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Abstract

We show in the present paper that many open and challenging problems in control
theory belong to the class of concave minimization programs. More precisely, these
problems can be recast as the minimization of a concave objective function over convex
LMI (Linear Matrix Inequality) constraints. As concave programming is the best
studied class of problems in global optimization, several concave programs such as
simplicial and conical partitioning algorithms can be used for the resolution. Moreover,
these global techniques can be combined with a local Frank and Wolfe feasible direction
algorithm and improved by the use of specialized stopping criteria, hence reducing the
overall computational overhead. In this respect, the proposed hybrid optimization
scheme can be considered as a new line of attack for solving hard control problems.

Computational experiments indicate the viability of our algorithms, and that in
the worst case they require the solution of a few LMI programs. Power and efficiency
of the algorithms are demonstrated for a realistic inverted-pendulum control problem.

Overall, this dedication reflects the key role that concavity and LMIs play in diffi-
cult control problems.

Key words. Fixed-order control, H,, synthesis, robust control, parametric uncer-
tainty, Linear Matrix Inequalities, global concave minimization, Frank and Wolfe algo-
rithms.

1 Introduction

A number of challenging problems in robust control theory fall within the class of rank
minimization problems subject to LMI (convex) constraints. An important example is
provided by the reduced-order Hy, control problem. It has been shown in [31, 10, 21] that
there exists a k-th order controller solving the Hy, control problem of a plant with n-th
order if and only if one can find a pair of symmetric matrices (X,Y’) with dimension n x n
such that for some H, performance level y the following holds.

(X,Y,7) € L, (1)
X 1
Rank 7 Y] < n+k, (2)
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where L is a convex set defined by LMI constraints. More precisely, the constraint (1) has

an expansion in the form
N

.A(.’IJ) = Ap + Z.’L‘ZAZ <0,
i=1
where the z;’s are the decision variables linearly related to the original variables (X,Y, )
and the A;’s are symmetric matrices. The inequality A(z) < 0 must be understood in the
semidefinite sense, that is, A(x) has only strictly negative eigenvalues.

The hardness of problem (1)-(2) stems from the rank condition (2) which is essentially
nonconvex. Note that (2) is automatically satisfied with the case k > n of arbitrary-order
controllers and such the problem dramatically simplifies to (1), an LMI constraint that
can be solved using highly reliable and efficient techniques in Semi-Definite Programming
(SDP). Among such techniques are polynomial-time interior-point techniques extensively
discussed in the monograph [28]. As it plays a central role in robust control theory, many
researchers in the control community have devoted their efforts to developing heuristics
and techniques for determining solutions to the class of nonconvex problems (1)-(2). See
[15, 19, 12, 13] to cite a few and [14, 39, 36, 35| for methods that are related to global
optimization techniques.

One of the main purposes of this paper is to show that not only problem (1)-(2) but also
many other important and challenging problems in robust control theory can be recast as
concave minimization problems. That is, problems involving a concave functional subject
to convex constraints consisting of LMIs. A sample list of such problems includes robust
control and robust multi-objective problems based on any kind of scalings or multipliers,
robust fixed- or reduced-order control problems, multi-objective Linear Parameter-Varying
(LPV) control, reduction of LFT representations, and more generally any combination of
such problems. These problems are generally difficult to deal with but exhibit some nice
geometric concave structure that makes them more attractive and painless than general
nonlinear optimization problems. Remarkably, though concave programming is the best
studied class in global optimization since the pioneering paper [37], it seems to have escaped
the control research attention, so that very little effort has been dedicated to the global
approach to such problems. Another distinguished characteristic of the concave problems
under study is that whenever feasible, optimality occurs only at zeros of the concave
functional. In this respect, such problems can be reinterpreted as zero finding concave
programs which significantly reduces the difficulty of the search. Thus, new stopping
criteria which locate such zeros as fast as possible are of great interest and will be discussed
briefly. Since local optimization algorithms are computationally much cheaper than global
ones, it is also of interest to develop an adequate local optimization technique to determine
a good enough initial value. The concave structure of the problem implies that the Frank
and Wolfe algorithm should be very useful in that respect. As we shall see, it is guaranteed
to generate strictly decreasing sequences for the objective functional and that the sequence
of points is either infinite or reach a local optimal solution. Such local algorithms and
stopping criteria are then combined with recently available concave programming methods
[17, 18, 24, 38] to certify global optimality of the solutions or invalidate feasibility. The
overall hybrid algorithm consists of a suitably built FW algorithm at the initializing stage
associated with several alternative concave programming techniques in the central body.



The FW algorithm is much less costly but in return, is prone to non-global optimality.
On the other hand, concave minimization techniques provide global optimal solutions but
generally require intensive computations. Therefore, an important target of this paper
is to maintain a reasonable computational cost by taking advantage of local and global
techniques. Hence, the global concave programming techniques are used either to refine a
local solution issued from the FW algorithm until global optimality is achieved or to provide
a certificate of global optimality. We have paid special attention to the simplicial and
conical Branch and Bound concave minimization methods [38] which respectively divide
the feasible set into simplices and cones of decreasing sizes. The main thrust of these
techniques is that they rely heavily on concavity and convexity geometric concepts which
make them particularly appropriate for our problems. Each step of the proposed techniques
exploits both the convexity of the constraint set and the concavity of the functional and
also the fact that only zero optimal values are of interest. This allows large portions of
the feasible set to be eliminated at each iteration. The most computationally demanding
operation in each step comes down to solving one LMI program, hence the practicality of
the methods. On the other hand, the stopping criteria mentioned above reveal very useful
to further reduce the computational cost.

Intensive computational experiments indicate that the local solutions found by the FW
algorithm are very close to optimality and are either certified global or quickly improved
to optimality after a few iterations of the simplicial and conical techniques. The reader is
referred to [4] and its extended version freely available upon request for other details and
a catalog of examples.

The paper has a tutorial nature since it relies on existing results in the aera of robust
control with LMIs. See the bibliography section provided at the end. Our intention has
been to point the optimization community attention to some other classes of problems and
structures, what difficulties are encountered and what kind of techniques are likely to be
used. For clarity and understanding of the concepts, we have repeated some of the proofs.
The reader is referred to additional material when lenghthy derivations are required. The
remainder of the paper is organized as follows. Instrumental tools are introduced in Section
2. Control problems and their formulation as concave minimization programs are discussed
in Sections 3 to 5, from the simple stabilization problem up to the more sophisticated ro-
bust control problems. Section 6 briefly focuses on specific local and global techniques as
well as stopping criteria for arriving at a complete resolution. Finally, a realistic control
problem illustrates the formulations and techniques in Section 7.

The following definitions and notations are used throughout the paper. M7 is the
transpose of the matrix M, and M* denotes its complex-conjugate transpose. The notation
Tr M stands for the trace of M while N} is any matrix, whose columns form a basis of
the nullspace of M. For Hermitian or symmetric matrices, M > N means that M — N is
positive definite and M > N means that M — N is positive semi-definite. The notation
co {p1,...,pr} stands for the convex hull of the set {p1,...,pr}. The notation vert (P)
is used to denote the set of vertices of a polyhedron P. Simplices and cones are defined
in the usual way. In symmetric block matrices or long matrix expressions, we use * as an



ellipsis for terms that are induced by symmetry, e.g.,

S M _ [ S M
|2 Qlr=r i K
We shall also use V f(z) to denote the (row vector) gradient of the function f. Finally, in
algorithm descriptions the notation X is used to designate the k-th iterate of the variable
X. The notations int S and 95 are used for the relative interior and the boundary of the
set S.

2 Instrumental tools

As mentioned above, a number of challenging problems in robust control theory can be
formulated as concave minimization programs. These reformulations are strongly based
on the following lemmas which help simplifying the theoretical characterizations. The first
one is the projection Lemma and allows the elimination of a matrix variable occurring
linearly in some LMI expressions [10].

Lemma 2.1 (Projection Lemma) [10] Given a symmetric matriz ¥ € R™*™ and two
matrices P,Q of column dimension m, the following problem

U4+ PTXTQ+QTXP <0 (3)
1s feasible with respect to matriz X of compatible dimensions if and only if
NE U Np <0, Ny U Ny <0, (4)
where Np and Ng denote arbitrary bases of the nullspaces of P and Q, respectively.

Remark 2.2 The LMI (3) admits a convex set of solutions. One can extract a particular
solution using SDP techniques or more simply by direct matrix algebraic techniques. A
detailed discussion is given in [6, 10].

The following Lemma is crucial for reducing the nonconvexity degree in the LMI approach
to control problems.

Lemma 2.3 Given real symmetric matrices X and Y in R™ ", there exist U in RF*k
symmetric and M such that
U M] -1 _ [* * ]

-1 _
w _[MT X x Y

(5)
and
W >0, (6)

if and only if 0 is the optimal value of the following problem of minimizing a concave
function over a conver set

minTr (X — Y1 - VVT) s.t. (7)
X IV

V € Rk, I Y 0]>0. (8)
vli o I




Proof: From the matrix completion result (see e.g. [31, 16]), (5) and (6) are equivalent

to
X I
1Y

Rank (X — Y1)

Vv

0, (9)

IA

k. (10)
But (10) holds true if and only if
X-y'=vvl, = VeR™

for some matrix V of dimension nx k. On the other hand, by a Schur complement argument,
the convex LMI (8) gives (X —Y ~!1 —VVT) > 0 which also implies Tr (X -Y ' —=VVT) > 0.
Then, we have Tr (X — Y ! — VV7T) = 0 if and only if X — Y~! = VV7T. Note that the
objective (7) is concave in X > 0,Y >0 and V. [ ]

Remark 2.4 Note that for £ = 0, i.e. U disappears in (5) then problem (7), (8) is
simplified to the minimization of the concave objective Tr (X — Y1) over the convex
constraint (9). On the other hand, for £ = n, the rank constraint (10) is automatically
satisfied and thus (5), (6) are equivalent to the convex constraint (9).

The next lemma provides efficient means for assessing quadratic performance of a linear
system and can be regarded as a generalization of a Lyapunov’s stability theorem.

Lemma 2.5 [32] The linear system

t = Az+ Bw, z(0) =0 (1)
z = Cx+Dw

is internally stable (i.e. the matriz A is asymptotically stable) and the following quadratic
performance condition

[T T8 W20 a<o, vrso vt 12

with given matrices W and symmetric U > 0 and V', holds if and only if there is a solution
P >0 of the LMI

ATP +PA PB+CTw cT
BIfp+wTc v+wip+D'w DT | <0 (13)
C D —U-t

Proof: Recall that the asymptotic stability of A means that the solution trajectories of
# = Ax tend to zero as the time ¢ tends to infinity, for arbitrary initial conditions. The
celebrated Lyapunov theorem [26], which is a fundamental tool in stability theory states
that A is asymptotically stable if and only if there is a solution P > 0 of the LMI

ATP+PA<O (14)



Now, the implication (13) = (12) is easy to check. Indeed, P > 0 in (13) particularly
satisfies (14) which proves the asymptotic stability of A.
Using a Schur complement, (13) is also equivalent to

[ATPJrPA PB+CTwW ]+[CT

B'"P+WTC V+WID+D'W pT
T T T T

m(t)] {[AP+PA PB+CTw ]+[c ]U[C D]}[:v(t)]<0

]U[C Dl<0

= w(t) BIp+wTc v+wID+DIW DT w(t)
d O /R AREID)
@ @vo+ o) v vl <0 (15)

)
where V (t) = 21 (t)Pz(t) and (d/dt)V (t) = 2T (t)(ATP + PA)z(t) + 22T (t)PBw(t).
Noticing that V(T') > 0, VT' > 0 and that with zero initial conditions V' (0) = 0, and
integrating (15) on the time interval [0, T'] yields (12).
The implication (12) = (13) is more delicate and follows from indefinite linear-quadratic
control theory [34]. |

Probably, the most well-known variant of Lemma 2.5 is the so called Bounded Real
Lemma characterizing the Lo —gain condition

/0 U LT (02t — T W@t <0, VT >0, (16)

for system (11) (see e.g. [1]), which means that the Ho-norm of the transfer function
T(s) := C(sI — A)~'B + D from w to z is bounded by . As shown in [31, 10, 21], this
Lemma plays a crucial role in the LMI approach to the Hy control problem. Obviously,
(16) is a particular case of (12) with U =~ I, W =0, and V = —yI.

3 Stabilization problems

We begin our analysis of control problems that can be formulated as concave minimization
problems by the static gain stabilization problem. This problem has a fairly simple formu-
lation but retains the properties and difficulties of many problems examined throughout
the paper.

3.1 Static stabilization: output feedback vs. state feedback
Consider a linear system which obeys the differential equation
z = Az + Bu, y=Cl, AeR™" (17)

where z(t) is the state vector, u(t) is the control signal and y(t) is the measurement vector.
The static gain stabilization problem consists in the determination of a control signal

u =Ky, (18)

where K is a static gain matrix such that the closed-loop system (17) and (18) is stable.
That is, the state of the closed-loop system

t=(A+ BKQ)z, z(0) = g (19)



converges asymptotically to zero as time increases. This control objective admits an al-
ternative matrix inequality characterization via Lyapunov Theorem [26]. As mentioned in
the previous section, an equivalent formulation is therefore the existence of a symmetric
matrix X such that the matrix inequalities

(A+ BKC)TX + X(A+ BKC) < 0 (20)
X >0 (21)

hold.
Condition (21) particularly implies that X is nonsingular and therefore Npry =
X~'Ngr. Then rewrite (20) in the form

(ATX + XA)+CTKTBTX + XBKC < 0, (22)

and apply the projection Lemma 2.1 to (22). The problem is then easily reformulated as
the matrix inequalities of (21) together with

NEATX + XANe < 0,  (23)
NE X HATX + XA)X Wpr <0 & NI (VAT +AY)Npr < 0 (24)

with Y = X~!'. Thus, by Remark 2.4, this problem is equivalent to that 0 be the optimal
value of the following concave program

minTr (X — Y1) s.t. (23),(24),(9). (25)

Note that in the case of the state-feedback control (i.e. C = I), one just have to solve
LMI (24) which is a convex SDP problem. This clarifies the hardness of output-feedback
control problems in regard to their state-feedback versions.

Remark 3.1 It is worth noticing that when a solution to (25) has been found, a solution
K to the static gain stabilization problem is easily derived by solving (22), which for a
given X becomes an LMI with respect to K. Here again, SDP solvers or direct algebraic
techniques are useful for that purpose.

3.2 Dynamic control: fixed-order vs. full-order

For reasons that are related to controllability and observability properties of the system
triple (A, B, C), it may be that a static control is not sufficient for solving the stabilization
problem just discussed. In such case, we are led to using a dynamic controller K (s) with
prescribed order k (number of states), hence depending on the Laplace variable s, instead
of a mere static gain K. In other terms, we have to find a dynamic controller K (s) in the
form
g = Akzk + Bky
K(S) { U = Cgzig + Dgy (26)

with Ag € R¥** and transfer function K(s) = Cx(sI — Ax)™' Bk + Dk.

With z, = [T x% ]T, it is immediate to check that the closed-loop system (17) and
(26) is nothing else than the following system

To = Agza+ Baug, Yo = CaTq, (27)
U, = Kaya, (28)



with the notations

o A 0 o 0 B - 0 Ik o AK BK
A“‘[o Ok]’ B“‘[Ik 0]’ C“‘[O 0]’K“_[OK DK}' (29)

Our problem now becomes that of finding a static stabilizing control (28) with matrix gain
K, for system (27). We note that in (29) all matrices A,, By, Cy are completely defined
from A, B,C. The system (27) is called the augmented system for system (17).

Now, applying the result of Lemma 2.1 and in view of the trivial relations

NBT:|’ NC :|:N(;‘:|’

Ner=1" a 0

we obtain the following characterization which is analogous to the conditions (23)-(24)

T
[A(/)C] (AT X, + X,A,) [Agc] < 0 (30)

T
NS’T] (Y,AT + A,Y,) [NgT] < 0 (31)
Y,=X,' > 0. (32)

The structure of the matrices in (29) implies that we can simplify (30)-(31). Indeed, with
the partition

X, = ]ffT g] Y, = ]\EI/T AP{] X, Y eR¥™ E FecRF* (33
we have
AT X, + Xy Aq = [ATX N 8] VAT 4 Ay, = | AY +0YAT : (34)
and (30)-(31) becomes
NEATX + XANG <0,  Nir(AY + YAT)Ngr <0 (35)

Finally, applying Lemma 2.3 to (32)-(33), we deduce the concave minimization formulation
(with variables X, Y and V) of the fixed-order control problem as the convave programming
problem

min {Tr (X = ¥~' = VV") : subject to LMIs (35) and ()} , (36)

By similar arguments, various performance indexes can be handled such as Hs-norm
performance, passivity constraints, and general quadratic constraints and their combina-
tions. The reader is referred to [32] for a thorough discussion on these constraints.

Again, in the case of full-order control (i.e. k¥ = n), by Remark 2.4, the dynamic stabi-
lization problem reduces to the feasibility of LMIs (35) and (9), an easy convex problem.
When solutions X, Y and V' to problem (36) have been found, the explicit construction of
the controller K (s) can be performed using a standard procedure [10].



4 Fixed-order H,, synthesis problems

Stability is certainly a vital requirement in most control applications but it is generally
not sufficient and additional practical specifications have to be taken into account. The
H, synthesis framework has received great attention in the last decade, mainly because
it allows the formulation of a variety of practical specifications such as signal tracking,
disturbance rejection, noise attenuation and loop-shaping constraints. A general formula-
tion of the Hyo synthesis control problem is as follows. We consider a linear time-invariant
plant described in “standard form” by the state-space equations:

z = Az + Biw+ Bou, A€ R
P(S) z = Ciz+ Dyiyw+ Disu y (37)
Y Coxz + Dyyw

where
e u € R™ is the vector of control input(s)

e w € R™ is a vector of exogenous inputs (reference signals, disturbance signals,
sensor noise, etc.)

e y € RP? is the vector of measurements
e z € RP! is a vector of output signals related to the performance of the control system.

Let T'(s) denote the closed-loop transfer functions from w to z for some dynamic output-
feedback control law u = K(s)y defined by (26). Our goal is to compute a k-th order
output-feedback controller (26) which meets the following design requirements

e internal stability: for w = 0 all states of the closed-loop system (37) and (26) tend
to zero as time tends to infinity.

e performance: the Ly-gain condition (16) is satisfied.

As for pure stabilization problems, it is possible to derive a matrix inequality characteriza-
tion of this problem via a simple extension of Lyapunov theory [6]. The closed-loop system
(37) and (26) can be rewritten in compact form as

Tg = Adxcl + Byw
T(s) { Z = Cuyzyg + Deyw (38)
where
A, B A+ ByDgCy  ByCg | By + ByDg Dy
l Ccf Dd ] = Bk Cy Ak Bk Do . (39)
o C1 + D12DCy D15Ck | D11 + D19Dg Doy

Then, applying Lemma 2.5 to (38) with U = y~'I, V. = —I and W = 0, the above
stability and performance requirements are met iff there exists a symmetric matrix X
with
A&Xcg-i-Xchcg XeBer C'g;{
BL X -yI D% | <o, X >0. (40)
Ce Dy -1
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It is routine calculation to see that the first inequality in (40) can rewritten in the form
dictated by Lemma 2.1. Indeed, from expression (39) we can see that

Ace ‘ Beg — Ag + BoKoCo ‘ Bl,a, + BaKa,D21,a (41)
Cet | Det Cla + D12,0KaCq | D11 + D12,0KoDa21 g
where
Ak B A 0 B
Ka::[ K K], Aa::[ ] Bl’a::[ 1], Cio:=1[C1 0]
Ck Dg 0 O 0 (42)
B-—{O BQ] C-—[O I’“] Dige:=[0 Di], D -—[0]
a--— Ik: 0 ) a--— 02 K 12,0 *— 12 |» 2l,a *— D2]_ .
Then the first inequality in (40) can easily be rewritten as
U +QTK] Px,, + P% ,K.Q <0, (43)

with the notations

PXCZ = [BgXCZ 0 DCIFZ,a]a Q = [Ca D21,a 0] 9

A?;Xcﬁ‘l'XcﬁAa XcéBl,a Ci—,:a
U= Bf X —~I DY
Cla Dy I
Note that
Xg 0 0
Px,=P| 0 I 0 with P=[B] 0 D},,],
0 0 I
from which we infer )
X, 00
New,=| 0 I 0 |Np
0 0 I

Hence, using Lemma 2.1, the existence of K, in (43) is equivalent to the existence of
X > 0 such that

AEXCZ + XcéAa XcéBl,a Clqza
NGING <0 & Nj Bf X —I DL |Ng < 0 (44)
Cla Dy, -1

X' AT + AXy' Bi. X 'CF,

N, INpy, < NE Bi, —I DI, |Np < O (45)
Cro X' Dy, —I

Similarly to Section 3.2, we use the following partition for X, and chl

XN]

Y M

-1._
Xee = [MT F
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Bases of the relevant subspaces are given as

W1 0
1o o AN
Ne=1|q [ | vith [WQ]_N[BQT Dh )
LWy 0
Vi 0
o o] ..ow_
NQ— ‘/.2 0 with |:V.2:| —N[C2 DZI].
LO [T

This allows us to simplify (44)-(45) into

XA+ ATX XB cr N 0
* BTX  —4I DT, [ [Co Do <0 (47
C1 Dy | I 0 I
YAT + AY vCT ‘ By lN[BT D, 0
* ciY —’)’I Dq; 2 12 < 0 (48)
BT DY | I 0

Meanwhile, by virtue of Lemma 2.3, the existence of X and Y satisfying (46), (47) and
(48) is equivalent to the zero-seeking concave program

min Tr (X —Y ' —VVT): LMIs (47) — (48), and (8). (49)

Again, by Remark 2.4, in the full-order case, k = n, the problem reduces to checking the
feasibility of (9), (47)-(48), which is a standard (convex) SDP problem.

5 Robust control problems

A further requirement in control applications is that stability and performance are main-
tained in the presence of structured parametric uncertainties. This comes from the fact
that plant’s models are never perfectly known and one must account for uncertainties
that invariably affect the state-space realization data. This is the problem investigated
hereafter.

We are concerned with the robust control problem of an uncertain plant subject to
LFT (Linear Fractional Transformation) uncertainty. In other words, the uncertain plant
is described as

T A Ba By By T
za| _ |Ca Daa Dar Daz| |wa

z Ci1 Dia Di1 Dy w (50)
Y Cy Dap Doy O u

wa = A (t) ZA

where A(t) is an uncertain time-varying matrix-valued parameter and is usually assumed
to have a block-diagonal structure in the form

A(t) = diag (..., 60T, ...,Aj(t),...) € RN*N (51)
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and normalized such that
AWTAR) <I, t>0. (52)

Blocks denoted d;I and A; are generally referred to as repeated-scalar and full blocks
according to the y analysis and synthesis literature [9, 8].

Clearly, the plant with inputs w and u and outputs z and y has state-space data entries
which are fractional functions of the time-varying parameter A(¢). This representation is
fairly general and can encompass most practical situations. Here again, the meaning of
u, W, z,y remains the same as that in Section 4.

For the uncertain plant (50)-(52) the robust control problem consists in seeking a linear
time-invariant controller (26) such that for all parameter trajectories A(¢) determined
by (52), the closed-loop system (50)-(52) and (26) is internally stable and the Lo-gain
conditions (16) is fulfilled.

As in Section 4, it is now well-known that such problems can be handled via a suitable
application of Lemma 2.5. For a brief justification of this generalization, we need the
following notation

T = AuTe+ By [UJHA]
(53)
[ZZA] = Ccewce-FDce[u;UA] ;

where the state-space data A.y, B, Ce¢ and D¢y determine the closed-loop system (50)
and (26) with the A loop wa = A(t) za open.

We notice that checking condition (16) directly is generally intractable since all ad-
missible A must be examined. Scalings or multipliers are therefore introduced to derive a
relaxation of this problem, thus providing a sufficient condition. This relaxation requires
the definitions of scaling sets compatible with the parameter structure given in (51). De-
noting this structure as A, the following symmetric and skew-symmetric scaling sets can
be introduced

Sa:=385:8"=8 SA=AS, VA with structure A}
Ta:={T:TT =T, TA=ATT, VA with structure A} .

It is easily verified that with S > 0, the uncertain matrix A satisfies the quadratic con-
straints

INf'rs T11 T .
[A] [TT —S] [A]ZO’ VA s. t. A"A <1, with structure A. (54)

An equivalent form for (54) is also

T
A [ ST T ] [ZA ] >0, Vea, wa =Aza, ATA<I, with structure A. (55)
WA T -5 WA

With these definitions, a sufficient condition for (16) to hold for all possible A is the
existence of S > 0 and T skew-symmetric such that

[ s —wrowo 2017 [ 5] (20 ] a<o

WA (t)
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or alternatively,

A 1'7 s o | T o 2a ()
1 2(t) 0 vyl o 0 z(t)
/0 wa® | |70 =5 0 || way | #< (56)
w(t) 0 0 —I w(t)
Applying Lemma 2.5 to (53) with
S 0 7 0 -5 0
o=lo ol ow=1% o=l Sl

the quadratic inequality (56) is equivalent to the existence of Xy > 0, S > 0 and a skew-
symmetric 7" such that

Act Ko +TXC€64 “ S 0 oo i
T _
BdXC”[o O]Cd [0 vI]*([o O]Dd+*> * <0, (57)
S-1 0
CCZ Dcl - 0 71

Exploiting this last condition which enforces both stability and performance for all admis-
sible A(t), the next theorem gives a simplified characterization where the nonconvexity of
the problem is clearly identified. Again the tools introduced in Section 2 are essential in
the derivation. The reader is referred to references [30, 29, 2, 3, 16, 33, 20] for more details
and additional results.

Theorem 5.1 Consider the LFT plant governed by (50) and (52) with A assuming a
block-diagonal structure as in (51). Let Nx and Ny denote any bases of the nullspaces
of [Cy, Dan, Doy, 0] and [BY, DX,, D%, 0], respectively. Then, there ezists an n-th-order
controller such that condition (57) holds with X, > 0 and S > 0 and some Lg-gain
performance v if and only if there exist pairs of symmetric matrices (X,Y), (S,%) and a
pair of skew-symmetric matrices (T,T') such that the structural constraints

S, Y€eSaandT, T €Ta (58)

hold and the matriz inequalities

ATX + XA XBa +CXTT XB; CLS CT7
BAX +TCn —S+TDan+ DAA\T" TDar DXAS Dip
* BI'x oy -yI DX,S DI |Nx < 0,(59)
SCa SDaA SDa1 -S 0
C1 Dia Dy, 0 =1
AY +Y AT YCX + BATT YCT BaAYX B ]
CAY +TBY —S+TDX, + DaaTT TDI, DarX Das
* CiY DlAFT —~1 DAY Dy [Ny < 0, (60)
»BY LN DT, -X= 0
BT DY, DY 0 —I

M EIRE RS



14

subject to the algebraic constraints

(S+T)*'=(Z+D), (62)
or equivalently, .
o 5= ) L
are feasible.
Proof: See the Appendix A. [

Note that due to the algebraic constraints (62), the problem is nonconvex and has
been even shown to have non-polynomial (NP) complexity. See [5] and references therein.
Simpler instances of this problem as those considered in [27] are NP-hard. This feature is in
stark contrast with the associated Linear Parameter-Varying control problem for which the
LMI constraints (59)-(61) are the same but the nonlinear conditions (62) or alternatively
(63) fully disappears. Also LMI (60) alone with Y > 0 is a characterization for the full-
information control problem, a problem of independent interest, which is therefore convex.

The concave minimization formulation of (59)-(62) is following

Lemma 5.2 Introduce the concave LMI-constrained minimization program

Pbl:  min Tr(Z, — Z3Z;'Z7) : (59) — (61), (64)
Z Z3 S+T I
A Zs I 4T
>0.
(S+1)" I I o |20 (65)
I Z+D)T 0 I

Then, any feasible point to Pbl which further satisfies
Tr(Z1 — Z3Z5'Z3) = 0, (66)
is optimal and is a solution to the problem described in Theorem 5.1 and conversely.

Proof: This is a particular case of a result in [4]. |

Problem Pb.1 provides a characterization for full-order controllers (kK = n). If we
further requires that the controller be of reduced order k¥ < n, then the problem should be
formulated as

minTr (Z, — Z3Z, ' ZT) + To (X — Y1 —VvVT) : (59) — (61),(65), (8)

again an LMI-constrained zero-seeking concave problem.

Similar formulations can be derived for the reduction of LFT representations and more
generally to rank-constrained LMI problems and BMI (Bilinear Matrix Inequality) prob-
lems.
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6 Solving methods

In this section we shall briefly describe some resolution algorithms for the concave programs
Pbl. Other concave programs can be treated similarly. We see that Pbl is to check
whether there exists

7* € X ={(Z1, %0, 73) : I(X,Y,S,T,%,T) s.t. (59) — (61), (65)} (67)

satisfying f(Z*) = 0 where f(Z) := Tr (Z1—Z3Z, ' ZT) is concave. Such a Z* when it exists
will be called a zero of f. It is important to note that since f satisfies f(Z) > 0,VZ € X,
any zero of f is also a global optimal solution of

min f(Z): Z € X, (68)

and consequently, our problem is much more computationally attractive than conventional
concave programs in which minimal values of the cost function are unknown. In the
methods presented hereafter, we can stop the search as soon as either such a zero is found
in which case global optimality is ensured, or the minimum cost value is strictly positive
in which case our problem has no solution. We refer the interested reader to [4] and its
extended version for more details on the algorithms described in this section and extensive
computational experiments. The extended version is available upon request to authors.
Our intention here is the conception of an overall hybrid scheme, where the zero-seeking
of f is accomplished by the combination of local optimization, global optimization and
stopping tests.

6.1 A local Frank and Wolfe algorithm and stopping criteria

For problem (68), the Frank and Wolfe (FW) algorithm at iteration k£ can be detailed as
follows:
Find a steepest descent direction Z*¥*1 by solving the LMI program

min Tr (G171 + G272 + G3Z3) = (59) — (61), (65), (69)
where
_ of _ _Of k1 kT Lk k] _of _ k15T
Gl T BZI _I’ G2 T 8Z2 - 2 ZS Z3Z2 ’ G3 i 6Z3 - 2Z2 Z3 )

If f(ZFY) < f(ZF) move to the nest iteration. Otherwise stop the algorithm

Since f is concave, the algorithm generates strictly decreasing sequences that can only
terminate to a point satisfying the minimum principle local optimality conditions and the
conventional line search at every iteration is bypassed. That is, a full step of one can be
performed.

In order to further reduce the computational cost of the proposed techniques, we intro-
duce some stopping procedures since in practical applications a perfect zero optimal value
is never required which leaves some freedom to reduce the number of steps.

Given the current point of the algorithm determined by the variables (X*, Y*), (S¥, T*),
(Sk,TF), ZF, ZE and Z¥ our goal is to verify whether this point or a closely related point
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is a solution to the LMIs (59)-(61) subject to the algebraic constraint (62). In our new
notation, our test takes the form

LMIs (59) — (61), (70)
(8% +Tk)~1 = (Tk 4+ Tk). (71)

Note that in the course of the algorithm, the current point is not generally optimal so
that the constraint (71) does not hold. It is, however, possible to terminate the program
without reaching optimality. Our stopping criteria are based on the following perturbations
techniques. We assume that a current feasible point of LMIs (59)-(61) and (65) is given.
There exists a controller for which the conditions in Theorem 5.1 hold whenever one of the
following perturbation techniques is successful.

e Compute W = (§* + T*)~! and update X*¥ and T'* using the substitutions

< WwT o w-wT

k. k. 2
e ' (72

Then, stop if new point passes the test (70).

e If previous test fails, then compute W = (3*¥ + I'*)~! and update S* and T* using

the substitutions
w+w?t Tk ._ w-wT

ok . _
ST = 5 , : 5 (73)
Then, stop if new point passes the test (70).
e or alternatively solve in P the perturbation problem
(S +1F+ P)EF+TF+P) =1 (74)
or equivalently the generalized Riccati equation
(SE+TFYP+PEF+TF) + P2 (SF+TR)(ZF 4+ TF) —T=0. (75)
Then, stop if one of the solutions obtained with the substitutions
G _ Wi + Wi Fh Wy — Wi Sk _ Wo + Wy S _ Wy — WT (76)
2 ’ 2 ’ 2 ’ 2 ’
where

Wi=S*+TF+P, Wo=XF4+TF4+P,
passes the test (70).

Note that without loss of generality, P in (75) can be selected as a general matrix
with structure in conformity with the uncertainty structure A. The generalized Riccati
equation (75) has a combinatoric of solutions that are easily computed using Hamiltonian
techniques [7, 23, 25]. One can then easily extract a real smallest norm perturbation by
combinatorial exploration. This task however will require extra computational efforts. It is
thus recommended to use the first perturbation techniques alone for large size uncertainties.
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6.2 Global search with the simplicial algorithm

In view of the recent developments in global optimization, it seems that a BB method is the
most suitable for our global search. The following analysis is useful to improve efficiency
of the simplicial and conical BB methods.

Branching: The function f is not only concave in (Z1, Z2, Z3) but is also linear in Z; with
(Z2, Z3) held fixed, i.e. only (Z2, Z3) are the "complicating" variables, responsible for
the nonconvexity /hardness of the problem. The global search thus is concentrated on
the reduced-dimensional space Z of variables (Z2, Z3). Accordingly, the feasible set
can be interpreted as the projection of the convex set defined by the LMIs (59)-(61)
and (65) on the space Z. This space is partitioned into finitely many simplices. At
each iteration, a partition simplex M is selected and subdivided further into several
subsimplices according to the normal rule [38].

Bounding and terminating: Given a partition simplex M with vertices u!, u?,...,u*t1 (N

is the dimension of Z), the concavity of f and its linearity in Z; are further exploited
in the search of a zero of f over (Zy, Z3) € M. This is carried out through computing
a lower bound B(M) satisfying

B(M) < v(M) == inf{f(Z): Z € X,(Z,Z5) € M}. (77)

which is computed by

N+1 ‘ N+1 N+1 '
min Tr(Z1) + > Af(0,u): D Ni=1, & >0, (Z1, Y \u') € &,
=1 =1 . =1 (78)
. iy <
Z.:ng.lle_i_lf(Zlau ) <0,

Of course, we can use the optimal solution Z; (M) and w(M) = SN+ X\ (M)u? of (78)
not only for updating the best current value (upper bound) but also for the stopping
test developed above to reduce the time of global search. Clearly, the partition sets
M with (M) > 0 cannot contain any zero of f and therefore are discarded from
further consideration. On the other hand, the partition set with smallest S(M) < 0
can be considered the most promising one. To concentrate further investigation on
this set, we subdivide it into more refined subsets. With a given tolerance € > 0, the
stop criterion of the BB algorithm is

mj\/l[n’B(M) >e. (79)

6.3 Conical algorithm

Close scrutiny of the objective function properties (Tr(Z; — Z3Z, ' Z1)) reveals the fol-
lowing.

1) If (Z1,Zs, Z3) is the solution of Pbl with the zero optimal value then (tZ1,tZo,tZ3
p ? ?
with ¢ > 1 is also a solution satisfying the same conditions. Thus, without loss of
generality, we can set Tr (Z1) = L, with L a constant large enough.
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(13) Zy > I which means that we can use the change of variable Zy — Zy +¢el with Z; > 0
instead of Zy > 0.

As a consequence, problem Pb1l can be reduced to minimizing the objective function
f(Za,Z3) = L — Tx (Z3(Zo + 1)1 ZT) (80)

and LMIs (59)-(65) are changed accordingly using the substitution Zs — Zo + €I. The
function f in (80) is concave in the cone C"* x C™3 where C'? is the cone of nonnegative
definite matrices with the same structure as Z and C™? is the space of symmetric matrices
having the same structure as Z3. It is sufficient to take Z as a large enough finite family of
canonical cones approximating C}"?> x C™? with some tolerance. Perhaps, the most essential
property of a concave function f is that its level sets Co = {Z = (Z2,Z3) € Z: f(Z) > 0}
are convex and therefore an alternative formulation of our problem is to find Z € X'\ int Cy
or else prove that X C int Cj, where both X', Cjy are convex sets. All these facts are taken
into account in the global search with the conical algorithm based upon the so-called
concavity cut or Tuy cut [37]. We omit the description here, the reader is referred [4]
for details. By concentrating the search on the boundary of the feasible set, the conical
algorithm better exploits the fact that the global minimum is attained at an extreme point
and is therefore more efficient than the simplicial algorithm in the case of problem Pbl.

However, the simplicial algorithm is convenient for exploiting the partial linearity of
the objective. For instance, in the case when all skew-symmetric matrices 1" and I" vanish,
the objective for Pb1 can be reduced to the form

Tr (8) - Tr (271, (81)

which means that it is concave in ¥ and linear in S. The simplicial algorithm can then be
applied directly, with branching operations in the reduced ¥ —space as previously. Thus in
this case, the simplicial algorithm might be preferred.

7 Robust control of an inverted pendulum

This section provides an illustration of the local and global techniques introduced above.
As mentioned in the introduction, the overall algorithm can be detailed as follows. The
FW algorithm is computationally cheaper than simplicial and conical global techniques,
and hence is used first to find a good suboptimal value y. Then, the simplicial/conical
algorithm are employed to further reduce vy, or to certify global optimality. The illustration
consists of the robust control problem of an arm-driven inverted pendulum (ADIP) which
is depicted in Figure 1. This is a two-link system comprising an actuated arm (first link)
and a non-actuated pendulum (second link). The main control objective is to maintain the
pendulum in the vertical position using the rotation of the arm. Moreover, this stabilization
must be accomplished on a wide range with respect to the angular position of the arm. A
detailed description of the plant as well as the corresponding physical experiment is given
in [22].

By selecting as state vector z:= [z 2 7y 1], where ry is the horizontal position
of the arm tip (ry is the vertical position), ¢; and ¢o are the angular positions of the
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arm and the pendulum, respectively, and z := r; + %12(,02, the following simplified LF'T
state-space representation is obtained [22].

T = Az + BAwa + Bu, za = Caz, wa = Aza,

where the parameter structure is given as

ry 0 0
A = 0 Y2 0
0 0 oo

Therefore, the inverted pendulum admits LPV dynamics and can be controlled using
either LPV or robust control techniques, as those considered in Section 5. Given an
operating range for the inverted pendulum, the parameters are normalized such that

A= diag(él,égfg) with |(5Z| S 1, 1= 1,2

Figure 1: Inverted pendulum

The synthesis structure used to achieve the design requirements is shown in Figure
2. Tt simply translates performance tracking (w;z;) and high-frequency gain attenuation
(wgrz). The numerical data of the synthesis interconnection are given in Appendix B.
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Figure 2: Synthesis structure for the inverted pendulum

The following table displays the performance of each algorithm in terms of number of
iterations and cputime. The computations were performed on a PC with CPU Pentium II
330 Mhz and all LMI-related computations were performed using the LMI Control Toolbox
[11]. Remember that the simplicial and conical algorithms are used only after the FW
algorithm has failed (y = 0.1903 in this case). The symbol f’ indicates a failure of the FW
algorithm to achieve the corresponding value of -y, first column, whereas the symbol ’inf’
is used to specify infeasibility of ~.

FWA SA CA
¥ # iter. | cputime | # iter. | cputime | # iter. | cputime
0.2 3 65.74 sec. - - - -

0.1910 10 148.03 sec. - - - -
0.1905 10 152.09 sec - -

0.1904 2 56.08 sec - - - -

0.1903 f f 1 12.3 sec. 1 18.73 sec
0.1838 - - 2 84.80 sec. 1 18.95 sec
0.18375 - - 12(inf) | 793.01 sec. 1 18.840 sec.
0.18370 - - 1(inf) 13.03 sec 1(inf) 16.04 sec

Table 1: FWA: Frank and Wolf Algorithm; SA: simplicial algorithm;
CA: conical algorithm; f: the test fails; inf: no zero optimal value (infeas.)

From Table 1, we see that the performance found by the FW algorithm is within 5.5 %
of the global optimal value of . It is also worth noticing that with the same -y, there are
many solutions obtained by the global algorithms. For instance, for y = 0.1838, the scaling
solutions with the simplicial and conical algorithms are given as

1.2261 x 10~° 0 0
S = 0 0.5110 —0.0231
0 —0.0231  0.0042

0 0 0
0 0 -00014 |,
0 0.0014 0

[T =
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and
1.2261 x 10°° 0 0 0 0 0
S = [ 0 0.1719 0.0010 ,T=10 0 0.0073 ] ,
0 0.0010 4.2145 x 10°° 0 —0.0073 0

respectively. The optimal scalings with v = 0.18375 and the conical algorithm are

1.2264 x 1075 0 0 0 0 0
[ 0 0.1748 0.0010 ,T=10 0 0.0074 ]
0 0.0010 3.3449 x 10~° 0 —0.0074 0

The optimal value of « achieved with both the simplicial and conical algorithms are very
close to that obtained using LPV synthesis where the parameter is not uncertain but known
in real time (y = 0.1830). This indicates that one will hardly find a better linear time-
invariant controller for the specified control objectives. Similar realistic or randomized
numerical experiments were conducted for other control problems, and indicate that the
proposed techniques are very useful for solving such hard problems.

8 Concluding remarks

In this paper, we show that many important problems in robust control theory can be
formulated as the minimization of a concave functional over a convex set determined by
LMI constraints. The catalog given in this paper is by far non-exhaustive and many other
control problems can be formulated in the same manner. In this respect, concavity appears
to play a central role in a broad class of problems. This is the departure point which
motivates the development of a comprehensive technique which provides a global solution
of inherently difficult control problems. What is most promising is that NP-complexity
never occurs in practical applications, so that the proposed algorithms are indeed useful
and practical. These good results are obtained by exploiting a combination of a well-known
method in classical differential optimization and more recent techniques in combinatorial
concave minimization.

Appendix A

We note first that it is possible to simplify the proof by using the substitutions

CA]

Bi:=[Ba Bi], Ci:= |:C1

82)
Dan Dm] [DAQ] (
Dy = Dio. = Doy :=|D D
11 [DIA Dy | P Dy, |7 P2 [Dan Do ]
and S 0 T 0
S::[O I]’ T::[O O]' (83)

where we assumed 7 = 1 for further simplification.
As in Section 4, we see that the performance condition (57) is equivalent to

U+ P{ ,K.Q+ QK] Px,, <0, (84)
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where

Achz + XCZAa, XclBl,a + C%:aﬂ Cilja
U= |Bl,Xg+TC, —S+TDu+Du7" Df |,
Cia D11 -8

PXcl:[BcCLFXCZ DF{Q,a’TT D’{Q,a]a Q:[Ca D21,a 0];

with A,, Bi g, Cl,q,... defined in (42) and where By, C1, D11, D12, D2; are replaced with
By, C1, D11, D12, Da-
Thus by virtue of the Projection Lemma 2.1, (84) is equivalent to

ngd‘I’Wde <0, WEHIWg<O, (85)

where Wp, ) Wg are any bases of the nullspaces of Px,, and (), respectively.
A basis of the nullspace of Px_, is obtained as

xX,b 00
0 I 0|Wp,
0 0 I

where Wp is any basis of the nullspace of P = [ Bl D%;,GTT DL 1.
An equivalent condition for the first inequality in (85) is thus W?;CI'WP < 0, with

X AT + A X' Bia+ X, CLTY  X,'CL,
®=|BL,+TC X' -S+TDu+DHTT Df |. (86)
CraXy' Dy -§-!

From (42), it is easily inferred that bases of the null spaces of P and @ are obtained,
respectively, as

Wl 0 V1 0
0 0 0 0
Wp 0 I ) WQ - Vo 0]’ (87)
Wy —-T7 0 I
Wi V1 T pT
where W and v, | e bases of the nullspaces of [B; Diy] and [Ca Doy |, respec-
2 2

tively. With the help of these notations, and exploiting the fact that the second row of
Wy is zero, the second projection in (85) with X defined from the partition (46) simplifies
to (59) up to the congruent transformation

I 0 0
0 1 0].
0 0 S

Similarly, with Y defined from the partition (46), the first projection in (85) reduces to

T

i 0 YAT + AY B +YCcITT ycl1rvi 0
0 I Bt +7C,Y -8+ 7D +DLTY DE 0 I |<o.
Vo =TT CY Dy S lw 77
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Computing this expression leads to

VI(AY + YATV; 4+ VIC YV + VIYCTV, — VIS~V % -0
BIVi + DLEVe + TSV, —(5+ T8 177 '
(88)

Finally, performing the changes of variable

S=(8+TS'T),  T=—=S+TS'T")'Ts,

HH S !

(S+T)L=(Z+71),

with

i

3=

or equivalently

the congruent transformation ~
X0
0 I

allows the identification of (88) with (60). To summarize, the problem is solvable if and
only if (59)-(60), (61) and (62) have a solution such that X, in (84) is positive definite.
The latter condition is equivalent to the first LMI in (61) by Lemma 2.3. Finally, the
conditions in Theorem 5.1 are derived by reversing the substitutions in (82) and (83). This
completes the proof of the theorem. [ |

Appendix B

A | Bar | B | By
CA | Daa | Dar | DAz |
C1 | Dipn | Du1 | D12 | 7
Cy | Daa | D21 0
B 0 1 0 0 0 0 0 0 0 0 0 h
48.9844 0 —48.9844 0 0 0 —.35634 —.015548 0 0 0
0 0 0 .184940 O .0750596 0 0 0 0 0.0
0 0 0 —50.0 0 0 0 0 0 0 0
0 0 —.50 0 0 0 0 0 0 .50 0
0 0 0 1 0 0 0 0 0 0 0
436.33231 0 —.043633 0 O 0 0 .043633 0 0 0
1 0 -1 0 0 0 0 0 0 0 0
0 0 0 .0036988 0 001501 0 O 0 0 0
0 0 O 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 O 0 0 0
1 0 -1 0 O 0 0 O 0 0 0
L 0 0 0 0 1 0 0 0 0 0 0 _

Acknowledgment. The authors are grateful to Professor Hoang Tuy for his invaluable
suggestions and advice on concave minimization algorithms. We also wish to thank Dr.
Hiroyuki Kajiwara at Kyutech for providing the arm-driven inverted pendulum example.



24

References

[1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

B. ANDERSON AND S. VONGPANITLERD, Network analysis and synthesis: a modern
systems theory approach, Prentice-Hall, 1973.

P. APKARIAN AND P. GAHINET, A Convezr Characterization of Gain-Scheduled Hy,
Controllers, IEEE Trans. Aut. Control, 40 (1995), pp. 853-864. See also pp. 1681.

P. APKARIAN, P. GAHINET, AND G. BECKER, Self-Scheduled Hy, Control of Linear
Parameter-Varying Systems: A Design Ezample, Automatica, 31 (1995), pp. 1251-
1261.

P. APKARIAN AND H. D. TUAN, Robust Control via Concave Minimization - Local
and Global Algorithms, in Proc. IEEE Conf. on Decision and Control, Tampa, Florida,
dec 1998.

K. P. BENNETT AND O. L. MANGASARIAN, Bilinear Separation of Two Sets in
n-Space, Computational Optimization and Applications, 2 (1993), pp. 207-227.

S. BoyDp, L. ELGHAOUI, E. FERON, AND V. BALAKRISHNAN, Linear Matrix Inequal-
ities in Systems and Control Theory, vol. 15 of STAM Studies in Applied Mathematics,
SIAM, Philadelphia, 1994.

W. A. COPPEL, Matriz quadratic equations, Bull. Austral. Math. Soc., 10 (1974),
pp. 377-401.

J. DOYLE, A. PACKARD, AND K. ZHOU, Review of LFT’s, LMI’s and u, in Proc.
IEEE Conf. on Decision and Control, vol. 2, Brighton, Dec. 1991, pp. 1227-1232.

M. K. H. FaN, A. L. TiTs, AND J. C. DOYLE, Robustness in the presence of mized
parametric uncertainty and unmodeled dynamics, IEEE Trans. Aut. Control, AC-36
(1991), pp. 25-38.

P. GAHINET AND P. APKARIAN, A Linear Maitriz Inequality Approach to Hy, Con-
trol, Int. J. Robust and Nonlinear Control, 4 (1994), pp. 421-448.

P. GAHINET, A. NEMIROVSKI, A. J. LAUB, AND M. CHILALIL, LMI Control Toolbox
, The MathWorks Inc., 1995.

J. C. GEROMEL, C. C. DE SouzA, AND R. E. SKELTON, Static Qutput Feedback
Controllers : Stability and Convezity, IEEE Trans. Aut. Control, 43 (1998), pp. 120—
125.

L. E. GHAoul, F. OUSTRY, AND M. AITRAMI, A Cone Complementary Lineariza-
tion Algorithm for Static Qutput-Feedback and Related Problems, IEEE Trans. Aut.
Control, 42 (1997), pp. 1171-1176.

K. C. GoH, M. G. SAFONOV, AND G. P. PAPAVASSILOPOULOS, A Global Optimiza-
tion Approach to the BMI Problem, in Proc. IEEE Conf. on Decision and Control,
Dec. 1994, pp. 45-49.



25

[15] K. M. GRIGORIADIS AND R. E. SKELTON, Low-order Control Design for LMI Prob-
lems Using Alternating Projection Methods, Automatica, 32 (1996), pp. 1117-1125.

[16] A. HELMERSSON, Methods for Robust Gain-Scheduling, Ph. D. Thesis, Linkoping
University, Sweden, 1995.

[17] R. HORST AND P. PARDALOS, eds., Handbook of Global Optimization, Kluwer Aca-
demic Publishers, 1995.

[18] R. HORrST AND H. TUY, Global optimization: deterministic approaches, Springer (3rd
edition), 1996.

[19] T. IwasAKl, The dual iteration for fized-order control, in Proc. American Control
Conf., 1997, pp. 62-66.

[20] T. IWASAKI AND S. HARA, Well-Posedness Theorem: A classification of LMI/BMI-
reducible control problems, in Proc. Int. Symp. Intelligent Robotic Syst., Bangalore,
dec 1996, pp. 145-157.

[21] T. IwasAKI AND R. E. SKELTON, All Controllers for the General Hy, Control Prob-
lem: LMI Ezistence Conditions and State Space Formulas, Automatica, 30 (1994),
pp. 1307-1317.

[22] H. KAJIWARA, P. APKARIAN, AND P. GAHINET, Wide-Range Stabilization of

an Arm-Driven Inverted Pendulum Using Linear Parameter-Varying Techniques, in
ATAA Guid., Nav. and Control Conf., 1998. to appear.

[23] P. V. KokoTovic, A Riccati equation for block-diagonalisation of ill-conditionned
systems, IEEE Trans. Aut. Control, 20 (75), pp. 812-814.

[24] H. KoNNo, P. THACH, AND H. TUY, Optimization on Low Rank Nonconvex Struc-
tures, Kluwer Academic Publishers, 1997.

[25] A. J. LauB, A Schur method for solving algebraic Riccati equations, IEEE Trans.
Aut. Control, AC-24 (1979), pp. 913-921.

[26] A. M. LYAPUNOV, Probléme général de la stabilité du mouvement, vol. 17 of Annals
of Mathematics Studies, Princeton University Press, Princeton, 1947.

[27] O. L. MANGASARIAN AND J. S. PANG, The Extended Linear Complementary Prob-
lem, SIAM J. on Matrix Analysis and Applications, 16 (1995), pp. 359-368.

[28] Y. E. NESTEROV AND A. S. NEMIROVSKI, Interior Point Polynomial Methods in
Convex Programming: Theory and Applications, vol. 13 of STAM Studies in Applied
Mathematics, STAM, Philadelphia, 1994.

[29] A. PACKARD, Gain Scheduling via Linear Fractional Transformations, Syst. Control
Letters, 22 (1994), pp. 79-92.

[30] A. PACKARD AND G. BECKER, Quadratic Stabilization of Parametrically-Dependent
Linear Systems using Parametrically-Dependent Linear, Dynamic Feedback, Advances
in Robust and Nonlinear Control Systems, DSC-Vol. 43 (1992), pp. 29-36.



[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

26

A. PACKARD, K. ZHOU, P. PANDEY, AND G. BECKER, A collection of robust control
problems leading to LMI’s, in Proc. IEEE Conf. on Decision and Control, vol. 2,
Brighton, Dec. 1991, pp. 1245-1250.

C. SCHERER, P. GAHINET, AND M. CHILALI, Multi-Objective Qutput-Feedback Con-
trol via LMI Optimization, IEEE Trans. Aut. Control, 42 (1997), pp. 896-911.

G. SCORLETTI AND L. E. GHAOUI, Improved Linear Matrixz Inequality Conditions
for Gain-Scheduling, in Proc. IEEE Conf. on Decision and Control, New Orleans, LA,
Dec. 1995, pp. 3626-3631.

H. L. TRENTELMAN AND J. C. WILLEMS, The dissipation inequality and the algebraic
riccati equation, in The Riccati Equation, S. Bittanti, A. J. Laub, and J. C. Willems,
eds., Communications and Control Engineering Series, Springer-Verlag, 1991, ch. 8,
pp- 197-242.

H. TuaN, P. APKARIAN, S. HOSOE, AND H.Tuv, D.C. Optimization Approach to
Robust Control: Feasibility Problems. To appear in Int. J. Control.

H. TuaNn, P. APKARIAN, AND Y. NAKASHIMA, A New Lagrangian Dual Global
Optimization Algorithm for Solving Bilinear Matriz Inequalities. To appear in Int. J.
of Robust and Nonlinear Control.

H. Tuy, Concave programming under linear constraints, Soviet Mathematics, (1964),
pp- 1437-1440.

—, Convex analysis and global optimization, Kluwer Academic Publishers, 1998.

Y. YAMADA AND S. HARA, The Matriz Eigenvalue Problem - Global Optimization
for the Spectral Radius of a Matriz Product under Conver Constraints, in Proc. IEEE
Conf. on Decision and Control, Kobe, December 1996, pp. 1325-1330.



