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Abstract

In this paper, some new techniques for determining the observer-based or LQG form
of any compensator with arbitrary order are discussed. The practical appeal of such
techniques is that they allow for a simplified implementation and reduced memory stor-
age of general controllers and offer additional flexibility for handling gain-scheduling and
input saturation constraints as compensator states become meaningful variables. The
derived observer-based controllers are input-output equivalent to the original controller
but with an explicit separated estimation/control structure. Such structures involve
both static control and estimation gains with an extra Youla parameter that can be
either static or dynamic. The proposed techniques are applicable both in continuous-
and discrete-time, to full-order controllers, that is, controllers whose order is the same
as the plant’s order but also to augmented- and reduced-order controllers whose orders
are greater or smaller, respectively. Necessary conditions to apply this general controller
equivalence principle are derived.

The interest and practicality of such techniques are then investigated with regards
to the LQG implementation of Hy and u controllers, classes of controllers that does
not generally enjoy ease of implementation.
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1 Introduction

LQG compensators are interesting for different practical reasons. Probably the key advantage
of these controller structures lie in the fact that the controller states are meaningful variables
as estimates of the physical plant states. It follows that the controller states can be used to
monitor (on-line or off-line) the performance of the system. Note that this simple property
does not hold for general controllers with state-space description ;

{ tx = Agvx+ Bgy (1)
u = C KTK + D KY -

Another well-appreciated advantage comes from the ease of implementation of observer-
based controllers. In addition to the plant data, only two static gains define the entire con-
troller dynamics. In return, this facilitates the construction of gain-scheduled or interpolated
controllers. Indeed, assuming the plant model is available in real-time, observer-based con-
trollers will only require the storage of two static gains of lower dimensions instead of the
huge set of numerical data in (1) to update the controller dynamics at each sample of time.
Note that if we are using an interpolating procedure to update the controller dynamics, the
general representation in (1) is highly questionable from an implementation viewpoint and
in many cases will lead to an insuperable computational effort. This was in our opinion a
major impediment for a widespread use of modern control techniques such as H,, and pu
syntheses in realistic applications and particularly for problems necessitating real-time ad-
justment of the controller gains. An in-depth discussion of these questions is provided in [1]
and references therein, together with the introduction of various techniques to overcome such
difficulties. More theoretical discussions on the implementation of gain-scheduled controllers
which exploit informations on plant non-linearities are given in [20] and [21].

Among other potential advantages of our method, we would like to point out the pos-
sibility to handle actuator saturation constraints by exploiting this information into the
prediction equation. Since we do not cover this matter in this paper, the reader is referred
to [19] and references therein for more details.

Two important contributions investigating the estimator/controller structure of any com-
pensator are those of Schumacher in [5] and Bender and Fowell in [2, 3, 4]. In [5], Schumacher
introduced the deterministic separation principle and showed in the abstract setting of the
geometric theory that generically any compensator can be given an observer-based form.
As a consequence, the differences between the general controllers (1) are essentially an ar-
tifact of the theory. In |2|, Bender and Fowell developed simple and practical techniques
for computing the estimator/controller form of arbitrary full-order compensators. Their
technique consists in mapping the states of the compensator to those of the observer-based
controller via a linear state-space transformation. The computation of the transformation
matrix involves solving a generalized non-symmetric algebraic Riccati equation. Such Riccati
equations have been previously introduced by Kokotovic in [9] in the context of singularly
perturbed systems where the existence and uniqueness of the solution can be proved in some
special situations. The reader is referred to [10] for more on this subject. In the general case,
however, the solutions are not unique but correspond to a finite combinatoric associated with
the different possible choices of n closed-loop eigenvalues among the set of 2n closed-loop
eigenvalues, where n stands for the plant’s order.



The contribution in this paper is as follows. In section 2, the results of Bender and Fowell
are generalized to augmented order compensators and, under some conditions, to reduced
order compensators. It is shown that the ()-parameterization of controllers and Luenberger
observers formulation can be exploited to derive equivalent observer-based state-space rep-
resentations with an explicitly separated structure. Again we would like to emphasize that
such techniques are very general and encompass proper or non-strictly proper controllers and
plants and also the case of discrete-time controllers. The latter case has been rejected in an
appendix for simplicity of the presentation. Necessary conditions of intrinsic nature for the
technique to be applicable are also discussed. In Section 3 the implications of these results
for the implementation of H,, or u controllers are discussed and illustrated by examples.

The notation used in the paper is standard. The notation R stands for the set of real
number. Variables wearing a hat designate estimates. For instance T denotes an estimate
of the variable z. The notation spec(M) is used to denote the spectrum of matrix M.
The notation A|S denotes the restriction of some map A to the linear subspace S. M* is
the conjugate-transpose of M. With a slight abuse, we shall sometimes use the term LQG
structure in place of observer-based structure.

2 LQG form computation

In this section, we briefly recall the central ideas behind the Youla parameterization and
show how it can be used to find the state estimator-state feedback structure of an arbitrary
compensator associated with a given plant.

The plant assumed strictly proper without loss of generality is defined as :
T = Az + Bu,
2
{ y = Czx (2)

where A € R™", B € R™™, and C € RP*"™. The so-called Youla parameterization of all
stabilizing compensators built on the LQG form associated with the plant is depicted in
figure 1, where K., K; and )(s) are respectively the state feedback gain, the state estimator
gain and the Youla parameter. The compensator associated with this structure is easily
shown to have the following state-space description :

T = AT+ Bu+K;(y—C%)
zq = Aqurq+ Boly — (%) (3)
U — CE‘FCQLL‘Q—}—DQ(:‘/_C:/L‘\)

where Ag, Bg, Cg and Dg are the 4 matrices of the state-space representation of Q(s)
associated with the state variable zg. Hereafter,  denotes an estimate of the plant state .
The Youla parameterization principle is based on the fact that the closed-loop transfer
function between the input e and the innovation ¢, = y — C7 is null (see [6] for instance).
As a consequence, changing Q(s) leads to various compensators but the closed-loop transfer
function remains unaffected. It is readily shown that this closed-loop transfer function can
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Figure 1: LQG structure and Youla parameterization

be represented by the state-space form (4) involving the estimation error ¢, =z — ¥ :

T A—-BK, BCy BK.,+ BDuC z B
x'Q = 0 AQ BQC ZQ =+ 0 e
€ 0 0 A—-K;C € 0 (4)
z
ey, = [0 0 C]| 2o
€

From this representation, the separation principle appears clearly and can be stated in the
following terms :

e the closed-loop eigenvalues can be separated into n closed-loop state-feedback poles
(spec(A — BK_)), n closed-loop state-estimator poles (spec(A — K;C)) and the Youla
parameter poles (spec(Ag)),

e the closed-loop state-estimator poles and the Youla parameter poles are uncontrollable
by e,

e the closed-loop state-feedback poles and the Youla parameter poles are unobservable
from e,. The transfer function from e to ¢, always vanishes.

Now let us consider a given ngth-order compensator defined by the following state space
representation :

rx = Agrx+ Bgy (a) (5)
u = CKxK—i—DKy (b)

We are first going to express the compensator state equation (5.a) as an Luenberger
observer of the variable z = T'z. So, we will denote:
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According to Luenberger’s formulation [6], this problem can be stated as the search of
T € R"*", F € R"<*"x G € R"<*P
such that
Z=F%+Gy+TBu (7)

is an (asymptotic) observer of the variable z, that is z — Z vanishes as ¢ goes to infinity.
Luenberger has shown that the constraints :

TA—FT =GC, and F stable , (8)

ensure that this holds true. Then, with the output equation (5.b), the state space repres-
entation of the compensator reads :

Z = (F+TBCk)z+ (G+TBDg)y
u = CK/Z\-FDKy

9)

The separation principle is still true and one can easily shown from (2) and (9) that the
closed-loop dynamic can be expressed as :

[x} _ [A+B(DKC+CKT) —BCK}[:J:}

£, 0 F €, (10)

where £, = T'v — z. Note that the stability of F' is secured whenever the original controller
(5) is stabilizing.
With (6), the identification of (9) and (5) leads to the algebraic relations:

F = Ax—TBCk (11)

These equations with (8) guarantee that we are dealing with an observer-based controller.
Substituting (11) and (12) in the first relation in (8), we get :

AT — T(A+ BDgC) — TBCkT + BxC =0 (13)

So, the problem is reduced to solving in 7" the generalized non-symmetric and rectangular
Riccati equation (13) and next to compute F' and G using (11) and (12) respectively.
Equation (13) can also be reformulated as :

A+ BDgC BC’K][I]_O

- 0| e || 7 &

Therefore, the Hamiltonian matrix associated with the Riccati equation (13) is nothing else
than the closed-loop system matrix :

A+ BDkgC BCk ] (15)

Aa = [ BxkC Ak

The Riccati equation (13) can then be solved by standard invariant subspace techniques
which consist in :



e finding a n-dimensional invariant subspace & := Range(U) of the closed-loop system

matrix A, that is,
AyU =UA (16)

This subspace is associated with a set of n eigenvalues, spec(A), among the n + ng
eigenvalues of A,. Such subspaces are easily computed using Schur factorizations of
the matrix A.. See [13] for more details.

e partitioning the vectors U which span this subspace conformably to the partitioning
in (15).

U= [ Uy } . U e R (17)
Us

e computing the solution : T = U,U; .

Narasimhamurthi and Wu have shown in [10] that the existence of a solution T satisfying
(13) is guaranteed whenever the eigenvalues of the Hamiltonian matrix A, are distinct.
In proposition 2.2, a necessary condition is given for the existence of a solution 7. In
the general case, however, there are finitely many admissible subspaces & and thus many
solutions. Each solution corresponds to a particular choice of n eigenvalues among the set
of closed-loop eigenvalues of A.

Then, given a nth-order plant and a nxth-order compensator, one can compute the linear
combination T, «,x of the plant states which is estimated by the compensator state. An
analogous result is also discussed by Fowell and al in [3].

2.1 Augmented-order compensators

In this section, we consider the problem where nx > n and our aim is to find a state-feedback
gain K., a state-estimator gain K and a dynamic Youla parameter Q(s) with order nx —n,
such that the observer-based compensator structure in figure 1 is equivalent to the original
controller (5). We will assume that 7" has been computed by the previous technique according
to an admissible choice of n poles among the n + ng closed-loop poles. Next, F' and G can
be computed from (11) and (12). Now consider a Schur decomposition of the matrix F' and
a partition of the resulting Schur matrix as a 2 by 2 matrix with block sizes nx — n and n.

By Py Fp [ Ve }
F=VFV*=[W V ~ 18
[ 1 2 j| 0 F22 ‘/2* ( )
with VV* = I, _wn,, Fi1 € R and Fyy € RMM,
Let us perform the change of variable :
~ w
-] w ] (19)
in equations (7) and (8) and introduce the notations :
&) []e |5 ][]
G| w9 " v 20




Equations (7) and (8) then become :

W, = ]:flwl—klzzw —|—9’Zy +7leu (a) (21)
11)2 = F22w2 +G2y +T2_BU (b)
and _ I .
hA -Pnh-Fely = GO (a) (22)
TQA —F22T2 = GQC (b)

Now, we will assume that the Schur decomposition has been performed in such a way that
Ty, = V5T is non singular (in proposition 2.3, a necessary condition for 7" to be full column
rank is given) and we perform the second change of variable :

wy = ThZ (23)
From equations (21.b) and (22.b), one can derive :
F=A%+Bu+Ty Galy—C3) (24)
Using now (22.a) and (23) to substitute Fiows, into equation (21.a), we get :
wy = Fyy(wy — ThZ) + Gy (y — C%) + T1 (A% + Bu) (25)

Pre-multiplying equation (24) by 7Tj, subtracting it from equation (25) and using the last
change of variable :
w — % = TQ (26)
we obtain : ~ I
Tg = Fuzg+ (G —Ti'Ty, Gs)(y — C72) (27)
From (6), (19), (23) and (26), one can easily derive the global linear transformation between
the compensator original state x5 and the new states Z and zg :

Then, the compensator output equation (5.b) can be expressed as ;
or :

The identification of the set of equations (24), (27) and (30) with equation (3) provides all
the parameters for the observer-based controller structure shown in figure 1 :
K; = T Gy= (1) VG
K. = —CkT — DkC
Ag = Fi=V'FV

By = Gi~TTy Go=Vllugxnx — T(VsT) V)G 34
Co = CixVi 35
DQ = DK 36



In brief, the procedure to compute the observer-based form and the dynamic Youla parameter
of a given ngth-order compensator associated with a nth-order plant (ng > n) can be
summarized as follows:

e compute the closed-loop matrix A, (equation (15)) and choose n eigenvalues in spec(A.)
which will be assigned to the closed-loop state-feedback poles (see proposition 2.1),

e solve in T the non-symmetric Riccati equation (13) and compute F' and G with the
help of (11) and (12),

e select a partition of n eigenvalues (which will be assigned to the closed-loop state-
estimator poles) and nx —n eigenvalues (which will be assigned to Q-parameter poles)
in spec(F') and compute matrices V7 and V5 from a Schur decomposition of F' according
to this partition (equation (18)),

e compute the sought parameters K., Ky, Ag, Bg, Cq and D¢, using (31)-(36).

2.2 Discussion

There is a combinatoric of solutions according to the choice of the partition of the closed-loop
eigenvalues, first, in the computation of matrix 7', and secondly, in the Schur decomposition
of matrix F. Hereafter some rules are proposed to reduce the number of admissible choices.
These rules are the extension of remarks previously stated by Bender and Fowell [2], in the
full-order case but we provide here a simple proof as they will be the key for the application
of this method to the standard control problem presented in section 3.

Proposition 2.1 The n eigenvalues chosen for the computation of the solution T of the
Riccati equation (13) using the Hamiltonian approach are the n eigenvalues of the closed-
loop state feedback associated with the equivalent LQG-compensator, i.e, spec(A — BK,).

Proof : From (15), (16) and (17), we have :

A+ BDgC BCk Iyxn _ Ixn -1
me” e |- Joe 6

the first row of this matrix equality reads :
A+ B(DgC + CgT) = U AU (38)

using (32), we have :
A— BK,=UAU;! (39)

So, the eigenvalues of A are the eigenvalues of A— BK,. As a consequence, the ng remaining
eigenvalues are the Luenberger observer poles (i.e. spec(F'), see also equation (10)), which
are shared, in the Schur decomposition (18), between the nyx —n Youla parameter poles (i.e.
spec(Ag)) and the n closed-loop state estimator poles (i.e. spec(4 — K;C)). O



Hereafter, we are considering the set of equations (from (15), (16) and (17)) :

A+ BDxC BcKHm]:[Ul]A

BeC  Ax || Uy U, (40)

and we shall give a necessary condition, on the choice of the subspace &, for the existence
of a solution T (that is, for U; to be invertible).

Proposition 2.2 Consider U, and U, associated with some n-dimensional invariant sub-
space § of Agq. Assume there is some uncontrollable plant eigenvalue which is not in
spec(Aq|S) then Uy is singular. In other words,

if 3N ¢ spec(A) s. t. Xis (A, B) uncontrollable, then Uy is singular (41)

Proof : Consider the (A, B)-pair and let A denote an uncontrollable eigenvalue with asso-
ciated left-eigenvector u. That is,

u'[A— X | B] =0 (42)
then, pre-multiplying (40) by [u” 0], we get :
u"[(A+ BDgC)Uy + BCxUs] = v U A (43)
From (42) and (43) it follows that :
uTU (A — M) =0 (44)
So, if A ¢ spec(A) then uTU; = 0, that is U; is singular. O

We also have a dual property which concerns the column rank of 7" (that is, for Us to be
full column rank). It can be stated as follows.

Proposition 2.3 Consider U, and U, associated with some n-dimensional invariant sub-
space S of Ay. Assume there is some unobservable plant eigenvalue in spec(Ay4|S), then Uy
1s column rank deficient. In other words,

if AN € spec(A) s. t. Nis (A, C) unobservable, then Uy is column rank deficient. (45)
Proof : Omitted for brevity. See proposition 2.2. O

Remark 2.4 If ng = n, then T is square and the Schur decomposition (18) of F' is such
that V5 = I, and V; is empty. Then equations (31)-(36) become :

K; = T7'G=T7"'Bg - BDg (46)
K, = —CxT — DkC (47)
Q(s) = Dqg=Dk (48)

Our results then specialize to those of [2].



Remark 2.5 Among all the admissible choices, the only restriction which can help us is
that complex conjugate pairs of poles cannot be separated if we are seeking state-space
representations with real coefficients. Note that such a choice is not always possible. For
instance, consider the plant P(s) = 1/s and the compensator 2/(s+2), then the computation
of the state feedback-state estimator form leads to @ = 0, K. = 1+ 4 (or 1 — i) and
Ky =1—1i (resp. 1+1). Although the gains K, and K are complex, the transfer function
of the controller has real coefficients. The following selection rules have proved also useful
in practical applications of the method:

e affect the fastest poles to spec(Ag) in such a way that the Youla parameter acts as a
direct feedthrough in the compensator,

e assign to spec(A — BK,) the n closed-loop poles which are the “nearest” from the n
plant poles in order to respect the dynamic behavior of the physical plant and reduce
the state-feedback gains,

e assign fast closed-loop poles to spec(A — K;C') to have an efficient state estimator.

Remark 2.6 If the plant has a direct feedthrough matrix D, then this technique should be
applied to the strictly proper plant model (A, B, C') between the input u and the fictitious
output y = y — Du. A valid compensator for the original plant is then easily derived with
the representation:

{ ik = (Ax+ Bi(I = DDy) ' DCx)z + B (I = DDi) 'y (49)

u = (I — DKD)ich.TK + (I — DKD)ilDKg

Then, the parameters of the LQG-form (i.e. : K., Ky, Ag, Bg, Cg and Dg) computed from
these new compensator and plant must be applied to the equation (3) with y replaced with
iy =1y — Du.

2.3 Reduced-order compensators case

In the case ng < n (i.e. dim(z) < dim(z)), the LQG structure shown in figure (1) is no
longer valid. But we can find an interesting alternative in building a reduced-order estimator.

It is interesting to point out the case where [T'T C7] is a rank n matrix (i.e. p+nx > n)
then, we can obtain a reduced observer-based representation involving an estimate Z of the
plant state x by a linear function of the compensator state z and the plant output y (see
Luenberger |6] and Newmann [14]) :

= H3+ Hy (50)

with the constraint :

10



Then, the separation principle holds and a Youla parameterization (with a static parameter
Dg) built on such a reduced-order estimator reads :

Z = FZ+Gy+TBu (a)
T = H\Z+ Hy (b) (52)
v = —K.Z+ Dg(y—Cz) (c)

TA-FT = GC

As well as in the LQG-form compensator, it can be easily shown that the closed-loop
poles, with a compensator defined by equations (52) and (53), are distributed between the
closed-loop state-feedback poles (spec(A — BK,)) and the estimator poles (spec(F’)). Equa-
tions (13), (11) and (12) which respectively provide T, F' and G are still valid. The problem
is therefore reduced to computing K., Hy, Hy and Dg such that (from the identification of
(52.b) and (52.c) with (5.b)) :

O = — (K. + DgC)H, ()
Dk = —(K.+ DoC)Hy + Dg  (b) (54)
H\T+ H,C=1 (c)
It is easily deduced that :
K, =—-CkT — DgC (55)

This is the same equation as (32), established in the augmented-order compensator case.
To compute H;, Hy and D¢, we distinguish the following situations :

-1
o if [ g ] exists (which implies that nx +p = n) then :

5, ] — [ g ]1 (56)
[Elmm=[ e )= [% 7] o

Hence, relationships (54) are satisfied for any D¢ and we can choose Dg = 0 without
loss of generality.

e if ng > n — p, then there are several solutions (H;, Hj) satisfying (54.c), one can
choose for example the least norm solution (in order to reduce the control gains) using
the pseudo-inverse of matrix [T7 C7] :

[TTT + CTc]flTT

H,y
{H2 — [TTT_i_CTc]flcT (58)

Then, Dg must be found by solving equations (54.a) and (54.b).

11



If ngx < m — p, we can only mention that, in open-loop, the compensator state z is an
estimate of the linear function 7" of the plant state z, that is, the estimation errore, = Tx—7Z
tends to 0 with the following dynamic behavior :

€, = (Ax — TBCk)e, (59)

This property is lost in closed-loop as the separation principle is no more satisfied.

In this case (nx < n — p), the only way round consists in performing a reduction of the
plant until the previous technique is applicable. The compensator is then interpreted as an
observer-based compensator associated to the reduced plant.

3 Application to the standard control problem

3.1 General standard problem

The results established in the previous sections can be exploited to construct equivalent
observer-based state-space representations of controllers of arbitrary order. As a particular
application, one can examine the observer-based representations of controllers designed using
modern robust control techniques such as H,, and u syntheses. Except in special circum-
stances [15], such controllers does not enjoy such a structure as this is the case for LQG or
H, controllers. We show in this section that the distinction between these classes is only
formal. We note first that H,, and p syntheses generally provide high-order compensators
as compared to the plant’s order due to the introduction of frequency weightings or scal-
ings [17, 18]. Now, we know from section 2 how to reformulate such a compensator as an
observer-based compensator associated with the augmented plant whose states incorporate
the physical plant’s states but also additional states resulting from the weights and possibly
dynamic scalings.
Consider the general standard form interconnection in figure 2 where :

e (G(s) is the nominal plant model,

e Wi.(s) and Wy, (s) are respectively the input and the output frequency weightings (or
might be scalings),

e ¢, u, z and y are the exogenous input, the control command, the controlled output and
the measurement of the augmented plant P(s), respectively

e K(s) denotes the compensator transfer function.

The state-space representation of the augmented plant P(s) is given as :

T A Bl B2 xZ
z = 01 D11 D12 € . (60)
Y Co Day Dy U

We assume here that the compensator and the augmented plant have the same order.
Then, the technique is directly applicable to the augmented plant (A, By, Cy, Dys) to obtain

12



€ o Win(s) — —=Wout(8)—=
G(9)
u y

P(s)

K(S) -
Figure 2: General standard problem

an observer-based representation for K(s) where the state x of the augmented plant is
estimated. In other words, the estimator will estimate the states of the model G(s) and
the states of the frequency weightings W;,(s) and W, (s) and possibly the scalings. As
proved earlier, we have to solve a generalized non-symmetric Riccati equation using invariant
subspace techniques. This computation must satisfy the constraints derived in propositions
2.2 and 2.3, that is,

e the poles of W;,(s) are uncontrollable with respect to the pair (A, Bs). Thus, they
must be selected in the choice of the invariant subspace,

e the poles of W, (s) are unobservable with respect to the pair (A, C). Thus, they
must be left out in the choice of the invariant subspace.

Alternatively, one can also use the more general results of section 2.1 where the extra dynamic
of the augmented plant, which in most cases correspond to weighting functions or scalings,
is reflected in a dynamic Youla parameter. In such a case, the order of Q(s) will be the
sum of the orders of W;,(s) and W, (s) and possibly the scalings. This is illustrated in the
example below.

3.2 Example

This example is borrowed from the second demonstration example of the Mu-Analysis and
Synthesis Toolbox [16] and can be easily found in the SIMULINK extra library. The problem
is the control of an open-loop unstable system G(s) defined as :

rq = Agrg+ Bgu
61
{ y = Cgzg (61)
where :
—36.6 —18.923 —0.4140
Ao = [ —-1.9  0.983 ] Be = { ~77.8 ]  Ce=[0573]. (62)

The synthesis interconnection structure for this problem is depicted in figure 3. Let us denote

13



50s + 5000

-~ S+10000 "4
S
e W,
0.55 4+ 1.5
s+ 10000 %
Cha W,(9)
e = Agxzg+Bagu A
u——=9—* y = Cgzg T =y
G(s)

Figure 3: Augmented synthesis model

z,, and x, the states associated with the frequency weightings W,,(s) and W, (s), respectively.
The state-space representation (see equation (60)) of the augmented plant, with state vector
T = [xq, Ty, Ty]" is thus given as :

—36.6 —18.923 0 0 —0.4140 0
—-1.9  0.983 0 0 ~77.8 0
A=1 9 0  —10000 0  Bu= 0 0o |’
0 —4051.1 0  —10000 0 -70.7
—0.4140
—77.8 0 0 70356 O
B2=1 70356 | 17 [0 28.65 0 70.7}’ (63)
0
Co=1[0 573 0 0];D11:[8 005};
50
D12=|:0:|;D21=[0 1},D22:0

Performing an H,, synthesis on this problem yields a compensator described as :

—3.660010" —2.3679 10! 5.8158 —3.0532103
—1.8941  —4.458210* 1.092910®° —5.737710°!

Ak =1 53708102  —2.7201 —1.165510° —51887 |
0 0 0 —1.0000 10* (64)
Bg = [ 24703100 2.3171102 0 —2.105110% | ;
Cx = | —2.568010~° 1.302810~% —4.7179 2.4768107° |;
DK:O

with the notations in (5).

3.2.1 Observer-based structure with static Youla parameter

This compensator can be viewed as an observer-based compensator on the whole state of
the augmented plant. The transfer between the control input and the control output is then

14



poles | € spec(A — ByK,) | € spec(A — K;Cy)
-4.3817 *
-36.590 *
-37.332 *
-110.76 *
-4457.9 *
-10000.
-10000.
-10000.

Table 1: Closed-loop poles distribution - case 1

defined by A, By, Cy and Dyy. The closed-loop poles are presented on table 1 together with
the distribution we have done between the state-feedback poles (spec(A — ByK,)) and the
state-estimator poles (spec(A—K;C5)). To satisfy the necessary condition in proposition 2.3,
the (A, Cs) unobservable poles (—10000 and —10000) associated with the output frequency
weightings are affected to the state-estimator poles. As the closed-loop has 3 poles located
at —10000 rd/s, it is necessary to examine the eigenvectors associated with these eigenvalues
to determine those which are unobservable.
Then, the solution 7" of the Riccati equation :

is obtained as :
2.9629 2.0183 2.5178 10! 4.6368
T —2.7297 3.798710% 4.701710° 8.658710% | (66)
~ | —2.083010* —1.0923 3.0984 —2.6966 ’

—4.7703107* —2.501510% 2.766210*> —6.172510°

and the three parameters K., Ky and @ of the observer-based structure (see figure 1) are
given by :
K, =1[3.831010"3, 5.474910°', 7.8079, 1.4379];
K;=[-3233110"", 1.9499, 3.054310°2, —7.547410 '|T; (67)
Q=0
As discussed before, this new representation gives a clear meaning to the controller states as
estimates of the states zg, z, and x, whereas the meaning of the original states in (64) is
obscure.

3.2.2 Observer-based structure with dynamic Youla parameter

The compensator (64) can also be interpreted as an observer-based compensator (with a
second-order Youla parameter) on the plant nominal model (Ag, Bg, Cg), that is based
on the minimal realization of the previous transfer (A, Bs, Co, D) from the control input
to the measurement. The distribution of the closed-loop poles has been chosen according
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poles | € spec(Ag — BgK.) | € spec(Ag — K;Cg) | € spec(Ag)
-4.3817 *

-36.590 *
-37.332 *
-110.76 *
-4457.9
-10000.

Table 2: Closed-loop poles distribution - case 2

to table 2 in that case. Similar computations yield the following numerical values for the
parameters in figure 1.

K, =18.364010"3, —7.84031072], K; =[-3.233110"", 1.9499]"

and
—-3.751410" s — 3.7514 103

Q)= T T a8 105 & 44579107

The transformation matrix between the representation (64) and the representation associated
with the new state vector [Zg, zg]? is given by :

2.9776 9.192610~ 5.355110°3 —1.524310°7
M= 2.2204 1015 2.9776 9.999910-! —2.846410° (69)
o 1.7566103 —1.643010"2 6.281010~* 5.249710* )

—1.513210~* —1.2069 2.813410°° 1.0000

4 Conclusions

In this paper, we have completed some previous work performed by Bender and Fowell on
the computation of observer-based structures for general compensators. The Youla paramet-
erization has been used to generalize the technique to arbitrary-order compensators while
maintaining the validity of the separation principle. This technique is based upon the res-
olution of a generalized non-symmetric Riccati equation. Necessary conditions were given
for the solvability of this equation in terms of observability and controllability properties of
the plant. These results have then been specialized to H,, or u controllers which are issued
from an augmented synthesis structure.

Further work is still needed to exploit the multiplicity of choices in the distribution of
the closed-loop poles between the closed-loop state-feedback poles, the closed-loop state-
estimator poles and the Youla parameter poles. This problem is particularly important
to smoothly interpolate or schedule a family of state-feedback gains and state-estimator
gains for practical problems requiring some gain-scheduling strategy. The usefulness of these
controller structures to handle input saturation constraints is also deserves investigation.
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A Discrete-time case

The technique presented in the continuous-time case is now extended to the discrete-time
case. Bender and Fowell discussed also this issue using different controller structures in [2].
They have investigated three kinds of sampled data compensators according to the presence
of a direct feedthrough term in the plant or the compensator. From our point of view, there is
no reason to distinguish theses cases in the context of the () parameterization considered here.
The case of a non-strictly proper plant can be handled as in continuous-time. Therefore, we
shall only focus on two classical implementation structures of discrete-time LQG controllers:
the predictor and the estimator structures.

A.1 Discrete-time predictor LQG form

The discrete-time plant is defined as :

z(k+1) = Axz(k)+ Bu(k)
Lo 2 e (99)
The predictor LQG form is described by :
z(k/k) = Az(k/k — 1) + Bu(k) Prediction
z(k+1/k) = z(k/k)+ K¢(y(k) — Cz(k/k —1)) Correction (70)
ulk+1) = —-KZ(k+1/k) Control
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This case is analogous to the continuous-time one. The construction procedure is there-
fore the same. It provides the parameters K., Ky, Ag, Bg, Cg and Dg of the Youla-
parameterization associated with the predictor LQG form whose state-space representation
reads :

F(k+1/k) = AZ(k/k —1) + Bu(k) + K;(y(k) — CZ(k/k — 1))
zo(k+1) = Aquq(k)+ Bo(y(k) — Cz(k/k — 1)) (71)
u(k) = —K,3(k/k — 1)+ Cozg(k) + Do(y(k) — CZ(k/k — 1))

A.2 Discrete-time estimator LQG-form

The estimator structure of an LQG controller is described as :

z(k+1/k) = Az(k/k) + Bu(k) Prediction
z(k+1/k+1) = 2(k+1/k)+ K}(y(k+1) — C2(k +1/k)) Correction (72)
u(k +1) = —Klz(k+1/k+1) Control

In contrast to the previous cases, this discrete-time LQG controller exhibits a direct feed-
through between y(k) and u(k) but the separation principle still holds : the closed-loop
transfer function between the input reference and the innovation y(k) — CZ(k/k — 1) is
zero and the closed-loop poles can be splitted into the closed-loop state-feedback poles
(spec(A — BK)) which are unobservable from the innovation, and the closed-loop state-
estimator poles (spec(A(] — K}C))) which are uncontrollable by the reference input. The
Youla-parameterization associated with this structure reads :

T(k+1/k) = Az(k/k—1)+ Bu(k) + AK}(y(k) — CZ(k/k — 1))

zk+1) = AQzqg(k)+ By(y(k) — Cz(k/k — 1))

u(k) = —Kiz(k/k—1)+ Chzq(k) + (D — K. K%)(y(k) — Cz(k/k — 1))

(73)

We know from sections 2 and A.1 how to compute all the parameters (K., Ky, Ag, Bg, Co
and Dg) of the predictor LQG form and the corresponding Youla parameterization, from a
given compensator (Ax, Bk, Ck, Dk) and a given plant (4, B, C, D). As a consequence,
the parameters (K, K}, Ay, By, Cg and Dg) of the equivalent estimator LQG form can
be obtained by direct identification of the representations (71) and (73). This yields :

K=K, K;=A"K;,

A= Ag, By= By, Ch=Co Dp=Dg+ KK, (74)

Note that this identification is only possible when K is in the range of A.
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