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DISCRETE TIME

Pierre Apkarian'

Abstract

This paper develops a new method for the synthesis
of Linear Parameter-Varying (LPV) controllers in dis-
crete time. LPV plants under consideration have a
Linear Fractional Transformation (LFT) representation
and specifications consist of a set of Hay/Ho, conditions
that can be defined channel-wise. In contrast to earlier
results, the proposed method involves a specific trans-
formation of both the Lyapunov and scaling/multiplier
variables which renders possible the use of different
Lyapunov functions and of different scaling variables
for each channel/specification. Appropriate lineariz-
ing transformations on the controller data and on the
scheduling function are then established to finally re-
cast the problem as an easily tractable LMI program.

Key words. LPV synthesis, mixed Hy/H,, multi-
channel control, LFT, Linear Matrix Inequalities.

1 Introduction

LPV control techniques have received great attention in
the recent years [17, 2, 5, 13, 19]. The main thrust of
these techniques is that they provide an elegant and al-
gorithmically attractive setting for addressing the prac-
tical needs of gain scheduling or controller interpola-
tion. The most demanding task of these techniques
amounts to solving Linear Matrix Inequality (LMI) pro-
grams which is relatively easy with currently available
Semi-Definite Programming codes. These methods have
also been constantly refined and improved in different
directions. In [19, 23, 1, 3, 22, 15]. Except from isolated
cases [18, 1, 13] which either discuss computationally
intensive approaches or propose somewhat conservative
schemes, the definition of a genuine mixed Hs/Ho, and
multi-channel LPV methodology is a very challenging is-
sue. Because of the many constraints surrounding most
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practical designs the development of such a methodol-
ogy is certainly of crucial importance.

We develop a technique for solving the mixed Ha/H
multi-channel LPV control problem in discrete time
which is an extension of previous results in [17, 2]. As
a key ingredient, we introduce slack variables in per-
formance characterizations which, to some degree, per-
mits to short-circuit the inherent strong interrelations
between Lyapunov and scaling variables on one side and
LPV controller variables on the other side. An inter-
esting consequence is that different Lyapunov/scaling
variable pairs can be used for each channel and specifi-
cation, thus improving on earlier results obtained in the
context of linear time-invariant multi-objective synthesis
[16, 20]. Similar ideas have also been used in [10, 9, 4] for
robustness analysis and linear time-invariant synthesis.
The work in this paper extends these concepts to LFT
systems and the restricted class of full-block symmetric
scalings. It also establishes new linearizing transforma-
tions of the LPV controller data and of the controller
scheduling function to achieve a full LMI program de-
scription of the mixed Hy/H, multi-channel LPV syn-
thesis problem.

2 Analysis setup

This section develops analysis tests for robust Hy and
H, performance that will be central in the construction
of multi-objective LPV controllers. The LPV plant is
described as

z(k +1) A Ba B (k)
2a (k) = | Ca Daa Dai| |wa(k)
z(k) Ci Dia Du w(k)
wa (k) = A(k)2a(k),
(1)

where A(k) € RV*V is a time-varying matrix-valued
parameter evolving in a polytopic set Pa, with

Pa :=co {A1,..., A ...,AL} 30, (2)

where co stands for the convex envelope and the A;’s
denote the vertices of Pa. The plant with inputs w
and outputs z has state-space data entries which are
fractional functions of the time-varying parameter A(k).
Hereafter, we are using the following notation z for the
state vector, w for exogenous inputs and z for controlled
or performance variables.
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2.1 Robust H; performance

A characterization of robust Hs performance is provided
in the following proposition. For the H, performance
index to be well defined, we assume that the state-space
data are such that the corresponding feedthrough term
is zero.

Proposition 2.1 (Robust H, performance) The
following statements, involving Lyapunov variables X
and Z, scaling pairs (Q1,R1), (Q2,R2) and general
slack matriz variables V, Hy, Fy, Ha, F» are equivalent
and enforce a bound v on the variance of the output z
for all parameter trajectories A(k) € Pa:
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Proof: See full version of paper. ]

It is worth mentioning that the conditions in Proposi-
tion 2.1 are conservative in two respects. First of all,
a fixed Lyapunov function (not depending on parame-
ters) is employed to assess Hs performance of the uncer-
tain system. This is a well-recognized source of conser-
vatism [8, 12, 11]. Secondly, we are utilizing a subclass
of full-block generalized scalings with zero off-diagonal
separators in place of the class of generalized scalings
or multipliers introduced in [21]. Therefore, these tests
should be refined when used for validation purpose.
This subclass is, however, more general than the sub-
class of structured symmetric scalings used in [17, 2].
More importantly, this new characterizations also offer
new potentials for deriving tractable characterizations
for discrete-time multi-objective LPV control problems
which appears delicate using earlier techniques.

There are a few points to have in mind to understand
the conditions (3) and (4) and their usefulness.

e In (4), we get rid of the standard Lyapunov terms
XA, XBy, ... and of the scaling terms R1Ca,
RiDAy, ... by means of intermediate (slack) vari-
able V, Hy, Hy, Fy and F;,. These terms generally

<0, Tr(2) < 1,

impose strong limitations in multi-objective con-
trol problems since they preclude the use of multi-
ple Lyapunov functions or scalings. Similar ideas
have been presented earlier in [10, 9] for Linear
Time-Invariant multi-objective synthesis.

e The LMI condition (4) is significantly more costly
than its original form (3) because of the additional
general matrix variables V and H;, H,, F7 and
F5 . We shall see however that this extra com-
putational overhead is more than offset by new
capabilities in multi-objective LPV synthesis. An
important consequence is that multiple Lyapunov
functions X; and scalings R;, (; can be employed
for each channel and specification.

Finally, the conditions in (3) and (4) guarantee well-
posedness of the LFT representation in (1). The prop-
erty of well-posedness is ensured in most results in this
paper and will not be discussed further. See for instance
[2, 21] for related texts.

<0,

2.2 Robust H,, performance
The following result for H,, performance parallels those
for the H» performance in Proposition 2.1.

Proposition 2.2 (Robust H,, performance) The
following LMIs involving o Lyapunov variable X, a
scaling pair (Q, R) and general slack matriz variables
V, H and F enforces a bound vy on the Ls-induced
gain of the operator mapping w into z. In different
words, Hy performance is guaranteed for all parameter
trajectories A(k) € Pa.
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Proof: The proof is along the same lines of the proof
of proposition 2.1. [ ]

3 Mixed Hy/H, multi-channel LPV synthesis

3.1 Problem presentation
The general statement of the multi-channel mixed
H,/Hy, LPV synthesis is detailed below. We are given



an LPV plant with LFT structure

za (k) Ca Daa Dar Daz| |wa(k)
2(k) Ci Din Di1 Do w(k)
y(k) Co Daa Dan 0 u(k)
wa (k) = A(k)za(k),
(6)

where A is defined in (2). Here z, w, wa, 2, and za have
the same meaning as in Section 2, u is the control signal,
and y is the measurement signal. The pair (wa, za) is
now regarded as the gain-scheduling channel.

For the LPV plant (6) the control problem consists in
seeking an LPV controller with LFT structure

zr(k+1) Ak Brk1  Bka zx (k)
u(k) = | Ck1 Dg1u1 Dgkia y(k)
zi (k) Cka Dra1 Dran | |wk(k)
w (k) = Ax(k)zk(k),
(7)

such that Hs and H,, specifications are achieved for
a family of channels (w1, 21), (w2,22), etc, where the
w;’s and z;’s are sub-vectors of w and z, respectively.
The notation Ag is used for the controller scheduling
function which is a function of the plant parameter A,
that is, Ak := Ak (A). This scheduling function is part
of the design procedure and will be determined in the
course of the derivation below.

3.2 LMI characterization

In order to derive closed-loop characterizations of Hs
and H, performance, a standard procedure is to rewrite
the LPV plant (6) as an augmented LPV plant with
repeated blocks of delay operators z~'I, and an aug-
mented gain-scheduling block [17, 2]. The resulting
closed-loop data are then described as

A0 Ba O B,
A | Ba B 0 0 0 0 0
Ca | Daa | Dar | = Ca 0O Dan O N
Ci | Dia | D11 0 0 0 0 0
C: 0 Dia O Dqy
0 By 0
I 0 0 0 I 0 0 0
+ 0 Das O K Cy, 0 Dopn 0 Doy
0 0 I 0 0 0 I 0
0 Dy O
(8)
with the definition
Ax  Brgi1  Bga
K:=|Cki Dk Dgia
Cka Dra1 Draa

The new uncertainty or parameter structure associated
with the closed-loop data (8) is then given by

[ﬁ AKO(A)] '

’

With Each specification/channel is associated an LMI
constraint of the form encountered in Propositions 2.1
and 2.2, LMIs (4) and (5). The desired characteri-
zation for LPV output-feedback synthesis with multi-
objective/channel specifications can be derived in four
steps:

1- introduce different Lyapunov variables and scal-
ings (X;,Z;) and (Q,,R;) for each specifica-
tion/channel. Also, an H, specification requires
two pairs of scaling whereas only one is involved
in an H, specification. Note that the introduc-
tion of different Lyapunov functions and scalings
is impractical in earlier developed techniques.

2- introduce slack variables V', H and F' common to
all channels and specifications.

3- write down expressions characterizing Hy and H,
performance for each channel using Propositions
2.1, 2.2 and the closed-loop data A, Ba, ... in (8).

4- perform adequate congruence transformations for
each matrix inequality and use specific linearizing
changes of variables to end up with LMI synthesis
conditions.

Hereafter, we clarify the proposed procedure. Keeping
in mind that all channels (w1, 21), (w2, 22), etc can be
handled in the very same way, we shall only consider
the case of an H, and H, performance specification for
the unique channel (w,z). This greatly simplifies the
presentation below. When various channels are under
consideration one will simply stack together the cor-
responding LMI constraints including additional Lya-
punov variables and scalings.

In accordance with the partition of A and Daa in (8),
we introduce a partition of V' and of its inverse W :=
V1, a partition of H and of its dual G := H~' and a
partition of F and of its inverse E := F~! in the form

Vit Via Wi Wi Hy;; Hi
V= , W= , H = ,
|:V21 V22] [W2l W22] [H21 sz]
Gu G2 Fi1 Fio Ein FErp
G = F = E = R
[Gm G22] ’ [Fm Fzz] ’ [Em E22]

By the strict nature of the LMI constraints involved and
a perturbation argument, there is no loss of generality
in assuming that Va1, Way, Ha1, Ga1, F51 and Fs; are
invertible. See for instance [7] for a detailed justification.
We then introduce the notations

HV = |:I/11 I:|,HW = [I W11:|,HH = |:H11 I:|,

Vo O 0 Wy Hyy 0
— I Gu — Fiu 1 L I FEn
My = [O Gm]’HF'— [Fﬂ 0],11,3‘_ [0 Eﬂ].

In turn, these matrices are invertible by the assumptions
on Vo1, Wy, Ho1, Go1, F51 and Es;. One can easily



verify the identities

VIy =y, Wiy = Ty, Hllg = g,
Gy =T Fllg = My, Ep = 5.

For an H, specification, we perform the congruence
transformations
diag(HW,HE,I, HW7HG)7 diag(HW7HE7HGaI)7

on the first and second inequalities (ii) of Proposition
2.1, respectively. For an H, specification, we perform
the congruence transformation

diag(Ilw , g, I, Iy, g, I)

in (5) of Proposition 2.2. For inequalities involving un-
certainty blocks, last inequalities in (4) and (5), we per-
form the congruence transformation

diag(llg,OEg) .

This yields matrix inequalities which solely involves the
terms

Oy Ally  IO{Ballp  T{B:

chAHW HE,DAAHE HE’DAI , (9)

Cilly Diallg D11
and

H:’V;,TXjHW, H?E;QJHEa ngRjH(;, (10)

Iy VIw, LgHIg, IiFllg,
and T

A 0
T

The variables (X;,Z;,Q;,R;) are attached to a
given Hy or Hy specification or channel, while

(V,W,H,G,F,E) are slack variables common to all
specifications and channels.

Explicit computation and inspection of these terms
reveal that by invertibility of Va1, Way, Ha1, Gar, Fa1
and FE»;, one can perform the following linearizing
changes of variable:

Dgk11 = Dk, (12)
Bx1 = V;;BKl + V11;B2DK11, (13)
Ck1 = Dg11CaWi1 + Cr1Woai, (14)

Ax = VAW + Vg  Ax War + V3 Bk1CaWiy
+V, BaCg1Wa1 + V;1 Ba D11 Ca Wiy, (15)

Dgia = Dxi11D2aF11+ Dki1aE2a, (16)

Dxa1 = H{{Da2Dk11+ HyyDxat, (17)
Bra = V17£BAE11 + V27£BK1D2AE11 + V17£B2DK11D2AE11

+Vy Bk aE21 + Vi1 BaDg1a Ea, (18)

Cka = HlTlc'AWu +H1TlDA2DK1102W11 +H2TlDKA102W11

+ H{iDa2Cx1Wa1 + HJ; Cx aWoan, (19)

O5DanIlE = [

Dgan = HlTlDAAEn =+ HﬁDAQDK11D2AE11
+H2TlDKA1D2AE11

+H?1DA2DK1AE21 + H;DKAAE21 , (20)
X; = Iy X;Ow, (21)
Q; = ILQ;liz, R,;:=IgR;lg, (22)

U = VWi + Vg Wer, M:= H};G11 + Hy, Go1,
N = FEu+FEx (23)
Ag = FiAGu + FyiAgGoa . (24)

Note that these transformations are back and forth be-
cause of the invertibility of Va1, Wa1, Ha1, Go1, F51 and

E5;. The matrix inequality terms in (9)-(11) then be-
come
ViA + Bk1Cs Ak
O Ay = | 1!
vAIw [A + BaDk11Co AWi1 + B2Ck1
VTBA + Br1Dsa Bga ]
I} Ballg == | 1
veATE [BA + BsDg11Daon BaFE1 + BoDgia
LB, = VB + Bix1Da
v B1 + BsDg11D2y
7 CATLy = [HlTch + Dra10s Cka ]
H " |Ca+Da2Dg11C> CaWir + Da2Ck1

T DA, = [HlTle + DKA1D21:|
H Da1+ DasDg11Da1 |’

H{iDaa + Dxa1Daa Dgaa
DaAA + DasDii11D2n DanErr + DasDiia

Cillyw :=[Cy1 + D12Dk11C> CiWi1 + D12Ck1],
D11 := D11 + D12Dk11Do21,
Diallg :==[Dia + D12Dg11D2a  DiaEr1 + D12Dkia] ,

T o VYll I T o H11 I
Mty == [UT WITI]’HGHH = [MT G{l]’
o . | P 1
Mgl '_[NT ET

Note that in the Hs case one must moreover satisfy the
zero feedthrough constraints so that the Hy performance
index is well defined.

Thanks to these transformations, the inequalities of
Propositions 2.1 and 2.2 which do not involve a param-
eter block A become LMIs as desired. Inequalities as-
sociated with the parameter block are rewritten

Ri1 R;2 ATF, AT
R, Rjs Ag” G AT 0
FiA Ak Qi+ Fu+Fi Qj24+4I1+N >0,
A AGun Q,+N'+I Qs+EL+En
VAE€Pa,j=1,....
(25)

They consist of a set indexed by j of parameterized in-
equalities with respect to A. Recalling that A(k) is
evolving in a polytopic set Pa, that is,

L L
A= ZaiAi, Zai =1, «a; >0,
i=1 i=1



solution candidates can be searched for in the form
L
AK(A) = Z aiAK,i ,
i=1

where the Ak ;’s are decision variables and the a;’s
are the polytopic coordinates of A in Pa (see [3] for
other potential methods). Under this restriction, the
constraints (25) are converted into a finite set of LMIs

RJ 1 RJ 2 A;T A;TFll

R, R GhHAT AL

A, AGu Qja+ Fi + FY Qj2+I+ N
FiA; Axi @, +N'+1 Qs+ Ef +En

where 4 indexes the vertices of Pa and j indexes the
channels and specifications.

Since for each channel and H; and H,, specifica-
tions, terms are of the form just derived, we con-
clude that sufficient existence conditions for the multi-
objective/channel LPV control problem can be recast
as an LMI program in the variables V31, W11, Hi1, G11,
Fi1, E11, Ak,; and the (bold) variables defined in (12)-
(23). See the full version of the paper for detailed LMI
descriptions.

3.3 LPV controller construction

Once a feasible solution of the LMI constraints has been
computed, the state-space data (7) of the LPV controller
are readily obtained as indicated below:

e compute a SVD factorization of U — V;¥W;; and
deduce invertible matrices V5; and Ws; according
to (23). Analogously, compute a SVD factoriza-
tion of M — H},G1; and N — F{ E;; and deduce
invertible matrices Hyy Go1, F»1 and Es; accord-
ing to (23).

e compute the LPV controller data by sequentially
reverting the changes of variable as specified in
(12)-(20) .

e deduce the controller gain-scheduling function as

Ax(A) = F5" (ZiL:1 oAk — Fiy ZiL:l az'AiGll) a

= ZiL:1 o2 (F2_1TAK,i 2_11 - Fz_lTFlTlAiGlle_ll) -

Hence, the scheduling function is affine in polytopic co-
ordinates of the parameter block A. An enriched class
of scheduling functions can be employed which however
can play adversely in terms of computational time. If
structured symmetric scalings were used, and the con-
troller was forced to replicate the parameter block of
the plant, i.e., Ag := A, then it can be showed that
LMIs involving A blocks disappear. This simpler char-
acterization is then equivalent to those in [17, 2] for the
single-objective H, control problem. It is, however,
more conservative than that proposed in this paper.
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