
IQC analysis and synthesis via nonsmooth optimization

Pierre Apkarian ∗ Dominikus Noll †

Abstract

Integral quadratic constraints (IQCs) are used in system theory to model nonlinear phe-
nomena within the framework of linear feedback control. IQC theory addresses parametric
robustness, saturation effects, sector nonlinearities, passivity, and much else. In IQC analysis
specially structured linear matrix inequalities (LMIs) arise and are currently addressed by
structure exploiting LMI solvers. Controller synthesis under IQC constraints is non-convex
and much harder and has been attempted sporadically by global optimization techniques
such as branch-and-bound, cutting plane or D-K type coordinate descent ideas. Here we
revisit IQC theory and propose a completely different algorithmic solution based on local
and nonsmooth optimization methods. This is less ambitious than global methods, but is
very promising in practice. Our approach, while aiming high at IQC synthesis, offers new
answers even for IQC analysis, because we optimize without Lyapunov variables. For high
order systems this leads to a significant reduction of the number of unknowns.

Keywords: Nonsmooth optimization, IQC theory, robust control, parametric uncertainty, ro-
bustness analysis, structured controllers, NP -hard problems.

Notation

Let R
n×m be the space of n×m matrices, equipped with the corresponding scalar product 〈X, Y 〉 =

Tr(XT Y ), where XT is the transpose of the matrix X, Tr (X) its trace. For an arbitrary square
matrix M , tril(M) is used to denote a matrix with the same non strict lower triangle as M
and zeros elsewhere. For complex matrices XH stands for its transconjugate. For Hermitian
or symmetric matrices, X ≻ Y means that X − Y is positive definite, X � Y that X − Y is
positive semi-definite. We use the symbol λ1 to denote the maximum eigenvalue of a symmetric
or Hermitian matrix. We use concepts from nonsmooth analysis covered by [11]. For a locally
Lipschitz function f : R

n → R, ∂f(x) denotes its Clarke subdifferential at x.
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1 Introduction

In many control applications stability and performance have to be guaranteed in the presence of
uncertainties or distortions introduced by nonlinear system components. These are due to the fact
that model equations are not perfectly known or do not fully reflect reality. The present paper
discusses integral quadratic constraints (IQCs) as an appropriate response to these uncertainties
and proposes an efficient algorithmic framework for analysis and synthesis under IQC constraints.
To begin with, we consider the robust control problem of an uncertain plant in LFT (Linear
Fractional Transformation) form:
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w∆ = ∆(z∆) ,

(1)

where ∆ is an uncertain continuous nonlinear operator. Here, we are using the following notation:
x ∈ R

n is the state of the system, u ∈ R
m2 the control, w ∈ R

m1 the exogenous input, z ∈ R
p1

the performance variable, y ∈ R
p2 the measurement and (w∆, z∆) ∈ R

m∆ × R
p∆ represents the

uncertainty channel. We assume that all admissible ∆ satisfy an IQC defined by Π∆ = ΠH
∆ , that

is,
∫ +∞

−∞

[

z∆(jω)
∆(z∆)(jω)

]H

Π∆

[

z∆(jω)
∆(z∆)(jω)

]

dω ≥ 0 , (2)

for all square integrable signals z∆. We further assume that performance is expressed by the
channel (w, z) through the IQC defined by Πp = ΠH

p

∫ +∞

−∞

[

z(jω)
w(jω)

]H

Πp

[

z(jω)
w(jω)

]

dω ≤ 0 (3)

for all square integrable signals w. Note that Π∆ and Πp are called multipliers and are for the
moment restricted to constant Hermitian matrices for a moment. Extensions to general dynamic
multipliers Π(jω) are considered in Section 4.4.

The robust control problem now requires finding a linear time-invariant output feedback con-
troller

K(s) = CK(sI − AK)−1BK + DK , AK ∈ R
k×k, (4)

for the uncertain plant (1), such that the following conditions are satisfied:

(i) The closed-loop system (1), (4) is internally stable for all admissible ∆ in (2).

(ii) Performance condition (3) holds for all admissible ∆ in (2).

Here k is the order of the controller, and the possibility k = 0 of a static controller K(s) = DK is
included. Let us introduce the closed-loop transfer matrix

T (s, K) =

[

T∆∆(s, K) T∆w(s, K)
Tz∆(s, K) Tzw(s, K)

]

:=















ẋcℓ = A(K)xcℓ + B(K)

[

w∆

w

]

[

z∆

z

]

= C(K)xcℓ + D(K)

[

w∆

w

]

,
(5)
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where state-space data A(K), B(K), C(K) and D(K) determine the closed-loop system (1) and
(4) with the ∆-loop w∆ = ∆(z∆) still open. Here closed-loop data are given as:

A(K) := A + B2KC2, B(K) := B1 + B2KD21, C(K) := C1 + D12KC2,
D(K) := D11 + D12KD21 ,

(6)

with

A :=

[

A 0
0 0k

]

B1 :=

[

B∆ B1

0 0

]

, B2 :=

[

0 B2

Ik 0

]

C1 :=

[

C∆ 0
C1 0

]

, D11 :=

[

D∆∆ D∆1

D1∆ D11

]

D12 :=

[

0 D∆2

0 D12

]

,

C2 :=

[

0 Ik

C2 0

]

, D21 :=

[

0 0
D2∆ D21

]

K :=

[

AK BK

CK DK

]

(7)

Then we have the following fundamental fact, see [17, 19] for details.

Theorem 1.1 Suppose K is closed-loop stabilizing, i.e. A(K) is Hurwitz. Then the robust per-
formance conditions (i) and (ii) hold for all ∆ satisfying the IQC defined by Π∆ provided the
following frequency domain inequality (FDI) is satisfied:

F (K, Π; jω) :=

[

T (jω, K)
I

]H

Π

[

T (jω, K)
I

]

≺ 0, ∀ω ∈ [0, ∞] (8)

where

Π :=

[

Π11 Π12

ΠH
12 Π22

]

:=









Π∆,11 0 Π∆,12 0
0 ΠH

p,11 0 Πp,12

ΠH
∆,12 0 Π∆,22 0
0 ΠH

p,12 0 Πp,22









.

Inequality (8) is known as the robust performance FDI, see [19]. It strongly suggests introducing
the nonsmooth function

f(K, Π) := λ1,∞

(

[

T (jω, K)
I

]H

Π

[

T (jω, K)
I

]

)

:= max
ω∈[0,∞]

λ1

(

[

T (jω, K)
I

]H

Π

[

T (jω, K)
I

]

)

, (9)

and considering the optimization program

minimize f(K, Π)
subject to Π ∈ Π

K is closed-loop stabilizing
(10)

which is then minimized until a value f(K, Π) < 0 is found. Notice that Π denotes a convex cone
of appropriate multipliers Π describing the uncertainty ∆ and will be specified later.

We will now address the following questions. How to compute the function value of f? How to
compute Clarke subgradients of f? And finally, how to generate descent steps in order to decrease
the value of f below 0? Notice that our approach to minimizing f until a negative value occurs is
based on a local optimization paradigm. In consequence, we may occasionally end up with a local
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minimum of (10) whose value is ≥ 0, meaning failure to solve the control problem. In this case
the method has to be restarted with a different initial seed.

A special case of program (10) is robustness analysis, where K is held fixed. The question
is then whether the closed loop system achieves the robust performance Πp, that is, whether (i)
and (ii) holds uniformly for all admissible ∆. This problem is easier, being convex in the decision
variable Π∆. Currently analysis problems are solved by tailored interior point methods for LMIs
arising from the Kalman-Yakubovich-Popov lemma [23, 13]. Even in that case we propose to
change strategy and proceed via (10), because this avoids Lyapunov variables. The reduction in
the number of unknowns may be dramatic for systems with large state dimension n.

2 Computing λ1,∞

Introducing the semi-infinite objective function f(K, Π) avoids the use of Lyapunov variables,
but seems to pose a new major problem. Namely, program (10) is now semi-infinite, and such
programs are often difficult since discretization has to be used, which leads back to a large number
of unknowns. Fortunately, our situation is different, because there is an efficient way to compute
the function value f(x) for a given datum x = (K, Π).

During the following we shall write F (K, Π; jω) for the FDI in (8), so that f(K, Π) =
maxω∈[0,∞] λ1 (F (K, Π; jω)). We start by explaining how the function value is computed by an
iterative procedure introduced by Boyd et al. [8, 7].

Note first that the estimate f(K, Π) < λ is equivalent to the following frequency domain test:

[

(jωI −A(K))−1B(K)
I

]H

Ψ

[

(jωI −A(K))−1B(K)
I

]

≺ 0, ∀ω ∈ [0,∞] ,

where

Ψ :=

[

C(K) D(K)
0 I

]H [

Π11 Π12

ΠH
12 Π22 − λI

] [

C(K) D(K)
0 I

]

.

We can now infer from spectral factorization theory [25, p. 350] that f(K, Π) < λ holds if and
only if Ψ22 ≺ 0 and the matrix

[

A(K) − B(K)Ψ−1
22 ΨH

12 −B(K)Ψ−1
22 B(K)T

−(Ψ11 − Ψ12Ψ
−1
22 ΨH

12) −(A(K) − B(K)Ψ−1
22 ΨH

12)
H

]

has no eigenvalue on jR
+. Similarly to the computation of the H∞ norm, this important result

can be exploited to construct a quadratically convergent algorithm to compute f(K, Π) [10]. As
our testing in [2, 3] shows, the function value f(K, Π) can be computed very efficiently even for
high order systems. The algorithm from [10] not only computes the function value, it also provides
the set of active frequencies:

Definition. The set Ω(K, Π) = {ω ∈ [0,∞] : λ1 (F (K, Π; jω)) = f(K, Π)} is called the set of
active frequencies at x = (K, Π).

This information will be crucial during the next sections.
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3 Ingredients from nonsmooth analysis

In order to prepare our nonsmooth descent technique to minimize f(K, Π), we need to show how
to compute derivative information for f . To this aim, we shall repeatedly invoke the concept of
active frequencies defined above. The following can be found in [7, 6]:

Lemma 3.1 For fixed K, Π, the set Ω(K, Π) of active frequencies is either finite, or Ω(K, Π) =
[0,∞].

The following result is useful for computing Clarke subgradients of the nonsmooth f = λ1,∞◦F .

Lemma 3.2 f = λ1,∞ ◦ F is regular in the sense of Clarke [11].

Proof. f = λ1,∞ ◦ F is a composite function of λ1,∞, which is nonsmooth but convex, and the
smooth nonlinear operator F , mapping the space R

N with N = dim(K) + dim(Π) to the infinite
dimensional space C(j[0,∞], H) of continuous functions j[0,∞] → H, where H is the space of
Hermitian matrices of appropriate dimension. f is therefore regular in the sense of Clarke [11]. �

These Lemmas make it possible to give a full description of the subdifferential of f . We start
by characterizing the subdifferential ∂λ1,∞(π) at a given π ∈ C(j[0,∞], H).

Proposition 3.3 Let π ∈ C(j[0,∞], H), and suppose the set Ω(π) of active frequencies at π:

Ω(π) := {ω ∈ [0,∞] : λ1,∞(π) = λ1(π(jω))}

is finite. For every active frequency ω ∈ Ω(π), let Qω denote a matrix whose columns form an
orthogonal basis of the eigenspace of π(jω) associated with the largest eigenvalue λ1(π(jω)) of
π(jω). Then the subdifferential ∂λ1,∞(π) of the mapping λ1,∞ at π ∈ C(j[0,∞], H) is the set of
all linear functionals ΦY ∈ C(j[0,∞], H)∗ of the form

ΦY (µ) =
∑

ω∈Ω(π)

Tr (QωYωQH
ω µ(jω)) , µ ∈ C(j[0,∞], H), (11)

indexed by the family Y = (Yω)ω∈Ω(π), where Yω = Y H
ω � 0 and

∑

ω∈Ω(π) Tr (Yω) = 1.

Proof: This is established using subdifferential formulas for λ1 and the convex hull rule for max
functions. The reader is referred to [16, 11] for details. �

Our next step is as follows. Given the subdifferential of λ1,∞ at π = F (K, Π) ∈ C(j[0,∞], H),
we obtain the subdifferential of f at x = (K, Π) using the chain rule

∂f(K, Π) = F ′(K, Π)∗∂λ1,∞(π),

where F ′(K, Π) is the Frechet derivative of F at (K, Π), and F ′(K, Π)∗ its adjoint, which we now
need to compute. This may seem arduous at first, since the Banach space dual C(j[0,∞], H)∗ of
C(j[0,∞], H) does not have an easy to manage representation. Fortunately, we only need to know
the action of the adjoint F ′(K, Π)∗ on functionals of the special form ΦY in (11), and this is easily
found. Indeed, the definition of an adjoint gives

〈F ′(K, Π)(δK, δΠ), ΦY 〉 = 〈(δK, δΠ), F ′(K, Π)∗(ΦY )〉,
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where the right hand side is the standard scalar product in a suitable matrix space. Put differently,
writing F ′(K, Π)∗(ΦY ) = (ΛY , ΣY ), where ΛY is a matrix compatible with K and ΣY a matrix
compatible with Π, we have

〈(δK, δΠ), (ΛY , ΣY )〉 = Tr(δKT ΛY ) + Tr(δΠHΣY ).

In order to pursue, we need the Frechet derivative F ′(K, Π). For simplification purposes, we
introduce the notations

[

T (K, s) G12(K, s)
G21(K, s) ⋆

]

:=

[

C(K)
C2

]

(sI −A(K))−1 [B(K) B2 ] +

[

D(K) D12

D21 ⋆

]

.

This leads to the following representation of F ′:

F ′(K, Π)(δK, δΠ) = (G12δKG21)
HΠ11T (K) + T (K)HΠ11G12δKG21 + ΠH

12G12δKG21

+ (G12δKG21)
HΠ12 +

[

T (K)
I

]H

δΠ

[

T (K)
I

]

(12)

where the dependence on jω has been omitted for simplicity.
With π = F (K, Π) and µ = F ′(K, Π)(δK, δΠ), we use formula (11) to match coefficients in

ΦY (µ) = Tr(δKT ΛY ) + Tr(δΠHΣY ). This gives

ΛY = 2
∑

ω∈Ω(π)

Re
(

G21(jω)QωYωQH
ω (T (jω, K)HΠ11 + ΠH

12) G12(jω)
)T

(13)

and

ΣY =
∑

ω∈Ω(π)

[

T (jω, K)
I

]

QωYωQH
ω

[

T (jω, K)
I

]H

. (14)

We sum up our findings in the following

Theorem 3.4 Consider a stabilizing controller K, i.e A(K) is Hurwitz, and a multiplier Π.
Assume the set of active frequencies Ω(K, Π) for the FDI in (8) is finite. Then the Clarke sub-

differential ∂f(K, Π) of f at (K, Π) is the set of subgradients
{

(ΛY , ΣY ) : Y = (Yω)ω∈Ω(K,Π),

Yω = Y H
ω � 0,

∑

ω∈Ω(K,Π) Tr (Yω) = 1
}

, where ΛY is given by (13), ΣY by (14).

4 Applications

Note that the results in the previous section naturally extend to a wide variety of IQCs, in-
cluding those with dynamic multipliers, as long as f has a composite structure λ1,∞ ◦ F (K, Π)
where Π gathers the multiplier or scaling, the latter represented in a suitable finite basis. It
is possible to extend the proposed framework to several synthesis FDIs, because the maximum
of a finite family of FDIs λ1,∞ ◦ Fi(K, Π) < 0, i = 1, . . . , q can be written as a single FDI
λ1,∞ ◦ diag (F1(K, Π), . . . , Fq(K, Π)) < 0 .

In IQC analysis the composite function f = λ1,∞ ◦F is convex as a function of Π alone and its
subdifferential ∂f(Π) is the usual subdifferential of convex analysis [16]. Subgradient information
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is again covered by (14), and could in principle be used to find global linear lower bounds for FDI
constraints via cutting planes [10], but we do not follow this route in the present work.

In synthesis, multipliers and controller variables are updated simultaneously until satisfaction
of the FDI in (8). In accordance with [15], we advocate not to use D-K type methods, where K
and Π are updated alternatingly.

Finally, as already observed in our nonsmooth approach to H∞ synthesis [2, 3], specific struc-
tural constraints on the controller can be easily incorporated in (10) by applying chain rules to
the subgradients. The reader is referred to [1] for details.

In the following, we investigate practically interesting options for analysis and synthesis with
IQCs.

4.1 IQC analysis

Nonsmooth results from Section 3 can be used to compute the L2 gain or H∞ norm of a system or
perform a passivity test. In this situation, the uncertainty channel (w∆, z∆) is removed, T = Tzw,
and the multiplier Π = Πp is selected as

Πp =

[

γ−1I 0
0 −γI

]

, respectively Πp =

[

0 I
I 0

]

. (15)

Assume now for stability analysis that the system in (1) is subject to time-invariant parametric
uncertainties T = T∆∆, w∆ = ∆z∆, where ∆ is a multiplication operator with the block-diagonal
structure

∆ = diag (. . . , δiI, . . . , ∆j , . . .) ∈ R
m∆×m∆ (16)

with normalization ∆T ∆ � I. Then robust stability can be tested using µ-upper bound multipliers
of the form

Π = Π∆ =

[

S (jG)H

jG −S

]

with S = SH ≻ 0 and G = GH , where both S and G commute with ∆. For simplicity of the
exposition, we shall first consider constant multipliers. The treatment of more complex multipliers
is deferred to Section 4.4. The subgradient formulas in Theorem 3.4 must then be modified to
cope with the particular structure of Π and with the extra constraint S ≻ 0. We define S = ΣΣH

where Σ is a lower-triangular Cholesky factor of S. This leads to

δΠ =

[

Σ(δΣ)H + (δΣ)ΣH (jδG)H

jδG −Σ(δΣ)H − (δΣ)ΣH

]

.

Substitution of this expression into the general formula (12), using Theorem 3.4 and the identities

Tr (MNH + MHN) = 2 Tr (Re M Re NT + Im M Im NT )
Tr (MLT ) = Tr (tril(M)LT )

which hold for arbitrary complex M , N and lower-triangular L yields the sought formulas. Sub-
gradients with respect to Re (Σ) and Im (Σ) are obtained respectively as tril(Re U) and tril(Im U)
where

U := 2
∑

ω∈Ω(Σ,G)

T (jω, K)QωYωQH
ω T (jω, K)HΣ − QωYωQH

ω Σ . (17)
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Subgradients with respect to Re G and Im G are obtained respectively as −(Im V + Im (V )T ) and
Re V − Re (V )T with the definition

V :=
∑

ω∈Ω(Σ,G)

T (jω, K)QωYωQH
ω .

As before, Ω(Σ, G) is the set of active frequencies for given Σ and G, the family Y is as in Theorem
3.4. For time-varying uncertainties with arbitrarily fast variations w∆ = ∆(t)z∆, the associate
multiplier is real

Π :=

[

S Γ
ΓT −S

]

where as before S = ΣΣT ≻ 0 and ΓT = −Γ. Subgradients are readily inferred from the complex
case. For Σ, the subgradients are tril(ReU) with U defined in (17). For Γ, we get the subgradients
Re V − Re (V )T where V is as described above.

4.2 H∞ and positive real syntheses

H∞ and positive real syntheses are special instances where the uncertainty channel is removed,
T = Tzw, and where Π = Πp is chosen as in (15). For H∞ synthesis we obtain the subgradients
with respect to K

ΦY = 2/γ
∑

ω∈Ω(K)

Re
(

G21(jω)QωYωQH
ω T (jω, K)H G12(jω)

)T
,

which is consistent with the results already derived in [3].

4.3 Robust synthesis

The above reasoning is easily generalized to robust L2-gain synthesis with structured parametric
uncertainties. Again with constant multipliers we have

Π :=

[

Π11 Π12

ΠH
12 Π22

]

:=









S 0 (jG)H 0
0 γ−1I 0 0

jG 0 −S 0
0 0 0 −γI









. (18)

Clarke subgradients with respect to K are obtained from (13) and the definition in (18). Partial
subgradients with respect to the multiplier are easily inferred from (17) and the partitioning in
(5). They are tril(ReU) and tril(Im U) for the subgradients with respect to Re (Σ) and Im (Σ) ,
where S = ΣΣH and

U := 2
∑

ω∈Ω(Σ,G,K)

[ T∆∆ T∆w ] QωYωQH
ω [ T∆∆ T∆w ]H Σ − [ I 0 ] QωYωQH

ω [ I 0 ]H Σ

Subgradients with respect to Re G and Im G are obtained respectively as −(Im V + Im (V )T ) and
Re V − Re (V )T with the definition

V :=
∑

ω∈Ω(Σ,G,K)

[T∆∆ T∆w ] QωYωQH
ω [ I 0 ]H
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Note that Ω(Σ, G, K) is the set of active frequencies for a given triple (Σ, G, K).
Clearly, the above analysis is applicable to more general hybrid block-diagonal operators ∆

where each sub-block ∆i satisfies an IQC defined by Πi. The reader is referred to the IQCs listed
in [19] to enrich the discussion along this line.

4.4 Dynamic multipliers

To reduce conservatism in IQC analysis or synthesis it is possible to use dynamic multipliers. In
this context Π(s) is an unknown function, and the problem is infinite-dimensional, which is not
directly tractable. What hinders for infinite dimensional Π(s) are not the subgradient formulas,
but the computation of the function λ1,∞ ◦F . The way out is to use finitely generated multipliers,
possibly of the form

Π(s) = R(s)HΦR(s), Φ = ΦH , (19)

where R(s) is assumed to have a state-space realization R(s) = CR(sI−AR)−1BR +DR and where
Φ, the quadruple (AR, BR, CR, DR) and the controller K are unknown. The framework developed
in Sections 2 and 3 applies and differential information can be obtained.

We present an interesting alternative to (19), which is covered by our technique, but in contrast
is hardly accessible by state-space methods which call for LMIs or BMIs. Fix a finite partition
[0,∞] = Ii ∪ . . . ∪ Iℓ into frequency bands Ii and choose different constant multipliers Πi on each
Ii. In other words, write a dynamic piecewise constant multiplier Π(s) =

∑ℓ
i=1 ΠiχIi

(s), where
χIi

is the indicatrix function of the ith band. Then robust performance can be expressed as

Fi(K, Πi; jω) :=

[

T (jω, K)
I

]H

Πi

[

T (jω, K)
I

]

≺ 0, ∀ω ∈ Ii, ∀i = 1, . . . , ℓ .

This is equivalent to
max

i=1,...,ℓ
max
ω∈Ii

λ1(Fi(K, Πi; jω)) < 0 .

We get a max function for which the Clarke gradient is computed using the convex hull rule [11]
and is similar in structure to the Clarke gradient in Theorem 3.4. In this approach the finite basis
is more natural than in (19). The procedure in Section 2 to compute function values and active
frequencies works on prescribed frequency intervals Ii just as well as on the whole [0,∞]. See [4]
for a proposal on how this can be organized for multiband H∞ synthesis.

5 Nonsmooth descent method

In this section we explain the basic mechanism of our descent method. Due to the structure of the
objective function f = λ1,∞◦F , it will be helpful to look at pure eigenvalue optimization problems
minx∈Rn λ1(F (x)). This class has been studied by various authors, see e.g. [12, 18, 21, 22, 20].
We will extend a method developed by Helmberg et al. [14] for semidefinite programming (SDP)
to address objective functions of the form f = λ1,∞ ◦ F .

Definition. A mapping S : R
n × R

n → R
n is called a descent step generator with memory for

the function f : R
n → R if the following are satisfied.

(i) If 0 6∈ ∂f(x), then f(S(x, g)) < f(x) for every g ∈ R
n.
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(ii) Suppose 0 6∈ ∂f(x) and g ∈ R
n. Then there exists ε > 0 and δ > 0 such that for every

x′ ∈ B(x, ε) and g′ ∈ B(g, ε) we have f(S(x′, g′)) ≤ f(x) − δ.

We think of x as the current iterate, g the memory element, reflecting for instance information
from previous iterates, or a subgradient at x aggregated over the past as in [14], and we call S(x, g)
the descent step generated at x, based on the information in x and g.

Clearly condition (i) says that a descent step at x is always possible (regardless of the in-
formation in g) as long as x is not a critical point. For a first-order method, this is what we
expect. Condition (ii) is stronger than (i), but would follow automatically from (i) if S(·, ·) was
continuous. Since the latter will not always be the case in practice, (ii) should be understood as
a weak form of continuity of S(·, ·).

Consider the following example of a memoryless descent step generator for f of class C1,1 [9].
Choosing the direction d = −f ′(x) of steepest descent of f at x, we start a backtracking line
search in direction d with initial t = 1 and accept S(x) = x + t(x)d, where t(x) is the first step
length satisfying the Armijo condition. Then t(x) is not necessarily a continuous function of x,
but condition (ii) is satisfied. This method fails for nonsmooth f , and an alternative is given
below.

Theorem 5.1 Let the sequence of iterates xk be generated by the descent step generator S(·, ·),
that is, xk+1 = S(xk, gk), where the memory elements gk are in a bounded set. Then every
accumulation point of the sequence xk is a critical point.

Proof. Let xk, k ∈ K be a subsequence of the sequence of iterates converging to x̄. Assume
without loss that gk → ḡ, for some ḡ, passing if necessary to a sub-subsequence. Notice that
S(·, ·) is a descent method, that is, f(xk) ≥ f(xk+1) ≥ f(xk′), where k′ is the successor of k in K.
Therefore f(xk+1) → f(x̄), and hence f(xk) − f(xk+1) → 0.

Now suppose x̄ is not critical. Choose ε, δ as in axiom (ii) with respect to x̄ and ḡ. Then
f(xk) − f(xk+1) = f(xk) − f(S(xk, gk)) ≥ δ for k ≥ k0, because xk ∈ B(x̄, ε) and gk ∈ B(ḡ, ε) for
k ≥ k0. This contradicts f(xk) − f(xk+1) → 0. �

Note that convergence toward a critical point may appear a weak certificate, but experience in
numerical optimization shows that in practice solutions are almost always local minima [9]. The
question is now how to construct descent step generators for functions of the form λ1 ◦ F and
λ1,∞ ◦ F . In [3] we have discussed two memoryless descent step generators. Here we discuss an
extension of the method in [14], first to non-convex λ1 ◦ F , then to the semi-infinite case. Just as
[14], the method in [12, 21] and its extension to the non-convex case [20] use non-polyhedral inner
approximations of the ε-subdifferential of λ1, but [14] includes information from past iterates by
maintaining an aggregate subgradient from previous iterates.

At the given iterate, x, we consider two local models of f = λ1 ◦ F at x:

f̂(y) = λ1 (F (x) + F ′(x)(y − x)) , f̂G(x)(y) = max
G∈G(x)

G • (F (x) + F ′(x)(x − y)) ,

where G(x) = {αG♯+QY QT : α+Tr(Y ) = 1, α ≥ 0, Y � 0}. Here G♯ is the aggregate subgradient
of λ1, to be specified later, while the columns of Q form a truncated basis of k eigenvectors
of F (x), that is, QT F (x)Q = diag(λ1, . . . , λk) with QT Q = Ik. Notice that every QY QT is
a subgradient of λ1 at F (x), which means F ′(x)⋆G(x) ⊂ ∂f(x). In consequence, f̂G(x) ≤ f̂ ,

because f̂(y) = supG∈∂λ1(F (x)) G • (F (x) + F ′(x)(y − x)). Notice that by adding new elements
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G ∈ ∂λ1(F (x)) to G(x), we improve the approximation f̂G(x) of f̂ . Notice that in the convex case,

where F is an affine operator, we have F (y) = F (x) + F ′(x)(y − x), so here f̂ = f . In the general
non convex case, f̂ is only an approximation of f . In order to improve the approximation of f by
f̂ , we have to restrict y to a sufficiently small ball B(x, r), where r > 0 is the trust region radius.

Descent step generator S(x, g) for λ1 ◦ F

Input: current x and aggregate subgradient G♯. Output: x+ := S(x, g), (G♯)+.
Fix 0 < α < 1

2
, 0 < β < 1.

1. Initialize r = 1 and choose k and orthonormal basis Q of the first k eigenvalues of F (x).

2. For given r > 0, solve min
‖x−y‖≤r

f̂G(x)(y), solution is x̂. Find Ĝ = α̂G♯ + QŶ QT where the

supremum f̂G(x)(x̂) is attained.

3. If f̂(x̂) − f(x) ≤ α
(

f̂G(x)(x̂) − f(x)
)

then put x̂ on store and go to step 5. Otherwise

4. Update G(x) by updating aggregate subgradient G♯ as (G♯)+ = α̂G♯ + QŶ QT . Go back
to step 2.

5. Check whether f(x̂) − f(x) < β
(

f̂(x̂) − f(x)
)

. If this is the case accept x+ = x̂.

Otherwise replace r by r/2 and go back to step 2.

Reference [14] studies the convex case f = f̂ and therefore uses only the test in step 3 and the
updating mechanism in step 4, which improves the approximation f̂G(x) by modifying G(x). The

authors of [14] use an even more sophisticated update of G♯ in cases where Ŷ is large, but this is
not mandatory in typical control applications. The test in step 5 is not used in [14], where the
authors keep r fixed. It becomes necessary because f is non convex. Appropriate ways of choosing
Q and k in step 1 have been discussed in [21, 20, 3], so we do not go into details here. Notice that
steps 1 - 4 create output which varies continuously with respect to a change of the data. What
makes our descent step generator discontinuous is step 5, where r is updated and finally chosen
within the set {2−k : k ≥ 1}. This discrete element of the procedure destroys continuity, but
fortunately property (ii) is still satisfied. Typically what may happen is that for a given datum
(x, g), the solution test in step 4 is passed for the first time at r = 2−k, but for a nearby (x′, g′),
one needs one additional reduction, so that the r′ = 2−k−1 may be obtained. The situation is
similar to what happens in the case of a line search, when a step size t ∈ {2−k : k ≥ 1} is picked.
See [3] and in particular [24, p.223-224].

Finally, we need to extend the descent step generator to the semi-infinite case f = λ1,∞ ◦ F .
We use the following observation. Computing f(x) provides the finite set of active frequencies
Ω(x). For a finite extension Ω of Ω(x), that is Ω(x) ⊂ Ω, let fΩ(y) := maxω∈Ω λ1 (F (y, ω)), then
fΩ ≤ f and fΩ(x) = fΩ(x)(x) = f(x). Each fΩ is a maximum eigenvalue function λ1 ◦ FΩ, where
FΩ is block diagonal with the finitely many F (·, ω), ω ∈ Ω as blocks. So fΩ admits a descent step
generator SΩ(·, ·) by the above construction. We finally have the following

Descent step generator for f = λ1,∞ ◦ F
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Fix 0 < θ < 1.
1. Compute f(x) and detect active frequencies Ω(x).
2. Select an extended set of frequencies Ωe(x), for instance by setting a threshold

θf(x) < f(x), and taking a griding Ωe(x) of the zone of those ω where θf(x) <
f(x, ω) ≤ f(x).

3. Generate descent step SΩe(x)(x, g) and return it.

This semi-infinite descent step generator has already been analyzed in [1], where a memoryless
descent step generator S(x) is used. The analysis of the present case follows similar lines and
justifies theoretically what according to our previous experience works well in practice. In order to
assure property (ii), it suffices to select the griding Ωe(x) in such a way that it varies continuously
with a change of the datum x, which is possible in a neighborhood of a local minimum x∗. For
details we refer to [1]. The outlined selection of extended frequencies Ωe(x) has been tested and
shown to work well in H∞-, multidisk, and multiband synthesis, and we recommend it for IQC
synthesis based on that experience.

6 Illustration

In this section, a brief illustration of the proposed techniques is presented. Let us consider the
mass-spring system shown in Figure 1. This is a small size example whose dynamics comprise two
flexible modes. A difficulty lies in the presence of parametric uncertainties in the mass m2 and
stiffness k. Nominal synthesis techniques typically fail on this type of problem as uncertainties are
not taken into account and controllers tend to inverse the badly-damped dynamics of the plant.
The lack of collocation between the control input u and the measurement y = x2 is a second source
of difficulty. Note that similar benchmarks have previously been studied in the literature [5].

x1u
x2 = y

m2m1 k
f

Figure 1: mass-spring system

Nominal parameter values are :

m1 = m2 = 0.5Kg; k = 1N/m; f = 0.0025Ns/m. (20)

Measurement y = x2 must track a reference signal yref , typically a step input. Performance
specification is a settling time of about 4 seconds for the step response. Performance should be
robust with respect to relative parameter variations δk and δm2

of ±30 % on k and m2, respec-
tively. The plant, augmented by the uncertainty channel, is described in LFT (Linear Fractional
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Transformation) format and is given in state-space as :
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(21)

with uncertainty channel:
[

w∆k

w∆m2

]

=

[

δk 0
0 δm2

] [

z∆k

z∆m2

]

. (22)

The problem is solved using a classical mixed-sensitivity formulation [25, p. 130-141]

min
K(s)

∥

∥

∥

∥

Σ
GΣ

∥

∥

∥

∥

∞

where Σ := (I − KG)−1 . (23)

In order to illustrate the lack of robustness of nominal synthesis, a standard H∞ synthesis with
the same performance channel is computed. The resulting compensator is analyzed through four
conventional graphical tools:

• a root locus (upper-left plot) to diagnose pole-zero cancellations.

• a Nichols plot (upper-right plot) to evaluate classical stability margins.

• a stability domain (lower-left plot) which displays the stability region in the parameter plane
(dotted area). The square corresponds to the prescribed parameter variations of ±30% and
should be contained in the dotted area when robust stability is achieved.

• closed-loop step responses (lower-right plot) for all models in the uncertainty set (δk, δm2
) ∈

{−30, 0, 30} × {−30, 0, 30}.

As seen in Figure 2, the standard H∞ controller is not satisfactory in this example, which
motivates computing a robust controller using the method of section 4.3. The uncertainty channel
is now incorporated into the design, and correspondingly, suitable multipliers are defined, see
(18). In this preliminary study we have used simple constant multipliers as discussed in 4.3.
The synthesis problem is cast as in (9), where both controller K and multiplier Π are the design
variables. Note that the previously computed H∞ controller will serve as an initial stabilizing
solution for the algorithm. A simple safeguard is used to maintain closed-loop stability in the
course of the algorithm of section 5 by setting f(x) = λ1,∞ ◦ F (x) = +∞ whenever K is not
stabilizing. The multiplier Π in (18) is initialized with S = I, G = 0 and γ = 3. The extended
set of frequencies introduced is section 5 is obtained by griding frequency intervals where function
values exceed 80% of the peak value. The initial FDI function λ1 ◦F (K, Π, jω) is shown in Figure
3, which also indicates the frequencies which were selected to construct the extended set Ωe(x)
for the descent step generator of f = λ1,∞ ◦ F . The algorithm reaches a negative peak for f after
31 iterations and converges to a local minimum after 88 iterations leading to the FDI curve with
strictly negative peak value in Figure 4. Note that running the algorithm to completion is neither
necessary nor advisable in this application since only a strictly feasible solution to the FDI is
required. This can certainly be exploited to reduce the computational overhead. Frequency- and
time-domain analysis of the computed robust controller are displayed in Figure 5.
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Figure 2: analysis of standard H∞ controller
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Figure 3: initial FDI curve
‘*’ selected frequencies in extended set
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Figure 4: final FDI curve
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Figure 5: analysis of final robust controller
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7 Conclusion

We have used nonsmooth analysis to establish useful differential properties of FDIs arising in IQC
theory. The proposed framework is general and can handle a broad class of IQCs including those
with rational or even more general dynamic multipliers. Moreover, both control system analysis
and synthesis are covered by our theory. A new nonsmooth bundle-type algorithm with memory
has been developed and its convergence has been established.

As illustrated on a simple benchmark problem, and in accordance with our preliminary testing
in H∞ synthesis [3] and some of its variants [1, 4], the proposed approach appears very promising,
particularly so for problems where the state dimension is an issue.
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[18] C. Lemaréchal and F. Oustry, Nonsmooth algorithms to solve semidefinite programs,
SIAM Advances in Linear Matrix Inequality Methods in Control series, ed. L. El Ghaoui &
S.-I. Niculescu, (2000).

[19] A. Megretski and A. Rantzer, System analysis via integral quadratic constraints, IEEE
Trans. Aut. Control, 42 (1997), pp. 819–830.

[20] D. Noll and P. Apkarian, Spectral bundle methods for nonconvex maximum eigenvalue
functions: first-order methods, Mathematical Programming Series B, 104 (2005), pp. 701–727.

[21] F. Oustry, A second-order bundle method to minimize the maximum eigenvalue function,
Math. Programming Series A, 89 (2000), pp. 1 – 33.

[22] M. Overton, On minimizing the maximum eigenvalue of a symmetric matrix, SIAM J. on
Matrix Analysis and Applications, 9 (1988), pp. 256–268.

[23] P. Parrilo, On the numerical solution of LMIs derived from the KYP lemma, in Proc. IEEE
Conf. on Decision and Control, Phoenix, AZ, 1999, pp. 2334–2338.

[24] E. Polak, Optimization : Algorithms and Consistent Approximations, Applied Mathemati-
cal Sciences, 1997.

[25] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Printice Hall, 1996.

17


