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Structured Robust Control Against Mixed
Uncertainty

Raquel Stella da Silva de Aguiar, Pierre Apkarian, and Dominikus Noll

Abstract—We present new approaches to designing structured
controllers which are robust in the presence of mixed real
parametric and complex dynamic uncertainty. As the synthesis
of such controllers is inherently NP-hard, we discuss inner and
outer relaxation techniques which make this problem amenable
to computations. Our relaxation methods are positively evaluated
and compared on the basis of a rich test set and for a challenging
missile pilot design problem.

Index Terms—Dynamic uncertainty, mixed uncertainty, non-
smooth optimization NP-hard problem, parametric uncertainty,
structured controller, µ-synthesis

I. INTRODUCTION

The design of feedback controllers which are robust in
the presence of system uncertainty is a recurrent problem in
control engineering, from which designers rarely escape due
to the inevitable mismatch between a physical system and its
mathematical model. It is generally agreed that one should
account for the uncertainty already at the modeling stage, and
in this work we follow this paradigm by addressing two types
of uncertainty simultaneously: real uncertain parameters in the
model equations and complex dynamic uncertainty.

The task of controlling a system with mixed uncertainty is
further aggravated when the controller has to be structured.
Structured control laws and control architectures are preferred
by practitioners, but it appears that the more natural and easier-
to-understand a desired control structure or architecture is,
the harder it is to compute it. In robust mixed synthesis the
difficulty can be highlighted as follows: it amounts to solving
a nonlinear optimization problem globally, where a single
evaluation of the cost function is already NP-hard.

The inherent difficulty of mixed uncertainty robust synthesis
of structured controllers precludes naive direct approaches and
makes the use of intelligent relaxation techniques mandatory.
Here we distinguish between inner and outer relaxations of the
control problem on a given set ∆ of uncertain scenarios. Outer
approximations may relax the problem over ∆ by choosing
a larger set ∆̃ ⊃ ∆ of scenarios on which computations are
simplified, or may use a computable upper bound of the robust
cost function on the constraint set ∆, or may even do both
at the same time. The rationale is that as soon as a robust
performance or stability certificate over ∆̃ is obtained, this cer-
tificate automatically applies to the original set ∆. Similarly,
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any minimum of the computable upper bound on the set ∆̃ will
give an upper bound of the true underlying robust cost function
on ∆. Typical outer relaxation methods include multiplier and
scaling techniques, the various LMI-based relaxations like [1],
[2], [3], [4], [5], and minimization of upper bounds of the
structured singular value µ, the DGK-iteration of [6] being a
prominent example. The main drawback of outer relaxations
is that they may introduce conservatism, which increases with
the complexity of the uncertainty. This is further aggravated
by the fact that failures in computing a certificate over ∆̃ may
occur despite the simplified structure of ∆̃.

In contrast, inner approximation techniques relax the prob-
lem over ∆ by choosing a simpler, typically finite, subset
∆a ⊂∆ on which the robust cost function is computable and
can be minimized. This avoids conservatism in the design, but
has the disadvantage that no immediate certificates over ∆
are delivered. Inner relaxations may therefore require a post-
processing step in which a robustness analysis technique is
employed to obtain a certificate over ∆.
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Fig. 1. Robust synthesis interconnection with two types of uncertainty and
based on structured control laws K(κ)

Note that relying on a discrete set of scenarios to improve
robustness is not a new idea and can be traced back to the
work in [7], [8] with its multi-model approach. Alternatively,
probabilistic approaches using randomized scenarios are con-
sidered in [9] and references therein.

In this work we compare two relaxation approaches to the
robust synthesis problem shown schematically in Fig. 1. In sec-
tion III we discuss a novel outer relaxation technique, which
uses dynamic multipliers and a small gain argument to overes-
timate the cost function, keeping the uncertainty set ∆ fixed.
This leads to a structured H∞-synthesis problem, amenable to
nonsmooth optimization techniques as made available through
the functions SYSTUNE and HINFSTRUCT from [10], [11],
[12]. In section IV we present an inner relaxation, in which
a finite set ∆a of active scenarios is computed iteratively in
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such a way that stability and performance for the scenarios
∆ ∈ ∆a assures robustness over the full range ∆. Finally,
in section V, we discuss a hybrid approach, which applies
the inner technique to the real uncertainty and the outer to
the complex uncertainty. Numerical comparison between these
techniques, based on a rich test bench, is presented in section
VI, where the results for the classical routine DKSYN made
available through [12] is also presented. In the end, a missile
pilot design problem is solved with the techniques.

NOTATION

The terminology follows [13]. Given partitioned matrices

M :=

[
M11 M12

M21 M22

]
and N :=

[
N11 N12

N21 N22

]
of appropriate dimensions and assuming existence of inverses,
the Redheffer star product [14], [15] of M and N is M?N :=[

M ?N11 M12(I −N11M22)−1N12

N21(I −M22N11)−1M21 N ?M22

]
.

When M or N do not have an explicit 2× 2 structure, we
assume consistently that the star product reduces to an LFT
(Linear Fractional Transformation). The lower LFT of M and
N is denoted M ?N and defined as

M ?N := M11 +M12N(I −M22N)−1M21,

and the upper LFT of M and N is denoted N?M and obtained
as

N ?M := M22 +M21N(I −M11N)−1M12 .

With these definitions, the ? operator is associative.
The dependence of plant P (s) and controller K(s) on the

Laplace variable s will be omitted for simplicity.

II. PROBLEM SPECIFICATION

We consider an LFT plant P with real parametric and
dynamic complex uncertainties ∆, as shown in Fig. 1, and
in feedback with a structured controller K(κ):

P :

zδz
y

 =

Pδδ Pδw Pδu
Pzδ Pzw Pzu
Pyδ Pyw Pyu

wδw
u

 , (1)

with w ∈ Rm1 a vector of exogenous inputs, z ∈ Rp1 a
vector of regulated outputs, y ∈ Rp2 the measured output,
and u ∈ Rm2 the control input. The uncertainty channel is
defined as

wδ = ∆zδ, (2)

where the uncertain matrix ∆ is structured as

∆ =

[
∆p 0
0 ∆d

]
, (3)

with ∆p representing real parametric, and ∆d complex LTI
(linear time-invariant) dynamic uncertainty. Without loss of
generality, we assume that ∆p and ∆d have the following
block-diagonal structure:

∆p := diag
[
δ1Ir1 , . . . , δNpIrNp

]
, (4)

for real uncertain parameters δ1, . . . , δNp ∈ R and their
number of repetitions r1, . . . , rNp , and

∆d := diag [∆1 . . . ,∆Nd ] , (5)

with ∆i ∈ Cpi×qi , i = 1, . . . , Nd for complex uncertainties.
We also assume without loss of generality that the uncertainty
is normalized so that ∆ belongs to the H∞-norm unit ball
∆ = {∆ : σ(∆) ≤ 1}, with ∆ = 0 representing nominal
behavior and σ denoting the maximum singular value of a
matrix. This means δi ∈ [−1, 1] for real parameters and
σ(∆i) ≤ 1 for complex blocks. For future use, we also
introduce the H∞-norm unit balls

∆p := {∆p : σ(∆p) ≤ 1}, ∆d := {∆d : σ(∆d) ≤ 1} .
(6)

The control channel u→ y in (1) is put in feedback with a
structured control law

u(s) = K(κ)y(s),

where according to [10] a controller

K(κ) :

{
ẋK = AK(κ)xK + BK(κ)y
u = CK(κ)xK + DK(κ)y

(7)

in state-space form is called structured if AK(κ), BK(κ), . . . ,
depend smoothly on a design parameter κ varying in a design
space Rn or in some constrained subset of Rn. Typical
examples of structure include PIDs, reduced-order controllers,
observer-based controllers, or control architectures combining
various controller blocks such as set-point filters, feedforward,
washout or notch filters, two degree of freedom controllers,
and much else [16], [17]. In contrast, full-order controllers
are state-space representations with the same order nP as P
without particular structure and are sometimes referred to as
unstructured, or as black-box controllers.

Given the compact convex set of parametric and dynamic
uncertainties ∆ in (3), including the nominal scenario ∆ = 0,
the robust structured H∞-control problem consists in comput-
ing a structured output-feedback controller u = K(κ∗)y as in
(7) with the following properties:

(i) Robust stability. The closed-loop system is well-posed
and K(κ∗) stabilizes ∆?P internally for every ∆ ∈∆.

(ii) Robust performance. Given any other robustly stabiliz-
ing controller K(κ) with the same structure, the optimal
controller satisfies

max
∆∈∆

‖Tzw (∆, κ∗) ‖∞ ≤ max
∆∈∆

‖Tzw (∆, κ) ‖∞.

Here Tzw(∆, κ) := ∆ ? P ? K(κ) is the closed-loop transfer
function of the performance channel w → z of (1) when the
control loop with K(κ) and the uncertainty loop with ∆ are
both closed.

III. OUTER RELAXATION

The synthesis problem (i) - (ii) above is of semi-infinite
character and is in consequence not directly tractable. We
therefore investigate how the problem can be relaxed into a
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simpler one, amenable to computations. In this section we
consider an approach by outer relaxation.

With the real uncertain parameters ∆p ∈∆p in (4) and (6)
we associate dynamic multipliers Φ ∈ Φ by defining

Φ :=
{

Φ(s) = diag(φ1(s), . . . , φNp(s)) :

φi(s) stable, ‖φi(s)‖∞ < 1} , (8)

where Φ(s) has the same block diagonal structure as the ∆p ∈
∆p and therefore commutes with the ∆p ∈∆p. We have the
following

Proposition 1. Given Φ ∈ Φ defined in (8), and ∆p ∈ ∆p

defined in (4) and (6), let

Γ(Φ) :=

[
−Φ I + Φ
I − Φ Φ

]
.

Then the closed loop system ∆p ? Γ(Φ) is internally stable
and satisfies the estimate

‖∆p ? Γ(Φ)‖∞ ≤ 1 . (9)

Proof. Since ∆p and Φ commute, we get

∆p ?

[
−Φ I + Φ
I − Φ Φ

]
= (∆p + Φ)(I + Φ∆p)

−1, (10)

the expression being well-defined due to ‖Φ‖∞ < 1. Since
∆p and Φ are structured conformably, we can verify internal
stability and the estimate (9) in each block ∆p = δI separately.

Now for |δ| ≤ 1, the first term (∆p + Φ) in (10) is stable
since Φ is stable. For the second term (I + Φ∆p)

−1, internal
stability follows from the Small Gain Theorem [13] and the
definition of ∆p and Φ.

To get the estimate (9), we can again consider a single block.
For a fixed frequency ω we have

σ
(
(δI + Φ(jω))(I + δΦ(jω))−1

)
≤ 1

if and only if

(δI + Φ(jω))H(δI + Φ(jω)) � (I + δΦ(jω))H(I + δΦ(jω)),

and this is the same as

(δ2 − 1)(I − ΦH(jω)Φ(jω)) � 0,

where � 0 means negative semi-definite. But now the result
follows because |δ| ≤ 1 and ‖Φ‖∞ < 1 together show that
the last condition is satisfied.

Note that proposition 1 bears some resemblance with the
general quadratic-separator approach developed in [18] for
well-posedness of uncertain systems. In their terminology, our
multipliers Φ(s) in (8) are explicit candidates for characteriz-
ing mixed norm-bounded LTI uncertainties.

We now extend Proposition 1 to the case where both types of
uncertainty are present. For simplicity we assume that complex
blocks ∆i are square, pi = qi. If need be, this can be achieved
by squaring down the plant P (s) in (1) with respect to the
dynamic uncertainty ∆d. Let us introduce the set D of D-
scalings

D :=
{
D(s) := diag(d1(s)Ipi , . . . , dNd(s)IpNd ) :

di(s), di(s)
−1 stable

}
. (11)

Note again that D∆d = ∆dD due to the block structure of
∆d and D.

Proposition 1 is now extended to

Proposition 2. Given Φ(s) ∈ Φ, D(s) ∈ D and ∆p ∈ ∆p,
∆d ∈∆d defined in (4), (5) and (6), let

Γ(Φ, D) :=


−Φ 0 I + Φ 0
0 0 0 D

I − Φ 0 Φ 0
0 D−1 0 0

 . (12)

Then the closed loop system
[
∆p 0
0 ∆d

]
?Γ(Φ, D) is internally

stable and satisfies the estimate∥∥∥∥[∆p 0
0 ∆d

]
? Γ(Φ, D)

∥∥∥∥
∞
≤ 1 . (13)

Proof. The proof is analogous to the one in proposition 1 and
is omitted for brevity.

Proposition 2 provides an alternative characterization of
uncertainty with mixed parametric and dynamic blocks, as we
explain in the sequel. Note first that the Redheffer star product
inverse of Γ(Φ, D) is obtained by swapping Φ and −Φ and
D and D−1 in (12). This yields

Γ(Φ, D)−? =


Φ 0 I − Φ 0
0 0 0 D−1

I + Φ 0 −Φ 0
0 D 0 0

 .
This allows us now to answer the question of robust stability,

where it suffices to consider the reduced plant Pr with the
performance channel w → z removed:

Pr :

[
zδ
y

]
=

[
Pδδ Pδu
Pyδ Pyu

] [
wδ
u

]
. (14)

Here the closed-loop interconnection Tzw(∆, κ) of Fig. 1 reads
∆ ? Pr ? K(κ). Inserting the term Γ(Φ, D) and its Redheffer
inverse, this is the same as

∆ ? Γ(Φ, D) ? Γ(Φ, D)−? ? Pr ? K(κ) .

Using associativity of ?, we split this suitably. Namely, by
Proposition 2, the left-hand term ∆ ? Γ(Φ, D) is internally
stable and belongs to the closed unit ball in the H∞ metric.
It follows that if we can find Φ, D and K(κ) such that the
right-hand term Γ(Φ, D)−? ?Pr ?K(κ) is stable and has H∞
norm bounded by one, then by the Small Gain Theorem the
closed-loop system ∆ ?Pr ?K(κ) is robustly stable. We have
proved the following

Theorem 1. Suppose there exist Φ ∈ Φ, D ∈ D and a
structured controller K(κ) such that the closed-loop system
Γ(Φ, D)−? ? Pr ? K(κ) is internally stable and satisfies the
estimate ∥∥Γ(Φ, D)−? ? Pr ? K(κ)

∥∥
∞ < 1. (15)
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Then the closed-loop system ∆ ? Pr ?K(κ) is robustly stable
over ∆. �

The next step is to include robust H∞ performance into
the setup, which uses the Main Loop Theorem [13]. We bring
back the performance channel and introduce the scaled plant
Pγ as

Pγ :

zδz
y

 =

 Pδδ Pδw Pδu
1
γPzδ

1
γPzw

1
γPzu

Pyδ Pyw Pyu

wδw
u

 . (16)

Then with the same notations as above and the scaling set
D suitably generalized to account for the new performance
block, we have

Corollary 1. Suppose there exist Φ ∈ Φ, D ∈ D, and a
structured controller K(κ) such that Γ(Φ, D)−? ? Pγ ? K(κ)
is internally stable and satisfies the estimate∥∥Γ(Φ, D)−? ? Pγ ? K(κ)

∥∥
∞ < 1. (17)

Then the closed-loop system ∆ ? P ? K(κ) is robustly stable
over ∆, and has worst-case H∞ performance γ over ∆. �

The reader is referred to Fig. 2 for a schematic view.
What we have derived is a novel outer relaxation of the
µ synthesis problem in the form of a 2-disk H∞-synthesis
problem. We refer to [17] for the algorithmic approach to
multi-disk synthesis where all H∞ constraints are handled
simultaneously. As constraints we have internal stability, the
performance estimate (17), and ‖Φ‖∞ < 1. With a small
tolerance η > 0, this may be turned into the following
optimization program:

minimize γ
subject to ‖Γ(Φ, D)−? ? Pγ ? K(κ)‖∞ ≤ 1− η

Γ(Φ, D)−? ? Pγ ? K(κ) internally stable
‖Φ‖∞ ≤ 1− η
Φ ∈ Φ, D ∈ D, κ ∈ Rn, γ ∈ R+.

(18)
Nonsmooth solvers such as HINFSTRUCT or SYSTUNE,
available through [11], [12], can be used to compute locally
optimal controllers for (18).

A major obstacle apparent in all known outer relaxation
methods lies in the phenomenon of repetitions of uncertain
parameters δi in (4). Large numbers of repetitions ri quickly
lead to challenging numerical problems, since the number of
variables in the Φi’s, hence in (18), increases as O(r2

i ). In
contrast, no such drastic increase in the number of variables
arises from the complex uncertainty, as the scalings only
contribute moderately, and no phenomenon analogous to the
high number of repetitions occurs.

This suggests the use of an alternative strategy to overcome
the difficulty of large ri. One possible line of attack is
to switch to an inner relaxation, which we discuss in the
following section. Yet another line is to treat real parametric
and complex dynamic uncertainty individually. This leads to
a hybrid approach, which we discuss in section V.

Let us point to a difference between the outer relaxation
(18), and LMI-based relaxations as for instance [1], [3]. In (18)

−Φ I+Φ

I−Φ Φ

∆p

∆d DD−1

Φ I−Φ

I+Φ −Φ

Pδδ

Pyδ

Pδu

Pyu

D−1 D

K(κ)

Fig. 2. Illustration of Theorem 1. Fictive new plant Γ(Φ, D)−? ? Pr shown
in gray is in upper feedback with new mixed uncertainty ∆?Γ(Φ, D) shown
in greenish, and in lower feedback with structured controller K(κ). For
Corollary 1 the scaled plant Pγ is used.

we do not fully convexify the problem, which is beneficial in
so far as less conservatism is introduced. LMI-relaxations not
only may introduce conservatism, they may also be difficult
to solve numerically due to the presence of Lyapunov and
multiplier variables. It is fair to say that these methods are not
appropriate if one aims at practical applications.

IV. INNER RELAXATION

In this section we discuss an inner relaxation technique,
where the infinite set of scenarios ∆ is approximated by a
suitably chosen finite subset ∆a, which we call the set of
active scenarios. Once this set is specified, this leads to an
optimization program of the form

min
κ

max
∆∈∆a

‖∆ ? P ? K(κ)‖∞ , (19)

which due to the finiteness of ∆a is a multi-disk H∞-synthesis
problem in the sense of [17]. The rationale is that, once the
worst-case scenarios ∆ ∈ ∆a are controlled simultaneously,
the locally optimal controller K(κ∗) computed in (19) assures
robust stability and performance not only over the set ∆a, but
hopefully over the full scenario set ∆.

This seems appealing since program (19) can be solved to
local optimality with tools like SYSTUNE or HINFSTRUCT
from [11], [12]. However, there is a disclaimer. The approach
quickly succumbs for exceedingly large sets ∆a, and it is
therefore mandatory to build ∆a diligently. The way we select
these active scenarios ∆ ∈∆a is shown in algorithm 1.

In the sequel we discuss the individual steps of this scheme,
which can also be seen graphically in Fig. 3. To begin with,
note that the solution of program α∗ in step 3 and program h∗

in step 4 is discussed in detail in references [16], [19], [20],
[21]. (In step 3 A(∆, κ) denotes the A-matrix of the closed
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Algorithm 1. Robust synthesis by inner approximation

Parameters: ε > 0.
. Step 1 (Nominal synthesis). Initialize the set of

active scenarios as ∆a = {0}.
. Step 2 (Multi-model synthesis). Given the cur-

rent finite set ∆a ⊂ ∆ of active scenarios, compute
a structured multi-model H∞ controller by solving the
multi-disk H∞-program

h∗ = min
κ∈Rn

max
∆∈∆a

‖∆ ? P ? K(κ)‖∞.

The solution is the structured controller K(κ∗).
. Step 3 (Worst-case stability). Try to destabi-

lize the closed-loop system ∆?Pr ?K(κ∗) by computing
its worst case spectral abscissa

α∗ = max
∆∈∆

α (A(∆, κ∗)) .

The solution is the worst stability scenario ∆∗. If α∗ =
α (A(∆∗, κ∗)) ≥ 0, then include ∆∗ in the set ∆a and
go back to step 2. Otherwise continue with step 4.

. Step 4 (Worst-case performance). Try to de-
grade performance of the closed-loop system ∆ ? P ?
K(κ∗) by computing its worst case H∞ norm

h∗ = max
∆∈∆

‖∆ ? P ? K(κ∗)‖∞.

The solution is the worst performance scenario ∆].
. Step 5 (Stopping test). If α(A(∆], κ∗)) < 0 and
h∗ < (1 + ε)h∗, degradation of performance is marginal.
Then exit loop and goto step 6 for posterior certification.
Otherwise include ∆] in the set ∆a and continue loop
with step 2.

. Step 6 (Certification). Use µ-analysis tools to cer-
tify a posteriori that K(κ∗) is robustly stable over ∆ and
has robust H∞ performance h∗ over ∆.

loop system (14) with the control loop (7) closed by K(κ),
and the uncertain loop (2) closed by ∆).

All programs occurring in the scheme are nonsmooth and
have to be addressed by bundle or bundle trust-region methods.
The main difference between α∗, h∗ on the one hand, and h∗
on the other, is analyzed in [16], [19].

For the general understanding we stress that, in this work,
all programs h∗, h∗, α∗ are addressed by local solvers, so that
only local optimality certificates are obtained. In particular,
even when the local loop exits with the successful flag ac-
ceptable performance, this is by no means a global certificate.
This is why posterior certification by a global method, like µ
analysis, in the post-processing step is needed. Experiments
with branch-and-bound and other global methods are reported
in [21].

It is generally agreed that inner relaxations outperform the
conservative outer relaxations in practice. Notwithstanding,
it is often held against them that they are heuristic and do
not guarantee certificates over ∆ unless followed by post-

start

multi-scenario

synthesis

worst-case

alpha

stable ?

worst-case

H∞

yes

no

include bad

scenario

performance

acceptable ?

noyes

certification

exit

local loop

global

Fig. 3. Generating active scenarios ∆∗,∆] ∈∆a by worst-case stability and
worst-case H∞ optimization. Candidate controllers K(κ∗) are computed by
multi-disk H∞ optimization, and certificates are obtained a posteriori using
global methods.

certification. In contrast, so it is argued, outer relaxations
provide such certificates directly.

Closer inspections reveals this reasoning as superficial,
as we now explain. Namely, there is no reason why outer
relaxations in turn should give any guarantee of success.
Relaxing the problem posed on ∆ on a larger and easier
to handle set ∆̃ ⊃ ∆ does not mean that success on ∆̃
is in any sense guaranteed. And using an upper bound of
the true objective on ∆ does not mean that minimization of
this upper bound will succeed and guarantee a result. This
is even the case for the notorious convex relaxations of the
robust synthesis problem, because even when the problem is
convexified to an LMI, there is no guarantee that this LMI
will be feasible.

Once it is agreed that in this sense neither inner nor outer
relaxations can guarantee success, both approaches are at equal
rights, the competition is open, and the better will win. It turns
out that this is in all cases the inner relaxation technique, as
it avoids conservatism in the synthesis phase. The fact that
conservative analysis tool are used in the final certification
phase does not change this picture. The conclusion is that it is
not a good idea to introduce conservatism at an early stage, e.g.
by including it in the synthesis step. Instead, delaying the use
of conservative techniques to the very end, and using them in
robustness and performance analysis only, has the better end.

It is possible to split the search for scenarios ∆ ∈ ∆a

with bad H∞ performance into two consecutive steps, where
scenarios bad for ∆p, and scenarios bad for ∆d, are generated
separately. The idea to proceed in this way springs from
the observation that the function WCGAIN of [12] works
particularly well in the case of sole complex uncertainty ∆d,
as observed in [22], but is less precise in the case of mixed
uncertainty or sole real uncertainty. One could therefore split
step 4 of algorithm 1 into halves. In the first half-step, for
fixed κ∗ and for a fixed complex uncertainty ∆∗d (computed
in the previous sweep), a search over ∆p for a worst case ∆∗p
is made based on an optimization program as analyzed in [19].
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In the second half-step this scenario ∆∗p, along with κ∗, are
held fixed, and a search over ∆d for a worst-case ∆∗d based
on WCGAIN is made. This option was also evaluated in our
experiments.

V. HYBRID RELAXATION APPROACH

As we had observed in section III, strong conservatism
in the outer relaxation (18) occurs, particularly if parametric
uncertainty ∆p with a large number ri of repetitions is present,
due to substantially increase in the number of unknowns
Φ ∈ Φ. Even though this suggests the use of inner relaxations,
we have to be aware that complex uncertainty ∆d also comes
with some encumbrance. Namely, it makes the computation of
bad scenarios ∆∗,∆] in steps 3 and 4 of algorithm 1 harder
than in the case of pure real parametric uncertainty discussed
in [16]. Computations of α∗ and h∗ then turn out more
challenging, but more seriously, the number of active scenarios
∆ ∈ ∆a needed to cover the set ∆ may be significantly
larger than in the case of pure ∆p. This may become a major
challenge in the computation of h∗ in step 2 of algorithm 1. For
short, the situation is not as straightforward as on first glance.
This rises the question whether the two types of uncertainty
could not be handled individually. A natural idea is to use
inner relaxation for ∆p, and stick to a multiplier approach for
∆d. This is what we have termed the hybrid approach. We
start with the following result, the notations being those of
section III.

Theorem 2. Suppose there exist D ∈ D and a structured con-
troller K(κ) such that the closed loop system ∆p?Γ(0, D)−??
Pγ ? K(κ) is internally stable and satisfies the estimate∥∥∆p ? Γ(0, D)−? ? Pγ ? K(κ)

∥∥
∞ < 1 (20)

for all ∆p ∈∆p. Then the closed-loop system ∆ ? P ? K(κ)
is robustly stable and has worst-case H∞ performance γ over
∆.

Proof. It suffices to note that

∆p ? Γ(0, D)−? ? Pγ ? K(κ) =[
D 0
0 I

]
(∆p ? Pγ ? K(κ))

[
D−1 0

0 I

]
.

It then follows that internal stability of ∆p ? Γ(0, D)−? ?
Pγ ? K(κ) in tandem with (20) is a complex µ upper bound
condition for stability and performance in the sense of [23].
Therefore, for any ∆p ∈ ∆p, the system ∆p ? Pγ ? K(κ) is
stable and has worst-case H∞ performance γ for all ∆d ∈∆d,
which concludes the proof.

This result offers yet another algorithmic option, which
will be tested and compared to the other approaches in our
experiments under the name hybrid approach.

In the above approach we have chosen D ∈ D as inde-
pendent of ∆p ∈∆p,a. Choosing an individual Dp = D(∆p)
for each performance constraint indexed by ∆p ∈∆p,a would
reduce conservatism, but at the same time increase the number
of variables in the synthesis program of step 2.

Algorithm 2. Robust synthesis by the hybrid method

Parameters: ε > 0, η > 0.
. Step 1 (Nominal synthesis). Initialize set of ac-

tive real scenarios as ∆p,a = {0}.
. Step 2 (Multi-model synthesis). Given current

finite set ∆p,a ⊂ ∆p of active real scenarios, compute
structured multi-model H∞ controller by solving the
H∞-program

minimize γ
subject to ‖∆p ? Γ(0, D)−? ? Pγ ? K(κ)‖∞ ≤ 1− η

for all ∆p ∈∆p,a

D ∈ D, κ ∈ Rn, γ ∈ R+

The locally optimal solution (γ∗, D
∗, κ∗) gives rise to the

structured multi-scenario H∞ controller K(κ∗).
. Step 3 (Worst-case stability). Try to destabi-

lize the closed-loop system ∆p?Γ(0, D∗)−??Pγ∗?K(κ∗)
by computing its worst case spectral abscissa

α∗ = max
∆p∈∆p

α (A(∆p, κ
∗)) .

The solution is the worst stability scenario ∆∗p. If α∗ =
α
(
A(∆∗p, κ

∗)
)
≥ 0, then include ∆∗p in the set ∆p,a and

go back to step 2. Otherwise continue with step 4.
. Step 4 (Worst-case performance). Try to de-

grade performance of the closed-loop system ∆p ?
Γ(0, D∗)−? ? Pγ∗ ? K(κ∗) by computing its worst case
H∞ norm

γ∗ = max
∆p∈∆p

‖∆p ? Γ(0, D∗)−? ? Pγ∗ ? K(κ∗)‖∞.

The solution is the worst performance scenario ∆]
p.

. Step 5 (Stopping test). If α(A(∆]
p, κ
∗)) < 0 and

γ∗ < (1 + ε)γ∗, degradation of performance is marginal.
Then exit loop and goto step 6 for posterior certification.
Otherwise include ∆]

p in the set ∆p,a and continue loop
with step 2.

. Step 6 (Certification). Use µ-analysis tools from
[12] to certify a posteriori that K(κ∗) is robustly stable
over ∆ and has robust H∞ performance γ∗ over ∆.

VI. TEST CASES

The efficiency of the three approaches from sections III, IV
and V was compared on the basis of a test bench consisting
of thirty systems adapted from the literature. Evaluation was
based on the best worst-case H∞ performance, or gain,
achieved by each method.

Table I shows that test cases 1-7 have only complex dynamic
uncertainty, four test cases, 8-11, have pure real parametric
uncertainty, whereas the remaining nineteen cases 12-30 have
mixed uncertainty. The column labeled ‘∆-structure’in Table
I shows the structure of the uncertainty ∆. Positive numbers
give the size of square complex blocks ∆d of dynamic uncer-
tainties in (5), negative numbers represent a real parametric
uncertainty and its repetition in (4). For instance, case 9 has
Nd = 0, Np = 2 with r1 = 18 and r2 = 2. Case 23 has
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TABLE I
TEST CASES

No. ∆-structure nP z-w y-u
1 complex 1 9 3 3 2 1
2 complex 3 7 1 2 1 1
3 complex 3 8 4 4 3 1
4 complex 8 12 6 2 2 2
5 complex 1,1 22 2 2 2 2
6 complex 1 3 1 1 1 1
7 complex 2 26 6 5 5 2
8 real -1 3 2 3 1 1
9 real -18,-2 23 3 2 3 1

10 real -20 10 2 1 1 1
11 real -21 5 2 2 1 1
12 mixed 1,-1,-1 9 1 1 1 1
13 mixed 1,-2,-2 7 4 2 1 1
14 mixed 1,-1,-3 8 3 4 2 1
15 mixed 1,-1 8 2 4 2 2
16 mixed 2,-1,-1,-1,-1,-1,-1 14 6 2 2 2
17 mixed 1,-1,-1,-1,-1,-3 9 2 1 1 1
18 mixed 1,-1,-2,-2 6 2 1 1 1
19 mixed 1,-1,-1,-3,-3,-3 6 2 2 1 1
20 mixed 1,-1,-1,-1,-1,-1,-3,-3,-3,-3,-3 11 2 1 1 1
21 mixed 4,-1,-1,-1,-1 8 6 2 2 2
22 mixed 1,-1,-1,-1,-1,-1,-1,-1,-2,-2,-2,-2 19 2 3 1 1
23 mixed 3,-1,-1,-6 8 4 4 3 1
24 mixed 3,-1 7 1 2 1 1
25 mixed 1,-1,-1,-1,-6,-6,-6 24 3 2 3 1
26 mixed 1,1,1,1,-1,-1,-1,-1 8 6 2 2 2
27 mixed 1,-1 7 2 2 1 1
28 mixed 1,-1,-5 7 2 3 2 1
29 mixed 1,-1 4 2 3 1 1
30 mixed 1,-1 8 2 2 1 1

Nd = 1, with p1 = q1 = 3, and Np = 3, with r1 = r2 = 1
and r3 = 6. Column nP is the order of the generalized plant
P , column z-w shows the number of exogenous outputs and
inputs and column y-u shows the number of control outputs
and inputs.

In all plants, the performance channel w → z was scaled
so that the worst case performance of the closed-loop system
computed by the inner approach in algorithm 1 was close to
the value one. This re-scaling renders the comparison between
the different techniques more straightforward. All performance
values were certified by the µ-analysis-based routine WCGAIN
from [12]. The only exception is case 17, where WCGAIN
failed, indicated by ‘–’in column 4 of Table II. Note that test
cases are available at http://rss-aguiar.site88.net/ along with
more detailed information.

A. Comparison between the relaxation techniques

In Table II the results of inner relaxation from algorithm
1, hybrid approach from algorithm 2, and outer relaxation
(18) are compared. These methods are labeled inner, hybrid
and outer. Column nK gives the order of the synthesized
controller, which is the same for the 3 approaches.

Columns 3-5 give the results of the inner relaxation, algo-
rithm 1. Column 3, named ‘gain’, corresponds to the value h∗
found on exit of the local loop (see the scheme in Fig. 3).
The number of times that algorithm 1 executed the local loop,
equivalent to the number scenarios |∆a|, is given in column
5. The global certification by WCGAIN is given in column 4,
labeled ‘certified’. For instance, in case study 1, algorithm 1
found the value h∗ = 1.003 for a controller of order nK = 2

TABLE II
COMPARISON OF OPTIMIZATION-BASED RELAXATION TECHNIQUES

No. nK inner hybrid outer
gain certified |∆a| gain certified |∆p,a| gain certified

1 2 1.003 1.003 10 1.008 0.999 2 0.989 0.996
2 1 1.000 1.000 6 1.001 0.999 2 0.991 0.999
3 4 0.977 0.978 28 1.444 1.521 2 1.488 1.493
4 3 0.999 1.000 2 1.006 0.999 2 0.991 0.999
5 5 0.989 0.991 23 1.182 1.209 2 1.601 1.555
6 1 1.000 1.000 3 1.008 1.003 2 0.991 1.000
7 4 1.027 1.026 26 1.045 1.043 2 1.035 1.043
8 2 1.000 1.000 3 1.000 1.000 3 1.116 1.126
9 2 0.999 0.998 5 1.001 1.001 5 – 86.26

10 2 1.000 1.000 2 1.000 1.000 2 – 4.687
11 1 1.000 1.000 1 1.000 1.000 2 – 1.000
12 3 1.000 0.998 10 1.052 1.052 3 1.217 1.227
13 1 1.000 0.993 2 1.002 0.994 2 18.83 1.135
14 2 1.000 1.000 3 1.000 1.000 3 1.005 1.000
15 3 1.000 1.000 8 1.001 1.000 3 9.999 6.373
16 4 1.178 1.230 16 1.238 1.225 14 2.227 1.732
17 4 0.906 – 13 1.155 1.143 3 6.449 2.475
18 3 0.992 0.992 6 1.093 1.090 5 1817 1785
19 1 1.000 1.000 1 1.000 1.000 2 10.190 1.692
20 2 1.210 1.210 5 1.223 1.222 3 20.00 18.52
21 1 1.000 1.005 2 1.005 1.000 2 0.990 1.000
22 3 0.976 0.976 10 1.042 1.041 4 – 36339
23 4 1.070 1.079 37 4.238 4.168 2 10.180 7.881
24 4 0.997 0.997 8 0.997 0.994 3 1.813 1.762
25 3 1.000 0.999 8 1.103 1.103 4 – 60.338
26 1 1.000 1.000 2 1.007 0.999 2 0.990 0.999
27 3 0.998 0.997 7 1.000 0.999 5 1.598 1.589
28 4 1.001 1.001 5 1.000 0.999 6 10.02 3.027
29 2 1.020 1.020 5 1.011 1.019 3 1.228 1.188
30 5 1.088 1.085 14 1.071 1.057 3 6.935 6.721

and required |∆a| = 10 scenarios. Certification with WCGAIN
confirmed this value as correct.

Similarly, columns 6-8 of Table II show the results for the
hybrid method. The value γ∗ found on exit of the local loop
(see Fig. 3) is given in column 6, labeled ‘gain’. The number
|∆p,a| of sweeps made by the local loop, that is also the
number of scenarios, is presented in column 8. Column 7
shows what WCGAIN certified when given this controller on
input. For instance, in case study 1, algorithm 2 estimated the
robust gain as γ∗ = 1.008, and needed only two scenarios to
achieve this, and in the end WCGAIN showed that the controller
was even slightly better, and certified a robust gain of 0.998.

Finally, columns 9-10 of Table II correspond to the results
of the outer relaxation. The estimated gain value is given in
column 9, and what WCGAIN obtained is in column 10. Note
that outer failed to satisfy the constraints ‖Γ(Φ, D)−? ? Pγ ?
K(κ)‖∞ < 1 and ‖Φ‖∞ < 1 simultaneously in cases 9, 10,
11, 22 and 25. This means the iterate (γ],Φ], D], κ]), where
optimization of (18) stopped, was not a local minimum of
(18), indicated by the failure sign ‘—’in column ‘gain’. Even
though, the K(κ]) were used for certification.

Closer inspection of the results reveals the following details.
Within an error margin of 1%, WCGAIN certified the gain value
h∗ obtained by inner in all cases, except test case 16 where
inner is 4.4% below the certified value. This means inner was
never conservative, but was optimistic in one case. Note that
WCGAIN failed to certify the gain value in study 17. This
represents the sole case where we have observed failure of
WCGAIN.

The values returned by hybrid were certified by WCGAIN,
for a 1% error margin, in 26 out of 30 cases. In two studies
hybrid was slightly optimistic, providing values below the
certification of WCGAIN. This concerned study 3 with 5.33%
and study 5 with 2.28%. In studies 23 and 30 hybrid provided
a slightly conservative value of 1.6% and 1.3%, respectively,
above WCGAIN value. For the same error tolerance, outer and

http://rss-aguiar.site88.net/
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TABLE III
COMPARISON OF DGK-ITERATION WITH INNER RELAXATION

No. dksyn inner No. dksyn inner
γdk ndk

K q∆ nK γinner γdk ndk
K q∆ nK γinner

1 0.994 13 1.006 2 1.003 16 1.209 96 0.827 4 1.230
2 1.011 19 0.989 1 1.000 17 1.489 117 0.731 4 0.912
3 1.046 38 0.956 4 0.978 18 4.507 6 0.222 3 0.992
4 0.983 20 1.002 3 1.008 19 3.765 6 0.266 1 1.000
5 1.229 22 0.814 5 0.991 20 3.746 11 0.267 2 1.210
6 0.934 7 1.071 1 1.000 21 0.998 20 1.002 1 1.005
7 0.965 42 1.037 4 1.026 22 25118 19 0.000 3 0.976
8 1.140 11 0.877 2 1.000 23 2.258 304 0.285 4 1.079
9 2.704 253 0.370 2 0.998 24 1.080 34 0.926 4 0.997
10 2.452 10 0.408 2 1.000 25 – – – 3 0.999
11 1.181 5 0.847 1 1.000 26 0.936 16 1.068 1 1.000
12 1.180 33 0.847 3 0.998 27 1.714 27 0.583 3 0.997
13 1.014 93 0.986 1 0.993 28 244.7 7 0.004 4 1.001
14 1.002 8 0.998 2 1.000 29 1.257 16 0.796 2 1.020
15 1.009 28 0.991 3 1.000 30 0.982 30 1.018 5 1.085

WCGAIN agreed in 36.7% of the cases, while in the remaining
63.3% outer had a slight tendency to be conservative.

Within the 1% error margin inner computed a smaller gain
value than hybrid in 10 out of 30 studies and their values
agreed in the remaining 20 cases. The gain values achieved by
outer and inner agreed in 26.7% of the cases, in the remaining
cases outer is conservative; outer and hybrid agreed in 33.3%
of the cases.

All computations were performed on MATLAB R© R2015b
running in Ubuntu 12.04, Intel Core 2 DUO E6850 @
3.00GHz and 3.8 GB RAM.

We observed that splitting the generation of bad scenarios
∆] ∈∆ into two half steps, where one half step generates bad
scenarios for parametric uncertainty and the other generates
bad scenarios for complex uncertainty, is feasible. However it
is not an improvement over the method proposed in algorithms
1 and 2. Therefore this line was not further explored in the
present testing.

B. Comparison with DKSYN

In Table III we compare algorithm 1 to the standard DKSYN
synthesis tool of [12]. This method is originally based on
properties of the structured singular value and DGK-iteration
[6], [23], [24].

We run DKSYN for the test cases of Table I with ∆ as input,
where it returns an upper bound for the structured singular
value µ, achieved with a controller Kdk of order ndk

K . This
µ value represents simultaneously the robust gain γdk, and
the factor q = 1/γdk for the scaled box q∆, on which this
performance and stability are certified. Columns 4 and 10
display the factor q and the results are shown in columns 2-4
and 8-10 of Table III. Columns 5-6 and 11-12 of Table III are
the results for inner from Table II, repeated for convenience.

For instance, in study 1 DKSYN achieved a robust gain of
γdk = 0.994 on the ball q∆ with q = 1.006, using a controller
of order ndk

K = 13, as algorithm 1 achieved the robust gain
h∗ = 1.003 on the original ball ∆, with a controller of order
nK = 2.

Even though a direct comparison is difficult due to the fact
that DKSYN modifies the given ball ∆ and the controller order,
we can see that DKSYN performs better than the inner approx-
imation in cases with q > 1. One can observe by comparing
columns nK and ndk

K that the price for this improvement is
generally a much higher controller order nK � ndk

K . On the

other hand, in those cases where q < 1, DKSYN was not able
to find a stabilizing controller on the original box ∆ despite
the higher controller order, and had to reduce the box to the
smaller size q∆ to get a certified result.

C. Comparison of all four methods

In order to allow an even better comparison between DKSYN
and the optimization-based approaches, we proceeded as fol-
lows with the experiment. We accepted the ball q∆ found by
DKSYN as the new uncertainty ball, and agreed to compare
all four methods on this ball. This means the methods inner,
outer, and hybrid were re-run on q∆.

Note that in the cases where DKSYN returns q > 1,
this requires even harder work from the optimization based
method. This extra work should result in an even higher gain
estimate, leaving DKSYN further in the lead. On the other hand,
for q < 1 the work for the optimization based methods is made
easier, so here it is expected that they return even better results,
gaining further on DKSYN.

TABLE IV
COMPARISON OF THE FOUR METHODS

No. inner hybrid outer dksyn
gain nK gain nK gain nK gain nK

1 0.982 4 0.983 3 0.994 3 0.994 13
2 0.999 1 1.000 1 1.011 1 1.011 19
3 0.949 4 1.085 8 1.101 10 1.046 38
4 1.009 4 1.010 4 1.010 4 0.983 20
5 0.856 5 1.107 5 1.010 5 1.229 22
6 0.914 2 0.923 2 0.914 2 0.934 7
7 0.965 9 0.984 13 0.977 9 0.965 42
8 0.923 2 0.923 2 1.061 2 1.140 11
9 0.896 2 0.895 2 79.65 15 2.704 253

10 0.972 2 0.972 2 2.168 10 2.452 10
11 0.999 1 1.000 1 1.181 5 1.181 5
12 0.472 3 0.480 3 0.550 3 1.180 33
13 0.990 1 0.991 1 0.995 1 1.014 93
14 0.999 2 1.000 2 1.000 2 1.002 8
15 0.983 7 1.119 11 4.559 6 1.009 28
16 1.106 4 1.111 4 1.277 11 1.209 96
17 0.617 4 0.710 4 0.969 4 1.489 117
18 0.203 3 0.207 3 4.193 5 4.507 6
19 1.000 1 1.000 1 1.418 1 3.765 6
20 0.964 2 0.964 2 3.167 5 3.746 11
21 1.000 1 1.000 1 1.000 1 0.998 20
22 0.439 3 0.439 3 9777 2 25118 19
23 0.622 4 0.709 4 2.258 4 2.258 304
24 0.904 4 0.902 4 1.080 4 1.080 34
25 1.000 3 1.103 3 200* 3 x x
26 1.051 1 1.051 1 1.051 1 0.936 16
27 0.801 3 0.801 3 1.172 3 1.714 27
28 0.006 4 0.006 4 0.006 4 244.686 7
29 0.847 2 0.862 2 0.963 2 1.257 16
30 1.080 5 1.159 5 6.445 6 0.982 30

In addition to changing the ball to q∆, in the cases where
q > 1 and nK < ndk

K , we allow the optimization-based
methods to increase nK to n+

K , keeping n+
K < ndk

K . This is
for fairness, as nK < ndk

K represents a huge advantage for
DKSYN. This increase in the order allows the optimization-
based methods to improve their score in a number of cases.
The new results are shown in Table IV. The columns ndk

K and
DKSYN are repeated from Table III for convenience.

For instance, in case 1 of Table IV we see a situation, where
DKSYN increased the original box by a factor q = 1.006,
on which a robust gain γdk = 0.994 was achieved with a
controller of order ndk

K = 13 (line 1 of Table III). In that case
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inner achieved only the gain h∗ = 1.003 on the original ball,
using a controller of order nK = 2. Now in line 1 of Table IV
we allowed inner a controller of slightly larger order n+

K = 4,
which is still way below 13, and we re-run it on the larger ball
q∆. This leads to h∗ = 0.982, which means inner was able to
recover due to the slightly more versatile controller structure,
and it was able to deal with the enlarged ball q∆. The results
for hybrid and outer in Table IV are to be understood in the
same sense.

The details of Table IV are as follows. Within the error
margin of 1%, outer is equivalent to DKSYN on q∆ in 23.3%
of the cases, and has better results in 50% of the cases.
Similarly, hybrid is equivalent to DKSYN in 6.7% of the cases,
and is better than DKSYN in 73.3% of the cases. Finally, inner
is equivalent to DKSYN in 10% of the cases, and has better
results than DKSYN in 80% of the studies.

Altogether comparison with DKSYN was based on the
following steps:

Algorithm 3. Comparison with DKSYN

. Step 1. Choose uncertainty box ∆ and run optimization-
based relaxation methods with imposed controller struc-
ture of order nK . The results of the three optimization
based methods inner, hybrid and outer are compared in
Table II.

. Step 2. Run DKSYN with ∆ on input. DKSYN returns
γdk and a modified box q∆ on which γdk is certified,
achieved with a controller of order ndk

K . Comparison with
the result for inner are shown in Table III.

. Step 3. If q > 1 and nK < ndk
K and γdk < γ, increase

nK slightly to n+
K . In all other cases keep n+

K = nK .
. Step 4. Re-run optimization based methods on box q∆

with controllers of order n+
K . Compare estimate of robust

H∞ performance in all 4 cases (Table IV).

VII. CASE STUDY

In this section, the three approaches presented in this paper
are applied to a challenging engineering problem and their
closed-loop system responses are compared.

The tail fin controlled missile described in [25] was used as
the basis of the problem presented here, but new uncertainties
were added to make the problem more challenging. The
closed-loop interconnection is presented in Fig. 4, showing
the controller to be designed, K, the generalized plant P ,
composed of 5 blocks, the uncertainties, and the weights for
the performance channels, We and Wd.

The missile dynamics, illustrated in Fig. 5, include the rigid
body dynamics Gr, three flexible modes of the system Gf

in parallel with Gr, and the actuators and sensors dynamics,
which are represented by second-order systems Gact,Gacc,
Ggyr. The plant P features two additional performance and
robustness filters We,Wd, which altogether leads to nP = 29
states. The control input of the missile is the tail fin deflection
angle df through the actuator Gact and the measured output
is y = [ηm qm]T, with acceleration ηm obtained from
the accelerometer Gacc and pitch rate qm obtained from the

K Gact

Gf

Gr
Gacc

Ggyr

We Wd

zdfze

dfeηc

ηm

qm
−

∆1

∆2

∆3
δ2

δ1

P

Fig. 4. Uncertain missile plant with controller. Real uncertainty is represented
by the δ-blocks. Complex uncertain blocks are labeled ∆. For instance, the
∆1 in loop with Gact stands short for W∆

act∆act, etc.

gyroscope Ggyr. The actuator has a fin deflection limit of
40 deg. and a fin rate limit of 300 deg./s with description
uact = Gact · df where

Gact(s) =
ω2
act

s2 + 2 · 0.7 · ωacts+ ω2
act

.

Similar second-order models are used for the accelerometer
Gacc and the gyroscope Ggyr, with numerical values given in
Table V.

The rigid body dynamics, Gr of the missile is described
by the state-space representation below, where the input
is provided by the actuator and the output is the vector
[ηrigid qrigid]

T:

Gr:

[
α̇
q̇

]
=

[
Zα 1
Mα Mq

] [
α
q

]
+

[
Zd
Md

]
uact

[
ηrigid

qrigid

]
=

[
V/kGZα 0

0 1

] [
α
q

]
+

[
V/kGZd

0

]
uact.

Three flexible modes are added to represent the bending
dynamics of the missile. We have

Gf :

[
ηflex

qflex

]
=

3∑
i=1

[
ηi(s)
qi(s)

]
uact,

where [
ηi(s)
qi(s)

]
=

1

s2 + 2 · 0.02 · ωis+ ω2
i

[
s2Kηi

sKqi

]
,

i = 1, 2, 3, and then the overall dynamics are[
η
q

]
=

[
ηrigid

qrigid

]
+

[
ηflex

qflex

]
.

The final measured outputs are then ηm = Gacc · η and
qm = Ggyr · q. The values of the parameters of the plant and
their respective ranges are presented in Table V.

Unmodeled high frequency dynamics at the actuator and
sensor locations are assumed as of 0.1% uncertain at low
frequency, and of 100% at high frequency. Explicitly, this
corresponds to including the weight

W∆
act(s) =

(s+ ωact)
2

(s+ 10 · ωact)(s+ 100 · ωact)
,
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TABLE V
VALUES AND UNCERTAINTY OF THE MISSILE PARAMETERS

Parameter Nominal Uncertainty Parameter Nominal Uncertainty
Za -5.24 ±30% Zd -0.73 0
Ma -46.97 ±15% Md -1134 0
Mq -4.69 ±30% V/kG 1.182 0
ω1 368 ±15% ωacc 188.5 0
ω2 937 ±15% ωact 377.0 0
ω3 1924 ±15% ωgyr 500.0 0
Kη1 -0.943 0 Kq1 1024.1 0
Kη2 0.561 0 Kq2 406.5 0
Kη3 -0.312 0 Kq3 -1408.4 0

TABLE VI
MISSILE PLANT

∆-structure nP z-w y-u
mixed -1,-1,-1,-6,-6,-6,1,1,1 29 2 1 3 1

for the actuator, and similarly, for accelerometer and gyrometer
with their respective frequencies ωacc and ωgyr, shown in Table
V.

As in (3), gathering all uncertain blocks for
the missile yields ∆ = diag [∆p,∆d], with
∆p = diag

[
δZα , δMα

, δMq
; δω1

I6, δω2
I6, δω3

I6
]

and
∆d = diag

[
∆act,∆acc,∆gyr

]
. Table VI summarizes

the uncertainty in the system, terminology being that of Table
I of the previous section, and Fig. 5 illustrates the variations
in singular values.

Finally, the performance weights were chosen to reflect the
following design requirements: Firstly, acceleration ηm should
track the command ηc with a rise time of about 0.5 seconds.
Hence the weighting function We(s) for the transfer function
from ηc to the tracking error e := ηc − ηm was chosen as
We(s) := 1

100
s/10+100
s/10+0.05 .

Secondly, for robustness, the high-frequency rate of
variation of the control signal and roll-off are captured
and penalized through the constraint ||Wd(s)Tdfηc ||∞ ≤
1, where Wd(s) is a high-pass weighting Wd(s) :=
(s/200(0.001s+ 1))

2. This also permits to meet the imposed
actuator deflection magnitude and rate limits of respectively
40 deg. and 300 deg./sec. Altogether the regulated output is
z = [Wee Wddf ]T = [ze zdf ]T.

Using the methods discussed in this work, we then compute
robust controllers K of order 6 with 3 inputs ηc, e = ηc−ηm,
and qm, and one output df .

The results are presented in Table VII, again with the

Singular Values of Plant’s components
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Fig. 5. Singular value plot for the components of plant G.

terminology of Table II. The hybrid and inner relaxation
methods found controllers with very similar performance,
whereas the outer relaxation approach was not able to find
a solution. The performance value returned by DKSYN was
Inf , meaning that it could not find a solution either.

TABLE VII
RESULTS FOR MISSILE SYNTHESIS

nK inner hybrid outer
gain certified |∆a| gain certified |∆p,a| gain certified

6 0.4310 0.4353 13 0.4416 0.4409 6 - -

Responses of ηm, qm and δc to ηc step inputs are shown in
Fig. 6 for inner and in Fig. 7 for hybrid. Both of theses tech-
niques were able to achieve prescribed design requirements.

Step Response Tail Fin Missile

−0.2

0.2

0.6

1.0

η
m
(m

·
s
−
2
)

−3

−2

−1

0

1
q m

(d
e
g
·
s
−
1
)

−0.1

0

0.1

0 0.1 0.2 0.3 0.4
T ime(s)

δ c
(d
e
g
.)

Fig. 6. Step responses for 50 sampled closed-loop models in the uncertainty
range of the controlled missile with controller obtained by the inner approach.

VIII. CONCLUSION

We presented three relaxation approaches to the structured
mixed parametric synthesis problem, based on different strate-
gies, termed inner, outer and hybrid. A bench of 30 challeng-
ing test cases with mixed parametric and dynamic uncertainty
was used to evaluate and compare these approaches. The inner
relaxation generally produced the best results, its advantage
being the most striking in situations with a large number ri of
repetitions. The approach termed hybrid came in second. The
outer relaxation approach turned out to be more conservative
and came third. As expected, this technique experienced
difficulties for large repetitions of parameter uncertainty.

An out-of-competition comparison with the classical DGK-
iteration based routine DKSYN was also organized. Owing to
the fact that this technique modifies the uncertainty set ∆
given on entry, rendering a direct comparison impossible, we
devised an evaluation procedure (given in section VI), which
shows that, despite the age, the DKSYN function performs
honorably. When comparing outer relaxation and DKSYN on
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Fig. 7. Step responses for 50 sampled models in the uncertainty range of the
controlled missile with controller obtained by the hybrid approach.

a same ball q∆, the outer relaxation approach still performs
better in half the test cases.

A more detailed study of a controlled missile with 6
real uncertain parameters with up to 6 repetitions and three
uncertain complex blocks was presented in section VII.

Finally, both inner and hybrid approaches were confirmed
as practical and non-conservative synthesis techniques.
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