c

Fig. 4. Target Loop Shape |λ(jω)| = ωc/ω

Once we express requirements in terms of open- or closed-
loop gains, there are well-established procedures for de-
riving the corresponding H∞ constraints Skogestad and
Postlethwaite [1996]. For example, if the closed-loop trans-
fer function H(s) from (r, nw) to (y, ew) in Figure 3 satis-
fies ‖H(s)‖∞ < 1 + δ, then for small δ:

• The open-loop gain |L(jω)| approximately matches
the target loop shape |λ(jω)|

• The sensitivity functions satisfy ‖S‖∞ < 1 + δ and
‖T‖∞ < 1 + δ at all frequencies, which guarantees
adequate gain/phase margins and small overshoot.

In other words, the H∞ constraint ‖H(s)‖∞ < 1 + δ
enforces the desired loop shape along with good stability
margins.

In general, this procedure leads to one or more normalized
H∞ constraints ‖Hj(s)‖∞ < 1 on frequency-weighted
closed-loop transfer functions H1(s), . . . ,HM (s). Introduc-
ing

H(s) := Diag(H1(s), . . . ,HM (s)), (8)

we can consolidate all requirements into the single con-
straint ‖H(s)‖∞ < 1. Consequently, the tuning of a par-
ticular control architecture can be recast as the following
program:

Structured H∞ Program: Tune the free parameters
of C(s) := Diag(C1(s), . . . , CN (s)) to enforce closed-loop
(internal) stability and ‖H(s)‖∞ < 1.

Note that structured H∞ synthesis can handle constraints
on several independent transfers H1(s), . . . ,HM (s). To
see this, observe that for Hj(s) := Fl(Pj(s), C(s)), the
Standard Form for H(s) looks like

H(s) = Fl (P (s),Diag(C(s), . . . , C(s))) (9)

where P (s) is some rearrangement of the input and output
channels of Diag(P1(s), . . . , PM (s)). So constraining two
or more closed-loop transfer functions Hj(s) leads to re-
peating the controller C(s) multiple times in the Standard
Form. The resulting block-diagonal controller structure is
beyond the scope of standard H∞ algorithms but poses
no problem in our framework since this merely amounts
to repeating the tunable blocks along the diagonal (see
Section 2 for a discussion of repeated blocks). This is an
important difference with traditional H∞ synthesis where
all requirements must be expressed in terms of a single
closed-loop transfer function, and this additional capabil-
ity greatly simplifies the H∞ formulation as illustrated in
Section 6.

4. NONSMOOTH H∞ SOLVERS

The Structured H∞ Program of Section 3 can be solved
using specialized nonsmooth optimization techniques. This
section gives a high-level overview of the structured H∞
solver at the heart of our software tools. The full details
can be found in Apkarian and Noll [2006a, 2007] and a
variety problem studies as well as applications can be
found in Apkarian [2010]. Note that related nonsmooth
techniques and software for control applications are dis-
cussed in Burke et al. [2006], Michiels and Niculescu [2007]
and references therein.

Structured H∞ synthesis requires solving semi-infinite,
nonconvex, and nonsmooth programs of the form

minimize
C(s)

‖Fl(P (s), C(s))‖∞ ⇐⇒

minimize
x∈Rk

max
ω∈[0,∞]

σ
(
Fl(P̂ (jω), x)

)
,

(10)

where C(s) is the structured controller of Section 2 and the
vector x gathers all low-level tunable parameters in C(s).
While this is a challenging mathematical programming
problem, it is important to note that the right-hand-side
function in (10) is the composition of the convex but
nonsmooth function maxω ◦σ(.) with the nonconvex but

differentiable mapping x → Fl(P̂ (jω), x). Such composite
functions are Clarke regular Clarke [1983], which means
that a complete description of the Clarke subdifferential
is accessible. To simplify the discussion, rewrite program
(10) as

minimize
x∈Rk

f∞(x) := max
ω∈[0,∞]

f(ω, x) . (11)

Clarke regularity ensures that critical points x∗ (typically
local minima) are characterized by the condition 0 ∈
∂f(x).

To solve (11), we construct a tangent model around the
current iterate x that constitutes a ”quadratic first-order”
local approximation of the original problem. An adequate
descent direction h is then computed by solving a convex
quadratic program of the form:

minimize
h∈Rk

f̂∞(x+ h) :=

max
ω∈Ωf

f(ω, x)− f∞(x) + ΦTωh+
1

2
hTQh

(12)

where Ωf is some finite set of frequencies and Φω ∈
∂f(ω, x) is a subgradient of f(ω, x). There are many
possible implementations of this scheme Apkarian and Noll
[2006a], but a minimal requirement is that Ωf contain the
active frequencies ωa achieving the peak value in (11):

f∞(x) = f(ωa, x) .

This simple requirement is enough for the algorithm to
converge. Yet by adding a few extra well-chosen frequen-
cies, we can often improve the quality of the tangent model
(12) and take longer steps at each iteration. In particu-
lar, including frequencies bracketing the active peaks can
dramatically accelerate convergence Apkarian and Noll
[2006b,a]. See Figure 5 for an illustration of this strategy.
Note that multiple active frequencies typically arise as the
optimization progresses due to the ”waterbed effect”. The
corresponding loss of differentiability can often spell trou-
ble for smooth nonlinear programming algorithms Bert-
sekas [1995] which may fail to find a joint descent direction
for all active peaks.

The resulting algorithm is guaranteed to converge to a
critical point (a local minimum in practice) and has proved
very effective on a wide range of test problems including
large scale systems Simoes et al. [2009]. Arguably, the
function f∞(.) is non convex and there is no guarantee of
reaching the global optimum. But ”convex” formulations
(e.g., in terms of LMIs Boyd et al. [1994]) often rely on
conservative and expensive relaxations or resort to bi-
convex schemes like BMIs Safonov et al. [1994] and D-K
iterations [Zhou and Doyle, 1998, p. 381]. As a result, our
approach is very competitive with such formulations and
has the advantage of tuning the original control structure
and controller parameters.

*** *

‖Fl(P̂ (s), x)‖∞

0

f(ωb, x) := 0.9‖Fl(P̂ (s), x)‖∞

σ(Fl(P̂ (jω), x)

method
Hamiltonian

bracketing frequencies ωb

logω (rad.s−1)

Fig. 5. Frequency selection to build tangent program

5. SOFTWARE TOOLS

This section gives a brief overview of new software tools to
formulate and solve structured H∞ problems for arbitrary
linear control architectures. These tools are available in
Robust Control Toolbox [2011]. Note that some functional-
ity discussed here is only available in the R2011a version.

As discussed in Section 2, the structure of individual
tunable elements is described in terms of parameterization.
The software provides pre-defined parameterizations for
gains, PIDs, fixed-order transfer functions, and state-space
models. For example

C1=ltiblock.tf('C1',2,3) % 2 zeros, 3 poles

parameterizes C1(s) as a strictly proper third-order trans-
fer function. In addition, users can create their own pa-
rameterization using the realp building block (real pa-
rameter) and standard arithmetic operations, see Section
2 for examples.

The H∞ formulation of design requirements remains a
manual process. This is the same process as for standard
H∞ synthesis, somewhat simplified by the fact that we
can independently constrain several closed-loop transfer
functions (see Section 3). Tools are available to derive
the Standard Form of Figure 1 in both MATLAB and
Simulink. Note that the objects used to parameterize
C1(s), . . . , CN (s) can be combined with regular LTI ob-
jects to build ”parametric” models of the relevant closed-
loop transfer functions. For example, consider the simple
scenario where the requirements for the feedback loop of
Figure 3 can be expressed as

‖wSS‖∞ < 1, ‖wTT‖∞ < 1 (13)

where S = 1/(1 + L), T = L/(1 + L), and wS , wT
are suitable frequency-weighting functions. Assuming the
tunable block C(s) is a PID controller, the aggregate
transfer function H(s) = Diag(wSS,wTT) is obtained by:

G = tf([1 2],[1 5 10]); % plant model
C = ltiblock.pid('C','pid'); % define PID
S = feedback(1,G*C);
T = feedback(G*C,1);
H0 = blkdiag(wS * S, wT * T);

The variable H0 contains a MATLAB representation of the
(untuned) Standard Form for H(s) and depends on the
tunable PID block C.

Once the Standard Form is available, the hinfstruct
command invokes the solver outlined in Section 4 to

optimize the free parameters of C1, . . . , CN . For example,
the PID gains in the simple example above are tuned by

H = hinfstruct(H0);

The output H contains the tuned Standard Form of H(s)
and you can access the tuned PID controller C with

H.Blocks.C

Note that hinfstruct can be configured to automatically
run multiple optimizations from randomly generated start-
ing points. This helps mitigate the local nature of the
optimizer and increases the likelihood of finding parameter
values that meet the design requirements.

6. AIRCRAFT AUTOPILOT EXAMPLE

This section illustrates the use of hinfstruct to tune the
longitudinal autopilot for a supersonic transport aircraft
flying at Mach 0.7 and altitude 5000 ft. Further details on
the model used in this application can be found in Boiffier
[1998]. The aircraft model is fairly conventional and given
in state-space form as

ẋ = Ax+Bu
y = Cx+Du ,

(14)

where the state vector is x := [V γ α q H] and the state
variables are the aerodynamic speed V (m/s), climb angle
γ (rad), angle of attack α (rad), pitch rate q (rad/s),
and altitude H (m). The elevator deflection δm (rad) is
used to control the vertical load factor Nz (m/s2). Two
measurements are used for feedback: Nz and the pitch
rate q. Typical of such models, the open-loop dynamics
include the α oscillation with frequency and damping
ratio ωn = 1.7 (rad/s) and ξ = 0.33, the phugoid mode
ωn = 0.64 (rad/s) and ξ = 0.06, and the slow altitude
mode, λ = −0.0026. See the corresponding demo in Robust
Control Toolbox [2011] for the model data.

The control structure considered here is the conventional
longitudinal control law depicted in Figure 6. The autopi-
lot is comprised of four tunable elements:

• PI controller with proportional and integral gains Kp

and Ki

• Static feedback gain Kq on the pitch rate q. This gain
is used to improve damping of the responses
• Feedforward gain Kf , which helps achieve better

performance and reduce the burden on the feedback
controller
• Second-order roll-off filter

Fro(s) =
ω2
n

s2 + 2ζωns+ ω2
n

. (15)

Note that pure integral action in the PID controller is not
possible because this would cancel the zero at s = 0 in the
Nz channel of the aircraft model G(s). Instead we use a
pseudo-integrator 1/(s + 0.001). Here steady-state errors
are of no concern here since only the transient response to
the acceleration command Nzc matters.

There are three main design requirements. Setpoint
tracking is expressed as a model following objective and
involves minimizing the tracking error e between Nz and
the output of the reference model

roll−off filter aircraft

−−
Ki

s+ε

Kp Kq

nq nNz

G(s)
δm

Nz

q

w

−
tracking error

Nzc

feedforward

reference model

Gref(s)

Kf

Fro(s)
+

Fig. 6. Aircraft Autopilot

Gref (s) :=
ω2
n

s2 + 2ζωns+ ω2
n

with ζ = 0.7 and ωn = 1.7. This reference model captures
the desired time response characteristics by keeping the
natural frequency of the α-oscillation mode and increasing
its damping to a suitable value. We formulate this require-
ment as ‖W1(s)T1(s)‖∞ < 1 where T1(s) is the closed-loop
transfer function from Nzc to e and

W1(s) := 15

(
s

s+ 0.05

5

s+ 5

)2

(16)

is a bandpass filter emphasizing the frequency band where
good tracking is desired

High-frequency roll-off is required to attenuate noise,
increase robustness to unmodeled dynamics, and pre-
vent high-frequency control activity that would satu-
rate the actuator physical limits.This is expressed as
‖W2(s)T2(s)‖∞ < 1 where T2(s) is the closed-loop transfer
from the noise inputs nNz

, nq to the control signal δm, and

W2(s) :=
s

s+ 8

(1/82)s2 + (
√

2/8)s+ 1

(1/8002)s2 + (
√

2/800)s+ 1
(17)

is a high-pass filter chosen to enforce second-order roll-off
past 8 rad/s.

Stability margins can be viewed as imposing some
minimum distance between the open-loop response and
the critical point, or equivalently an upper bound on the
gain of the sensitivity function T3(s) from w to δm (see
Section 3). Here we impose a minimum distance of 0.8,
or equivalently ‖W3(s)T3(s)‖∞ < 1 with W3(s) = 0.8. In
terms of classical gain and phase margins, this guarantees
gain margins of at least −5.10dB and 13.97dB and phase

margins of at least ±47 = ± arccos(12+12−0.82

2×1×1) degrees.

Accordingly, we need to tune the autopilot parameters
Kp,Ki,Kq,Kf , ζ, ωn to enforce closed-loop stability and
‖H(s)‖∞ < 1 where

H := Diag(W1T1,W2T2,W3T3). (18)

Each closed-loop transfer function Tj(s) can be written
in Standard Form as Tj = Fl(Pj , C) where C(s) :=
Diag(Kp,Ki,Kq,Kf , Fro(s)). Starting from a Simulink
model of the block diagram in Figure 6, we use the
command linlft to compute the plant models P1, P2, P3.
Next we specify the tunable components using the realp
command and form the structured controller C(s):

Ki = realp('Ki',0); Kp = realp('Kp',0);
Kq = realp('Kq',0); Kf = realp('Kf',0);
wn = realp('wn',3); zeta = realp('zeta',0.8);
Fro = tf(wn^2,[1 2*zeta*wn wn^2]);
C = blkdiag(Kp,Ki,Kq,Kf,Fro);

Note that most gains are initialized to zero (open loop).
Finally, we build a (parametric) model H0 of the transfer
function H(s) in (18) using:

H0=blkdiag(W1*lft(P1,C),W2*lft(P2,C),W3*lft(P3,C))

We are now ready to tune the parameters with hinfstruct:

[H,gam] = hinfstruct(H0);
Final: Peak gain = 1.06, Iterations = 57

This returns the tuned H(s) along with the best achieved
H∞ norm gam = 1.06. Starting from an open-loop config-
uration with zero gains, this optimization runs in 4 seconds
on a Desktop PC with a 2.4GHz Intel Core2 Quad CPU
and 6.00Gb of RAM. The tuned values of the controller
parameters are as follows:

Kp = −0.0048, Ki = −0.022, Kq = −0.29,
Kf = −0.033, ζ = 0.79, ωn = 6.46.

To validate the design, Figure 7 compares the actual
response Nz to a step command Nzc with the response
of the reference model Gref (dashed). The plot on the
right shows the overall deflection δm (solid) and the
respective contributions of the feedforward and feedback
paths. Finally, Figure 8 shows the open-loop response
measured at w and the corresponding stability margins (18
dB gain margin and 90 degrees phase margin). Note that
the roll-off constraint is inactive and could be tightened.

REFERENCES

P. Apkarian. Internet pages. http://pierre.apkarian.free.fr,
2010.

P. Apkarian and D. Noll. Nonsmooth H∞ synthesis. IEEE Trans.
Aut. Control, 51(1):71–86, 2006a.

P. Apkarian and D. Noll. Nonsmooth optimization for multidisk H∞
synthesis. European J. of Control, 12(3):229–244, 2006b.

P. Apkarian and D. Noll. Nonsmooth optimization for multiband
frequency domain control design. Automatica, 43(4):724–731,
April 2007.

P. Apkarian, V. Bompart, and D. Noll. Nonsmooth structured
control design with application to PID loop-shaping of a process.
Int. J. Robust and Nonlinear Control, 17(14):1320–1342, 2007.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, USA,
Belmont, Mass., 1995.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

From: Nzc To: Nz

Step Response

Time (sec)

N
z

Actual response
Gref response

0 1 2 3 4 5 6
−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

From: Nzc To: delta

m

Step Response

Time (sec)

δ m

Total
Feedforward
Feedback

Fig. 7. Response to a Step Command Nzc

Christopher J. Bett and Michael Lemmon. On linear fractional
representations of multidimensional rational matrix functions.
Technical report, Eindhoven, University of Technology, 1997.

J. Boiffier. The Dynamics of Flight, the Equations. John Wiley &
Sons, New York, 1998.

V. Bompart, P. Apkarian, and D. Noll. Control design in the time-
and frequency-domain using nonsmooth techniques. Syst. Control
Letters, 57(3):271–282, 2008.

S. Boyd, L. ElGhaoui, E. Feron, and V. Balakrishnan. Linear Matrix
Inequalities in Systems and Control Theory, volume 15 of SIAM
Studies in Applied Mathematics. SIAM, Philadelphia, 1994.

J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton. Stabiliza-
tion via nonsmooth, nonconvex optimization. IEEE Trans. Aut.
Control, 51(11):1760–1769, November 2006.

F. H. Clarke. Optimization and Nonsmooth Analysis. Canadian
Math. Soc. Series. John Wiley & Sons, New York, 1983.

J. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis. State-
space solutions to standard H2 and H∞ control problems. IEEE
Trans. Aut. Control, AC-34(8):831–847, August 1989.

J. Doyle, A. Packard, and K. Zhou. Review of LFT’s, LMI’s and µ.
In Proc. IEEE Conf. on Decision and Control, volume 2, pages
1227–1232, Brighton, December 1991.

D. McFarlane and K. Glover. A loop shaping design procedure using
H∞ synthesis. IEEE Trans. Aut. Control, 37(6):759–769, 1992.

W. Michiels and S. I. Niculescu. Stability and stabilization of
time-delay systems. An eigenvalue based approach, volume 12 of
Advances in Design and Control. SIAM Publications, 2007.

R. M. Redheffer. On a certain linear fractional transformation. J.
Math. and Phys., 39:269–286, 1960.

Robust Control Toolbox. The MathWorks Inc., Natick, MA, 2011.
M. G. Safonov, K. C. Goh, and J. H. Ly. Control System Synthesis

via Bilinear Matrix Inequalities. In Proc. American Control Conf.,
pages 45–49, 1994.

A. M. Simoes, Diego C. Savelli, P. C. Pellanda, N. Martins, and
P. Apkarian. robust design of a tcsc oscillation damping controller
in a weak 500-kv interconnection considering multiple power flow
scenarios and external disturbances. IEEE Trans. on Power
Systems, 24(1):226–236, 2009.

S. Skogestad and I. Postlethwaite. Multivariable feedback design -
analysis and design. Wiley, 1996.

G. Stein and J. C. Doyle. Beyond singular values and loop shapes.
J. Guidance and Control, 14:5–16, 1991.

A. Varga and G. Looye. Symbolic and numerical software tools for
LFT-based low order uncertainty modeling. In Proc. CACSD’99
Symposium, Cohala, pages 1–6, 1999.

A. Varga and J.F. Magni. Enhanced LFR-toolbox for Matlab.
Aerospace Science and Technology, 9(2):173–180, 2005.

K. Zhou and J. Doyle. Essentials of robust control. Prentice-Hall
International, Inc., 1998.

K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control.
Prentice Hall, 1996.

Bode Diagram

Frequency (rad/sec)

−40

−20

0

20

40

60

80

M
ag

ni
tu

de
 (

dB
)

10
−3

10
−2

10
−1

10
0

10
1

−270

−180

−90

0

90

180

P
ha

se
 (

de
g)

Open−Loop Response

1/W2

Fig. 8. Open-Loop Response

