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When designing control systems, it is often desirable to assess the robustness of stability
and performance against uncertainty on the critical physical parameters of the system. Ex-
ample of physical parameters include stiffness, inertia, or viscosity coefficients in mechanical
systems, aerodynamical coefficients in flight control, the values of resistors and capacitors in
electrical circuits, etc. Even though this problem is NP-hard in general, a number of more or
less conservative tests are available to estimate stability regions. These include Kharitonov’s
theorem and related results [26, 5], quadratic stability tests [22, 6, 29, 25], and the real p or

Parameter-Dependent Lyapunov Functions for

Real Parametric Uncertainty
Pascal Gahinet 1 Pierre Apkarian Mahmoud Chilali 1

Submitted to IFEF Trans. Aut. Conlr., June 1994

Abstract

A new test of robust stability/performance is proposed for linear systems with un-
certain real-valued parameters. This test is an extension of the notion of quadratic
stability where the fixed quadratic Lyapunov function is replaced by a Lyapunov func-
tion with affine dependence on the uncertain parameters. Admittedly with some con-
servatism, the construction of such parameter-dependent Lyapunov functions can be
reduced to an LMI problem, hence is numerically tractable.

This LMI-based test can be used for both fixed or time-varying uncertain param-
eters and is always less conservative than the quadratic stability test whenever the
parameters cannot vary arbitrarily fast. It is also less conservative than the real p
upper bound for time-varying parameters, and several examples demonstrate that it
compares advantageously with this upper bound even for fixed parameters.

Key words: Robust stability, Real parametric uncertainty, Lyapunov stability, Linear
maftrix inequalities.

Introduction

K, stability margins [14, 15, 33, 34].

TThe first and third authors are with INRIA Rocquencourt, Domaine de Voluceau, BP 105, 78153 Le

Chesnay Cedex, France. E-mail: gahinet@colorado.inria.fr

!The second author is with CERT-ONERA, 2 av. Edouard Belin, 31055 Toulouse Cedex, France. E-mail:

apkarian@saturne.cert.fr



The discussion is restricted to linear systems of the form
&(t) = A(0) z(t); z(0) = xg (L.1)

where the state matrix A(f) is a function of the vector § = (0y,...,0) € RE of real uncertain
parameters. For technical reasons, it is important to distinguish between constant and time-
varying parameters. Constant uncertain parameters have a fixed value that is known only
approximately. In this case, the underlying dynamical system (1.1) is time-invariant. Time-
varying parameters 0;(1) are parameters whose value varies in some range [f;,6;] during
operation. The resulting dynamical (1.1) system is then time-varying. In general, robust
stability against time-varying parameters is more demanding than robust stability against
fixed but uncertain parameters (for the same range of uncertainty [6;, 0;]).

When 6 is time-invariant and each 6; enters in only one coefficient of the characteristic
polynomial

p(s) = det(s] — A(0)).

Kharitonov’s theorem gives a simple necessary and sufficient condition for robust stability.
Unfortunately, this decoupling assumption is often restrictive in practice. For time-varying
parameters, a numerically appealing test is based on the notion of quadratic stability. It
consists of seeking a single matrix P = PT > 0 such that the quadratic Lyapunov function
V(z) = 2T Pz proves stability of (1.1) for all parameter trajectories #(¢). When each entry
of A(.) is a ratio of multilinear functions of 6, it is shown in [20] that finding an adequate P
amounts to solving a system of Lyapunov inequalities, which is a convex program [6].

Quadratic stability guarantees stability against arbitrarily fast parameter variations. As
a result, this test can be very conservative for constant or slowly-varying parameters, even in
its refined form discussed in [40]. To reduce conservatism in the case of constant parameters,
Barmish introduced the notion of parameter-dependent Lyapunov functions [3] . That is, of
Lyapunov functions

Viz) = xTP(G)x

where the Lyapunov matrix P(#) is no longer constant, but is now a function of §. Note
that parameter-dependent Lyapunov functions are also discussed in [21] in a more abstract
context. The discussion in [3] is restricted to the case of an affine dependence on 6. Even in
this simple case, the condition dV/dt < 0 leads to a nonconvex optimization problem which
does not seem tractable in general. In the special case of rank-one parametric uncertainty,
[13] shows that robust stability is equivalent to the existence of an affine parameter-dependent
Lyapunov matrix for some augmented system. This important result follows from a simple
characterization of strict positive realness [2] for uncertain transfer functions. Unfortunately,
This does not seem to extend beyond the rank-one case for which simpler necessary and
sufficient conditions are already available.

In this paper, we propose a way of “convexifying” the general affine Lyapunov problem
considered in [3]. By imposing additional constraints on the parameter-dependent Lyapunov
functions, it is shown that finding a Lyapunov matrix of the form

P(G):P0—|—01P1—|—...—|—(9](P]( (12)



can be turned into a linear matrix inequality (LMI) problem of unknown matrices Py, P, ..., Pk.
LMI problems are convex and efficient polynomial-time optimization algorithms are avail-
able to solve them [28, 7, 37, 27, 8]. The resulting test is therefore numerically tractable
while always less conservative than quadratic stability. Moreover, our test is not restricted
to constant parameters, but is also applicable to varying parameters with a well-defined time
derivative. In fact, the rate of variation of such parameters can be quantitatively accounted
for. This provides a continuous transition between the two extreme cases of constant param-
eters on the one end, and of arbitrarily fast parameter variations on the other. This feature

is valuable and quite unique among available robust stability tests.

The paper is organized as follows. Section 2 recalls the notion of quadratic stability and its
LMI formulation when A(#) is affine in §. This notion is then generalized to Lyapunov func-
tions that are affine in 6 as well. Section 3 focuses on constant parametric uncertainty and
derives LMI-based sufficient conditions for the existence of parameter-dependent Lyapunov
matrices of the form (1.2). These LMI conditions are extended to the case of time-varying
parameters in Section 4 and refined conditions are proposed in Section 5. Extensions to
robust performance assessment are addressed in Section 6 with an emphasis on robust H,,
performance. Finally, Section 7 discusses the numerical implementation of this LMI-based
robustness test and Section 8 illustrates its performance by a variety of examples. Interest-
ingly, experimental results indicate that the new test is often less conservative than the real
p upper bound, even in the case of constant uncertain parameters. Quantitative insight into
the destabilizing effect of time-varying parameters is also provided by this test.

The notation used throughout the paper is fairly standard. For real symmetric matrices
M, M > 0 stands for “positive definite” and means that all the eigenvalues of M are
positive. Similarly, M < 0 means “negative definite” (all the eigenvalues of M are negative)
and M > 0 stands for “nonnegative definite” (the smallest eigenvalue of M is nonnegative).
The Ly norm of a causal signal w(t) is defined as

lelle = [~ w(t)Tw(t)dt

and the Ly-induced norm of an operator T' mapping Ls into L, is denoted by || 7|z, -

2 Affine Quadratic Stability

Consider the linear system (1.1). Throughout the paper, we assume that

1. each parameter 6; is real and ranges between known extremal values 8, and 6;:
0; € [6;,0i], (2.3)
2. the state matrix A(#) depends affinely on the parameters ;. That is,
A(0) = Ao+ 61 A1+ ...+ 0k Ak (2.4)

where Aq, Ay, ... Ax are known fixed matrices.



The first assumption means that the parameter vector 6 is valued in an hyperrectangle called
the parameter box. In the sequel,

V = {w = (W1y...,WK) : W € {Ql,éz} } (2.5)

denotes the set of the 2% vertices or corners of the parameter box. The second assumption
is introduced for technical and simplicity reasons. Note that numerous extensions of this
approach to more complex parameter dependences are possible. Though somewhat restric-
tive, the affine model still covers a wide variety of relevant problems. Henceforth, affine
parametric uncertainty will refer to the dependence (2.4).

For constant uncertain real parameters, available robust stability tests include Kharitonov’s
theorem [26, 4, 12] and extensions, and the real /K., upper bound with frequency-dependent
D, G scaling matrices [15, 34]. Both tests are numerically tractable, yet conservative except
for some special parameter dependence structures A(6). For real time-varying parameters,
there are essentially two tractable tests of robust stability: quadratic stability and the real
p upper bound with constant D, G scaling matrices, the second being more conservative in
the case of affine real parametric uncertainty [39]. Note that both criteria guarantee robust-
ness against arbitrarily fast time variations of the parameters [36]. Finally, the quadratic
stability test is also applicable to constant uncertain parameters, yet at the expense of overly
conservative answers in general (see Section 7).

Since our approach builds upon quadratic stability, we now review the details of the
quadratic stability test. This test seeks a matrix P > 0 such that V(z) = 27Pz is a
Lyapunov function for the time-varying differential inclusion (1.1). That is, such that

v

—(z() =" (A(0())"P + PA(O(1))) = <0 (2.6)
along all parameter trajectories 6(¢). Note that this guarantees the asymptotic stability of
the dynamical system governed by (1.1). Under the affine dependence assumption (2.4), it

can be shown that (2.6) holds if and only if P satisfies the system of LMIs [22, 6]:

Aw)'P+PAw) < 0 forallweV
P > L (2.7)

In other words, it suffices that P be positive definite and satisfy the Lyapunov inequality at
each corner of the parameter box. This reformulation has the merit of reducing a problem
with infinitely many constraints to a finite set of matrix inequalities. The resulting LMI
system (2.7) is then readily solved numerically with existing LMI software [37, 17].

To reduce conservatism in the case of constant parameters, Barmish [3] considers Lya-
punov functions that depend affinely on the parameters #;. The set-up there is slightly more
general as A is assumed to range in a polytope of matrices. Specifically,

A=qA + ...+ qxAx

where Aq,..., Ag are fixed, ¢; > 0, and >, q; = 1. Here the ¢;’s are not parameter values,
but the coefficients of a convex decomposition of A over the set {A;,..., Ax} of vertices of
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the polytope. In our case, the counterpart of Barmish’s affine Lyapunov functions reads
V(z) =2 P(0)x (2.8)
where the Lyapunov matrix P() is of the form
PO)=Py+0.P+...+0kPx. (2.9)

Such affine parameter-dependent Lyapunov functions are central to our approach. Note that
the usual quadratic stability corresponds to the special case when P, = ... = Px = 0. This
suggests the following natural extension of quadratic stability.

Definition 2.1 (Affine Quadratic Stability)
The linear system

#(t) = A(B(t)) z(1); 2(0) = 2 (2.10)

is affinely quadratically stable (AQS) if there exist K + 1 symmetric matrices Fy, ..., Pk
such that

P((g) = P0—|—01P1—|—...—|—9]{P]{ > I (211)
T dP ()
A(0) P(0) + P(0)A(0) + T < 0 (2.12)
hold for all admissible values and trajectories of the parameter vector 6 = (0y,...,0k).

The function V(z,0) = 2T P(0)z is then a quadratic Lyapunov function for (2.10). That
is, V(z,0) > 0 for all nonzero x and %V(zz,@) <0 for all xo and parameter trajectories

o(t).

[
Note that the negativity of the Lyapunov derivative readily follows from (2.12) and the
identity:
dV(xz,0 dP(6
% T (A(H)TP(H) + P(0)A(9) + %) .

From this definition, Affine Quadratic Stability amounts to finding K 41 symmetric matrices
P, ..., Pk that satisfy (2.11)—(2.12). This task is now discussed first in the simpler case of
constant uncertain parameters, then in the general case of time-varying parameters.

3 Constant Uncertain Parameters

Throughout this section, the real uncertain parameters 6; are assumed to be time-invariant
and valued in the interval [§;, 6;]. As a result, the condition (2.12) reduces to

L(6) := A(6)"P(6) + P(6)A(6) < 0. (3.1)

This inequality must hold for a continuum of values of §. Even when A(#) and P(6) are
affine in 6, assessing whether (1.1) is AQS is not tractable in general, neither analytically nor

5



numerically. In particular, it is no longer sufficient to check (2.11) and (3.1) at the corners
of the parameter box as for the quadratic stability test (see [3] for details).

To recover convexity, we must introduce an additional constraint on P(6). This con-
straint restricts the choice of affine Lyapunov matrix P(#), hence increases conservatism.
Nevertheless, the resulting criterion will always improve on the standard quadratic stability
test which corresponds to setting P, = ... = Px = 0. The next theorem proposes one
possible way of enforcing convexity. This approach relies on the concept of multi-convezity,
that is, convexity with respect to each 6; when all other §; are fixed. Note that this property
is less demanding than global convexity in 6.

Theorem 3.1 Let 0 = (64,...,0k) be a vector of fized but uncertain real parameters ranging
in the hyperrectangle defined by (2.3), and let V denote the set of vertices of this hyperrect-
angle as defined in (1.2). Consider a linear time-invariant system governed by

&= A0)x (3.2)

where A(0) depends affinely on 0 according to (2.4).
A sufficient condition for AQS of this system is the existence of K41 symmetric matrices
Py, ..., Px such that

A(W)T'P(w) 4+ P(w)A(w) < 0 forallw eV, (3.3)
Plw) > I foradlweV, (3.4
ATP.+ PA; > 0 fori=I,.. K (3.5)
where
P(Q) = P0—|—91P1—|—...—|—9](P](. (36)

When the LMI system (3.3)-(3.5) is feasible, V (z,0) := xT P(0)x is a Lyapunov function
for (3.2) for all values of 0; in [6;,0;].

Proof: First note that the positivity constraint (2.11) is affine in 6;. Consequently, (2.11)
holds for all # in the parameter box if and only if it holds at all corners [6], which is exactly
the condition (3.4). Hence the only difficulty is to enforce of (3.1) over the entire parameter
box.

Using the affine expressions (2.4) and (3.6), this condition reads

L(0) = AT Py + PoAo + D 0; (ALP + PiAg + AT Py + Ry A;)

+ 30060, (AT P+ PA; + ATP, + PA))
i<
+ > 67 (ATP+ PA) <. (3.7)

Take any nonzero vector z. Clearly f(0) := zTL(#)z is a quadratic scalar function of the
form

f(01, ceey 0]() = + Z azﬂi + Z /32]929] + 2%922 (38)

1< 7



In general, the negativity of f(.) at all corners in V does not guarantee its negativity over
the entire parameter box. This is the case, however, when f(.) is multi-convex in the 6,’s.
That is, when
0*f
a0;*
for all §. Before justifying this claim, note that (3.9) is equivalent to

6)>0, i=1,... . K (3.9)

vi = 2l (AT P + PiA;)z > 0, i=1,...,K.

Hence the multi-convexity requirement is equivalent to the additional constraint (3.5) in the
theorem statement.

Back to our claim, assume that v; > 0 for all 7 and let * = (65,...,60}) be the global
maximizer of f(.) over the parameter box. If #* is not a corner of the parameter box, we

have 0; < 07 < 0; for some :. Then consider the quadratic polynomial
g(0;) = f(05, ..., 07_1,0:,0%,....0%) = a+ bb; + ;07

obtained by setting 6; = 6% for j # i. This function of §; is convex from our multi-convexity
constraint ; > 0, hence its maximum on [f;, 6] is attained at the extremities. Consequently,

g(07) < max(g(8;),9(6:))

But we also have

max(g(6;), 9(0:)) < g(0;)

since #* is the global maximizer of f, and therefore

9(07) = max(g(9:),9(0:)).

It follows that the maximum of g(.) is also attained in the set {6;,6;} of extreme values of 6;.
Repeating the argument for all :, we conclude that f attains its maximum at some corner
of the parameter box.

To complete the proof, observe that (3.3) ensures the negativity of f at all corners of the
parameter box. Consequently, for nonzero z we have 7 L(#)z < 0 over the entire parameter
box, from which we conclude that L(8) < 0 for all admissible 6.

[

Summing up, the additional constraint (3.5) reduces the problem of finding affine parameter-
dependent Lyapunov matrices to an LMI problem. Though somewhat restrictive, this still
provides a significant number of additional degrees of freedom when compared to quadratic
stability (case P, = ... = Px = 0). In light of the examples in Section 8, the resulting test
seems all but overly conservative.

Finally, note that in the case of constant parameters, the sufficient conditions of Theorem
3.1 can be combined with a branch-and-bound scheme to reduce conservatism. Specifically,
if this test cannot establish AQS over the entire parameter box, the initial hyperrectangle
can be divided into smaller hyperrectangles and the test reapplied to each of these hyper-
rectangles. For a complete discussion of branch-and-bound techniques, see [9, 10].
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4 Time-Varying Uncertain Parameters

We now turn to the case of time-varying parameters ;(¢) with a bounded rate of variation.
As shown below, this more general case can be handled by a minor modification of Theorem
3.1 and the resulting LMI conditions remain less conservative than the quadratic stability
test. Throughout the section we assume the following on the parameter variations:

1. the time derivative 6; is well-defined at all time,

2. the rate of variation 02 of 0; satisfies
0; € (v, vi] (4.1)
where v;, v; are known lower and upper bounds on this rate of variation.

Note that 2. allows for a more accurate modeling of the rate of variation than a mere bound
on |6;|. In particular, sign information is readily included.

To handle the time-varying case, we consider 91, ceey Ok as additional time-varying uncer-
tain parameters. As a whole, the vector 0 evolves in a K-dimensional hyperrectangle whose
vertices are in the set:

T ={r=(r,....,7x) : 1 € {v;, i} } (4.2)
With our assumptions and for P(8) of the form (3.6), we obtain
%:(91P1—|—...—|—0](P](:P(Q)—Po. (43)

The results of Theorem 3.1 can then be generalized to the time-varying case as follows.
Theorem 4.1 Consider a linear parameter-dependent system governed by (2.10) where
o A(0) depends affinely on the time-varying parameter vector 6(t) = (61(t),...,0k(t))
according to (2.4)
o 0(t) satisfies (2.3) and (4.1) ,

and denote by V and T the sets of corners of the parameter box (1.2) and of the rate-of-
variation box (4.2), respectively.
With these assumptions, a sufficient condition for the Affine Quadratic Stability of this

system is the existence of K + 1 symmetric matrices Py, ..., Px satisfying
A(w)TP(w) + P(w)A(w)+ P(r) < Py forallweV andT €T, (4.4)
Plw) > I  foralweV, (4.5)
AP+ PA; > 0 fori=1,... K (4.6)
where
PO) =P+ 6P+ ...+ 0kPk. (4.7)

When the LMI system (4.4)—(4.6) is feasible, a Lyapunov function for (2.10) and all
trajectories 0(t) satisfying (2.3) and (4.1) is then given by

V(z,0) =T P(0).



Proof: The only difference with Theorem 3.1 is the additional term dP(0)/dt in (2.12).
Temporarily fix 7 so that P(7) — Py can be regarded as a constant term. By an immediate
extension of Theorem 3.1, the fact that (4.4)—(4.6) hold for all w € V ensures

P®) > 0 (4.8)
AT P(O) + P()AO)+ P(r)— P, < 0 (4.9)

for any value of 6 in the parameter box. Since this holds for any vertex 7 € 7 and since
P(0) is affine in the 6;, we deduce by a standard convexity argument that the inequality

A(0)TP(6) + P()A(0) + P(6) — Py < 0 (4.10)

holds over the entire rate-of-variation box (4.1) since it holds at all its corners 7 € 7.
Comparing with (4.3), it follows that

dv
dt

dP(0)
dt

(z(t),0(t)) = A(6)"P(6) + P(0)A(0) + <0
for any parameter trajectory 6(t) satisfying (2.3) and (4.1), which establishes AQS.
[
Comparing with Theorem 3.1, the sufficient conditions for the time-varying case re-
tain the same LMI structure, the only difference being an increased computational burden.
Specifically, the constant parameter case requires solving a system of 28+ + K inequalities,
while the fully time-varying case involves

22]&" + 2[&" + K = 4]&" + 2[&" + K

inequalities.

Theorem 4.1 provides a valuable bridge between the two extreme cases addressed by
Theorem 3.1 and the quadratic stability test. Specifically, the conditions of Theorem 4.1
reduce to those of Theorem 3.1 in the case of constant uncertain parameters, and to the
quadratic stability test in the case of arbitrarily fast parameter variations. Consider the first
case for instance. Constant parameters correspond to 91 =...= 91( =0, thatis, v; =1, =0
in (4.1). The set 7 then reduces to the single element (0,...,0). Hence P(7) = F, for all
7 € T and we recover the AQS conditions of Theorem 3.1.

Similarly, arbitrarily fast variations of §; correspond to setting v, = —oc0 and v; = 400 in
(4.1). Consider the case of a single parameter 6, for simplicity. ;From (2.12), the inequality

A(00)FP(6,) + P(6,)A(6,) + 0, P, <0

must hold for all values of 8; in [—o0, +00], which clearly requires P, = 0. More generally, we
must have P, = ... = Pg = 0 in the vector case. In other words, the only affine Lyapunov
functions P(f) that can withstand arbitrarily fast parameter variations are the constant
functions

V(z) =z Pyz,



which brings us back to the quadratic stability test.

In light of these comments, our conditions readily apply to mixed-cases where some
parameters are constant and other time-varying. To specify that 6; is constant, simply set
v; = v; = 0 in condition (4.4). Similarly, set P; = 0 if §; can vary arbitrarily fast (i.e., when
|(92| can take very large values, or when 6, can vary discontinuously).

Finally, note that in the face of real varying parameters with bounded rate of variation,
the sufficient conditions of Theorem 4.1 are always less conservative than the quadratic
stability test or the real p upper bound. This is obvious for quadratic stability which is a
special case of Theorem 4.1. As for the real p upper bound, it happens to be even more
conservative than quadratic stability in the context of real varying parameters. Indeed,
constant D, G scales must be used for varying parameters regardless of their rate of variation,
and quadratic stability is less conservative than the Small Gain condition with constant
scalings (see [39] for details).

5 Refinement of the AQS Tests

The affine quadratic stability tests introduced in Sections 3 and 4 can be rendered less
conservative by somewhat relaxing the multi-convexity requirement. The idea is as follows.
Rather than imposing the multi-convexity of the quadratic form z(dV/dt(#))z, we only
require that it be bounded from above by a multi-convex function. For simplicity, details are

given only in the case of constant parameters. Consider K symmetric matrices My, ..., Mg
such that
AP+ PA+M; >0, M; >0 (5.1)
and define .
Lan(0) :=L(0)+ > 07 M; . (5.2)
=1

where L(6) is given by (3.1). Clearly
L(0) < Lubn(0) (5.3)

for all 8 since M; > 0. Moreover, xTLub(Q):c is a multi-convex function of # by the same
argument as in Theorem 3.1. Indeed, L,,(#) has an expansion of the form (3.7) where
A;TFPZ- + P A; + M; replaces AZTPZ- + P;A;, and the multi-convexity property follows from
A;TFPZ- + P;A; + M; > 0 for the same reasons.

From (5.3), it is sufficient to enforce L,,(6) < 0 and P(8) > 0 to prove AQS, and this
is readily expressed as a finite number of LMI constraints thanks to the multi-convexity of
Lup(0). This approach leads to the following refinement of Theorem 3.1.

Theorem 5.1 Consider a linear parameter-dependent system governed by (2.10) and sat-

isfying the assumptions of Theorem 4.1, and let V and T denote the sets of corners of the
parameter box (1.2) and of the rate-of-variation box (4.2), respectively.

10



A sufficient condition for the affine quadratic stability of this system s the existence of

K + 1 symmetric matrices Py, ..., Pk and K symmetric matrices My, ..., Mg such that
Lyp(w)+ P(r) < Py forallweV and €T (5.4)
Plw) > for allw eV, (5.5)
M; > fori=1,... K (5.7)

where

Lup(0) = A(0)TP(0) + P(0)A(0) + i 02 M;

and P(.) is defined in (4.7).
When the LMI system (5.4)-(5.7) is feasible,

V(z,0) =z P(0)x

is a Lyapunov function for (2.10) and all trajectories 0(t) satisfying (2.3) and (4.1).

Proof: The proof is readily adapted from those of Theorem 3.1 and 4.1, and is omitted
for brevity. Note that P(w), P(7), and Lyp(w) are all affine expressions in the unknowns
{P}E and {M;}X . Hence (5.4)-(5.7) is indeed an LMI system.
[
The conditions of Theorem 4.1 correspond to the special case when M; = 0 for ¢ =
1,..., K. This corresponds to taking L, = L, or equivalently to requiring the multiconvexity
of L itself. Because of the additional degrees of freedom attached to the M; variables,
these refined conditions should be less conservative than those of Theorem 4.1. However,
this improvement is at the expense of the computational overhead since the number of
optimization variables is roughly doubled in the new LMI system (5.4)—(5.7). For this
reason, the AQS test of Theorem 4.1 may be worth trying first when running times are of
primary concern.

6 Affine Quadratic H, Performance

Since Affine Quadratic Stability is a Lyapunov-based concept, there are numerous immediate
extensions to various Lyapunov-based performance measures. These include H, performance
[30], positivity [2], H., performance [32, 35, 18], and their extensions using the concept of
multipliers [38, 23, 16]. For a fairly complete overview, see [8]. For the sake of illustration,
we now discuss in detail the extension to robust H, performance assessment for linear
systems subject to affine parametric uncertainty. Specifically, consider a system described
in state-space by
{ i = A(0(t) z+ B(O(t)) w (6.1)
z = COR)xz+ D) w '



where (1) z, w, z denote the state vector, the exogenous input, and the performance output,
respectively, and (2) the dependence on 6§ is again assumed affine, that is,

(3533 5533)2(22 gf))wl(éi gi)+...+aky(é‘§ fﬁj) _ (62)

Throughout this section, the assumptions of Section 4 on the parameter vector € and its
time derivative 8 remain in force.

Paralleling Definition 2.1, a notion of Affine Quadratic H., Performance (AQP) can
be ironed as follows. The system (6.1) has AQP ~ if there exists a quadratic Lyapunov
V(z,0) := 2T P(0)z, affine in 0, that simultaneously enforces the two properties:

(1) the system (6.1) is internally stable,

(ii) the Ly-induced norm of the operator Ty mapping w to z satisfies

1Toll, <~ - (6.3)

Both properties must hold along all trajectories #(¢) in the prescribed box of parameter
variations as defined by the vertex set V x 7. If 6 is time-invariant, |74z, is simply the
Hso-norm of the transfer function associated with (6.1). The meaning of “enforces” is made
more precise by the following formal definition.

Definition 6.1 (Affine Quadratic H., Performance)
The system (6.1) has Affine Quadratic Ho, Performance ~y if there exist K + 1 symmetric
matrices Py, ..., Pgx such that

P((g) = P0—|—01P1 —|—...—|—9]{P]{ > 0 (64)
A(0)YP(0) + P(0)A(0) + P(Q) - P, POYBO) C0)F
B(0)T'P(9) —~1 D(O)T < 0 (6.5)
C(6) D(9) —1
holds for all admissible values of the parameter vector 6 = (0y,...,0k) and of its time

derivative 6.
In such case, the quadratic function V(z,0) := z1 P(0)z establishes both the internal
stability and the Ha, performance bound (6.3).
|

To be convinced of this last claim, first note that (6.4) ensures the positivity of V(z,0) =
z? P(0)z for all admissible parameter values. Meanwhile, the (1, 1)-block of (6.5) enforces
dV/dt(z,0) < 0 (see Section 4 and (4.9) for details). Hence the system is asymptotically
stable. Finally, it is easily verified from (6.5) that

d
d—‘t/(:zz, 0) 4+ 272 — 42w w < 0 (6.6)
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for all parameter trajectory 6(¢) and input signal w(?). Integrating (6.6) from ¢ = 0 to
t = 400 with initial condition x(0) = 0, it follows that

l2]l2" = ~llewlla” + V(x(o0)) = V(2(0)) <0,

or equivalently ||z||2> < 72||w||2® since z(oc) = 0 and V(0) = 0. Since this last inequality
holds for any w € Ly, the Ly-induced norm of the mapping 7y is less than 4. Note that (6.5)
reduces to the well-known Bounded Real Lemma inequality [1] when 6 is time-invariant and

P(O) = P,.

Asfor AQS, (6.4)—(6.5) puts an infinite number of constraints on the unknowns P, ..., Pk.
To render the problem numerically tractable, we again add a multi-convexity constraint in
order to reduce (6.4)—(6.5) to a system of finitely many LMIs. The resulting conditions are
similar to those of Theorem 5.1 and presented without proof.

Theorem 6.2 Consider a linear parameter-dependent system governed by (6.1) where

(1) A(6), B(9), C(0), D(0) depend affinely on the time-varying parameter vector 6(1) ac-
cording to (6.2), and

(2) 0(t) satisfies (2.3) and (4.1).

LetV and T denote the sets of corners of the parameter box (1.2) and of the rate-of-variation
box (4.2), respectively.

This system has Affine Quadratic Hy, Performance ~ if there exist K + 1 symmetric
matrices Py, ..., Px and K symmetric matrices Ny, ..., Nk such that

b (PO 0 )| G

- I D(w)T < 0 V(w,7) eV T (6.7)
C(w) D(w) | I
Pw) > 0 Yw eV, (6.8)

(AZTPZ' + P;A; P.B;

BIP, 0 )—I—NZ- > 0 fori=1,...,K (6.9)

N, >0 fore=1,...,K (6.10)

with the notation

P(G) = P0—|-91P1+...+0]{P]{
Leo(0) = ( A(O)Tﬂgﬁﬁ pl(jg()g JA() P(G)OB(O) ) +§ 2 N;.

As emphasized earlier, this test provides means of quantifying not only the uncertainty on
the parameter values, but also the rate of variation of these parameters. It should therefore
allow for finer analysis of the impact of parameter variations on the stability /performance
of the system.
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The conditions of Theorem 6.2 warrant a few comments from a practical standpoint.
First, if B is independent of 8, P; B; = 0 and there is no loss of generality in taking N; of the

form
M;, 0
(%)

The multi-convexity condition (6.9) then reduces to the same condition as for AQS:
AP+ PA; + M; > 0.

Note that the case of a constant ' matrix is handled similarly by duality.
Secondly, we could set N; = 0 to obtain the counterpart of Theorem 4.1. However, (6.9)
then reads

ATP; 4+ PA; PiB;
t >
(e ) 2

which requires P;B; = 0 and imposes an algebraic constraint on F;. As a result, the LMI
feasibility problem (6.7)—(6.10) can no longer be solved by interior-point methods. This

difficulty can be circumvented by treating (6.7)—(6.10) as a linear objective minimization
problem as indicated in the next section.

7 Numerical Implementation

Testing the sufficient AQS or AQP conditions of Theorems 4.1 through 6.2 amounts to solving
a standard LMI feasibility problem. See [8] for an extensive discussion of LMI problems and
their applications to control theory. LMI feasibility problems are convex and can be attacked
by a variety of numerical optimization algorithms [28, 7, 37, 27]. This section focuses on
details of implementation to optimize the performance of the LMI solvers given the particular
structure of these LMIs.

The implementation of the conditions of Theorems 5.1 or 6.2 poses no particular difficulty.
In contrast, the simpler conditions (4.4)—(4.6) need some attention. The main difficulty with
(4.4)—(4.6) is the fact that the multi-convexity constraints

ATP 4+ PA; >0 (7.11)

cannot be strengthened to strict inequalities. Indeed, the A; matrices are typically of low
rank since the parameter 6; only appears in a few entries of A(#) in general. As a result,
the feasibility set, that is, the set of matrices Fy,..., Px satisfying (4.4)—(4.6), has empty
interior. This rules out the direct use of currently available polynomial-time solvers for LMI
feasibility problems. Indeed, as interior-point methods such solvers can only handle strictly
feasible problems [28, 27, 8].

There are various ways of alleviating this difficulty. One way is to observe that (7.11)
is equivalent to some strict inequality together with some algebraic constraints on the F;.
These constraints indicate that some optimization variables should be eliminated to recover
strict feasibility, and a systematic procedure for carrying out this elimination is discussed in
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[8]. This approach has the disadvantage of destroying the specific structure of (7.11). When
using LMI solvers that exploit this structure to speed up computations, this will result in a
degradation of performance. This is the case, in particular, for the LMI solvers available in
the package LMI-Lab [17, 27].

A second possibility is to replace the feasibility problem by a linear program under LMI
constraints. Specifically, to find solutions z € R? of a non strictly feasible LMI

L(z) <0, (7.12)

we can solve instead
Minimize ¢ subject to L(z) < tl. (7.13)

This is also a standard LMI problem and L(z) < tI is always strictly feasible. Moreover,
the initial non strictly feasible problem has a solution if and only if the global minimum of
(7.13) is t* = 0. This second approach has the merit of preserving the LMI structure, hence
the high performance of structure-oriented LMI solvers. In practice however, much effort
will be spent approximating the global minimum ¢t* = 0 to a high accuracy when (7.12) is
not strictly feasible.

To circumvent this last difficulty, we suggest replacing the feasibility problem (4.4)-

(4.6) by the following feasibility problem of matrix variables Fy, ..., Pk and scalar variables
)\17 ceey )\]{:

AW P(w) + P(w)A(w) + P(1) + (Z /\iw?) 1

< P Mw,m)eVxT) (7.14)

Pw) > I (VweV) (7.15)

AT+ PA+NT > 0 (i=1,...,K) (7.16)
XN >0 (i=1,...,K). (7.17)

To understand why this removes the difficulty with non strict feasibility of (7.11), assume
that P,..., Pk solve (4.4)—(4.6). From the strict nature of (4.4) and the fact that each 6;
is bounded, the condition (7.14) must then hold for small enough A; > 0. It readily follows
that (7.14)—(7.17) is strictly feasible. Conversely, (7.14)—(7.17) is clearly sufficient for AQS
since this is a special case of Theorem 5.1 corresponding to M; = A;1.

From a numerical viewpoint, this “trick” will be most effective when (4.4) can be made
reasonably negative, the excess of negativity being used to desaturate (4.6). This is the best
we can expect from the efficiency standpoint. Indeed, the global minimum ¢* of (7.13) is
nearly 0 when (4.4) can only be made marginally negative, and proving feasibility then always
takes more work for the LMI solvers. Note that it is still desirable to use the reformulation
(7.13) of feasibility problems to enhance numerical stability.

8 Numerical Examples

This section illustrates the potential of AQS techniques by a few simple examples. The
emphasis is on assessing the sharpness of this new test in comparison to well-established
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robustness measures such as the p structured singular value or the quadratic stability test.
Judging from the experimental results reported below, the AQS test seems to compare very
favorably with other approaches and to exhibit little conservatism. In addition, it brings
interesting quantitative insight into the way parameter variations can affect stability.

All LMI-related computations were performed with the software package LMI-Lab devel-
oped by A. Nemirovskii and the first author [17]. LMI-Lab is part of MaTraB’s forthcoming
LMI Control Toolbox [19].

8.1 An illustrative example

Before moving to more sophisticated experiments, we begin with a simple example that
illustrates the problem setup and its LMI solution. Consider a mass/spring/damper system
with unit mass and state-space representation

&= A(f, k)z (8.1)

where

A(f,F) ;=<_Ok _1f)

The stiffness and viscosity coefficients & and f are assumed to be time-invariant. Clearly
A(.,.) is jointly affine in f, k and can be decomposed as

A(fak):AO‘l’fAl‘l’kA?v

0 1 0 0 0 0
AO._<O 0), Al._<0 _1>, AQ._(_l 0)

This system is stable for all positive values of f, k. To assess the conservatism of our AQS
conditions, we let f, k range in

with

feo*, 107, ke[107*, 107
and seek an affine Lyapunov matrix
P(f,k) :P0—|—fP1—|—]€P2

that would prove stability over this entire range of parametric uncertainty.
Consider the four corners

v = (1074,107%), vy = (107%,10%), v = (10%,107%), w4 = (10%,10%)

of the parameter box [107*,10%] x [107*,10*]. Using the weaker results of Theorem 3.1, an
adequate Lyapunov matrix P(f, k) exists whenever the LMI system

A()TP(v;) + P(v))A(v) < 0, i=1,..., 8
Plv;) > I, i=1,...,4
AP+ PA; > 0, j=1,2 8
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is feasible. Taking into account the remarks of Section 7, a solution to this LMI problem
was computed as:

P (67.077 56.680 ) P < 56.605 —8.829 x 10—6)

0 56.680 6.707 x 105 )’ ! —8.829 x 1076 —0.530
P < 6.707 x 105 —2.300 x 103 )
27\ =2.300 x 10> —9.220 x 1012

To gain insight into the way the parameter dependence shapes the Lyapunov matrix
P(f, k), we plotted the smallest and largest eigenvalues of this matrix as functions of the
parameter values f and k. The resulting shapes appear in Figures 8.1 and 8.2, respectively.
The largest eigenvalue of

L(f. k) = A(f, k)" P(f, k) + P(f, k)A(f, k)

is also plotted in Figure 8.3.

These graphs confirm that P(f, k) satisfies the sufficient AQS conditions (8.2)—(8.4).
As would be expected, the AQS constraints tend to saturate where the system becomes
marginally stable, that is, for small values of f or k. This is clear from Figures 8.1 and 8.3.
In contrast, they are amply satisfied in the more stable regions of the parameter space.

Smallest eigenvalue of P(fk)
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Figure 8.1: Smallest eigenvalue of P(f, k)
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8.2 Comparative study for a mass-spring system

We now investigate the performance of the AQS test of Theorem 3.1 as an alternative tool
for parameter margin evaluation in uncertain time-invariant systems. By parameter margins
we mean the amount of parametric uncertainty that can be tolerated without compromising
stability. It must be stressed that no general conclusions should be drawn from the results
presented below. Our sole purpose is to demonstrate the validity of this approach and to
motivate further study of this new tool for robustness analysis.

Three different techniques are compared in this experiment:

o the quadratic stability test which seeks a single Lyapunov quadratic function ensuring
stability over the entire uncertainty range,

o real-p analysis based on the upper bound on the structured singular value pg for real
parametric uncertainty. The evaluation of this bound involves the computation of
optimal frequency-dependent multipliers [15, 34]

o the affine quadratic stability test developed in Section 2. As pointed out earlier, this
technique is similar in spirit to the quadratic approach except that it exploits the
time-invariant nature of the uncertainty.

All three techniques give only sufficient conditions for robust stability and may be more
or less conservative. Quadratic stability is typically more conservative since it also allows
for time-varying parameters. Interestingly, these tests all reduce to LMI problems. In the
experiments described below, the upper bound for the real p was computed using u-Tools
[11], while the AQS test was performed with LMI-Lab.

In this example, the system under consideration is the two masses/two springs system
depicted in Figure 8.4. A fourth-order state-space model of this system is easily derived as

0 1 0 0

) _ kitky  f ko 0

T = 0 1 0 1 01 1 z (8.5)
ko 0 ke _f

where f is the motion friction coefficient, &y, ko are the spring stiffnesses, and my, m, denote
the masses of the rigid bodies. In the sequel, we assume that m; and my, are known exactly
with values

my = 1, mo = 20

while the parameters ki, ky, and f are uncertain with nominal values kg, k20, and fo,
respectively. With the multiplicative uncertainty representation

ki = kio(1 + 64), ky = kao(1 + 6,), f=fo(l+40s), (8.6)
an affine expression for the uncertain matrix A reads:

A((g) - Ao —|— 91A1 —|— 92A2 —|— 93A3 (87)
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where

0 1 0 0 0 0 0 0
_ kiotkao Jo koo 0 - 90 0 0
Ag = 6’” 6’” ”61 1 ; Ay = ko 6’“ 00 ol’ (8.8)
k2o 0 koo fo 0 0 0 0
mo m2 m2
0 0 0 0 0 0 0 0
A e k - 0 = 0 Asi= 0 —7= 0 0 (8.9)
20 9 0 0 o) 370 0 00 0 ‘
N | I iy o 0o o —-L
mo m2 m2

This expression is most appropriate for the quadratic and affine quadratic stability tests.
For p-analysis purposes however, it is more convenient to rewrite (8.7) as

A(60) = Ao + BOC (8.10)

where © = Diag(6y, 65,05 x I3) and

0 0 0 0 ko 0 0 0
1 1 1

g |- T T 0 O kag 0 —kyo O
0 0 0 0o |’ 0 fo 0 0
0 o 0 - 0 0 0 fo

The uncertain system can then be viewed as the interconnection of the uncertainty structure
© with the LTT system
G(s) = C(sI — Ag)™'B. (8.11)

Note that since the matrix As in (4.4) has rank two, the uncertain parameter 5 associated
with f is repeated in ©. As a result, Kharitonov-like techniques may lead to conservative
estimates in this problem.

Figure 8.4: Mass-Spring System

8.2.1 Parameter margin estimation

The parameter margin Ky, is defined as the smallest relative deviation from nominal param-
eter values that is needed to destabilize the system [34]. With our uncertainty representation
(8.6), this is simply

Ky =min{||0||oc : A(#) is unstable }

where

16]lcc := max([64], [62], |0]).
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Note that the reciprocal of this number is exactly the real p for (8.10)—(8.11) and the
uncertainty structure © = Diag(6,,6,, 05 x I3). Specifically,

1
K

= ur(G,0) = sup g o(G(jw))

where ((s) is given by (8.11).
It is well known that the mass-spring system of Figure 8.4 is stable whenever the param-
eters ki, ky, and f are positive. Conversely, f > 0 is necessary for stability. Hence

1
/LR(G, @) = E = 1
in this example, and the conservatism of our three robust stability tests can be measured up
against this exact value. Specifically, the following three lower bounds on K}, are computed
and compared to the true value K, = 1:

e s defined as the smallest 6 > 0 such that (8.5) is quadratically stable on the pa-
rameter box

H(6) ={ (01,0,,05) : 0; € [—0,0]} (8.12)
o K, =1/pu where piy, is the computable upper bound on ug(G, ©) introduced in [15],

o K qs defined as the smallest 6 > 0 for which the sufficient AQS conditions of Theorem
3.1 are feasible on the parameter box H(6) defined above.

Here the parameter box H(6) has 2° = 8 corners, and the AQS test requires computing four
4 x 4 symmetric matrices Fy, ..., Py.

For meaningful comparison, we computed these three quantities for a wide variety of
nominal models. Specifically, we set kjg = k9o = 20 and considered values of fy ranging in
[107%,1] with a sampling step of 0.02. Since Kqs and Kaqs cannot be directly computed
from the associated LMI conditions, Kqg was determined by dichotomy, and AQS was tested
directly for the parameter box H(0.999).

The results of this experiment appear in Figure 8.5 where the estimated parameter mar-
gins Kqg, K,, and Kxqs are compared to the true value K, = 1 for various values of fy. By
stability region, we simply mean the largest box H(6) where stability could be established by
the tests under scrutiny. Remarkably, the uncertain system was proved AQS in H(0.999) for
all values of fy. In other words, the AQS test estimated the correct parameter margin with
0.1% accuracy. In contrast, the quadratic stability test performed very poorly, and even the
real-y upper bound proved relatively inaccurate. For both Kqgg and K, the largest errors
occurred for small values of fy, that is, when the system is poorly damped. Quantitatively,
the AQS estimate outperformed K, by a factor 10 in the badly damped region and by a
factor 1.25 near fo = 1.
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Figure 8.5: Sharpness of the parameter margin estimates Kqg, K, and Kxqs.

8.2.2 Maximal stability box

Instead of computing the parameter margin K, which measures the distance to instability
in relative variation terms, we now seek estimates the largest box in the positive parameter
orthant where stability is preserved. The comparison is restricted to the AQS test vs. the
real-p upper bound. The values of m; and my, are as before, but ki, ky, and f are now
allowed to vary in (0,4o0c). For g-analysis purposes, this range should first be mapped to a
finite interval centered at 0. To this end, express the parameter dependence as

A(0) == A+ BOC

is the block-diagonal uncertainty structure and

where © = Diag(ky, k2, f X I

~—

01 0 0 1.0 0 0
0 0 0 O 1 0 -1 0
A= 000 1} B:=5, €= 01 0 0
0 0 0 O 00 0 1

Applying the bilinear transformation

0 :=0-N0O+I)



to the uncertainty structure, the uncertain system can also be viewed as the interconnection
of © with the transfer function

G(s)=T+2C(s] — (A+BC))'B.

Moreover, the diagonal entries of © now range in [—1,1] when ki, ky, f range in (0, +00). As
in the previous subsection, it is readily seen that

#R(é7 (:)) =1

where /LR(CN?, (:)) denotes the real y for the system ' and the uncertainty structure ©.
The AQS test of Theorem 3.1 was performed on the parameter box

(ki,kq, f) € JJ (1072, 10%],

and succeeded to prove AQS over this wide range of values of ky, ko, f. In contrast, the real-p
upper bound for the transformed problem G, © evaluated to 2.3015, which only guarantees
stability over the parameter box

3
(K1, ko, £) € J][0.3942, 2.5366].
1
Again the AQS test compares very favorably in this stability box maximization problem.

8.3 Random tests

This subsection pursues the comparison between the AQS test and the real p upper bound,
this time on a larger sample of problems. We consider eighth-order dynamical systems of
the form

Myi + Foi + Koz = 0 (8.13)

where My, Fy, Kg are randomly generated positive definite matrices in R**%, We subject this
nominal model to rank-four perturbations by replacing Fo, Ko in (8.13) by

For #; > —1 and #; > —1, the matrices K and F' remain positive definite and the system is
dissipative [24], hence stable. Observing that F > 0 is required for stability, it follows that
the parameter margin for the perturbation (8.14) is

Kyn=1

as in Subsection 8.2.1.

This parameter margin was estimated using the real-u upper bound and the AQS test for
100 randomly generated nominal models My, Fy, Kg. As earlier, the sharpness of each test
was measured by the relative gap to the true value 1. The results of these 100 experiments
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are displayed in Figure 8.6. Again the AQS test performed very well since the LMI conditions
of Theorem 3.1 were always feasible in the box

6, € [—0.999,0.999], 0, € [—0.999,0.999].

Hence the parameter margin was correctly estimates within 0.1% in all 100 experiments. In
comparison, the g upper bound was found conservative in most cases, with more than 50%
error in some problems and an average error around 35%. Interestingly, the u upper bound
was least accurate for problems with repeated-scalar uncertainty.

real mu upper bound (solid) and AQS test (--)
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Figure 8.6: Comparative sharpness of the AQS test and of the real p upper bound

8.4 Time-varying example

The next example illustrates the performance of the AQS test in mixed problems combining
constant and time-varying parameters. In particular, it is shown that taking into account
available bounds on the rate of parameter variation as suggested by Theorem 4.1 can dra-
matically reduce the conservatism of the quadratic stability test.

The system under consideration is again the elementary mass-spring system of 8.1, but
the stiffness and friction coefficients k£ and f are now allowed to vary in time. The parameter
range is given in multiplicative form as

= fo(l+0), k= ko(1+ 62)
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where fy and kg are the nominal values of f and k., respectively. With this uncertainty
representation, the state matrix of the mass-spring system reads:

wm= (8, )l S)en(5 0

The bounds on the time derivatives of f and k are denoted by fmm and ky,q. Specifically,
we Impose

1ft)] < finae k(1)) < Fnae (8.16)

where f.m(m and iﬁmam range from zero (constant parameters) to infinity (arbitrarily fast
variations).

Again we are interested in evaluating the parameter margin K. That is, the largest
value of

6 = max(|91|, |92|)

for which the time-varying system

&= A(f(1), k(1))

subject to (8.16) is asymptotically stable. Note that Ky, < I since f > 0 is required for
stability. For this experiment we use the sharper LMI conditions of Theorem 5.1. The LMIs
(5.4) are evaluated at the corners of the parameter box

(01792) € [_67 6] X [_67 5]
and of the rate-of-variation box

(7-177-2) S [_fmaz; fmaz] X [_kmaz; iﬁmaw]-
The following three experiments were performed:

(1) for time-invariant k (kmaz = 0) and time-varying f, compute the parameter margin
estimate Kyqg for several values of f,,,, ranging between 1072 to 10*. This experiment
assesses the impact of time variations of f on the overall stability. The results are shown
in Figure 8.7.

(2) for time-invariant f (fmam = 0) and time-varying k, compute Kqs for values of fervan
ranging between 1072 to 10*. The results are depicted by Figure 8.8.

(3) compute Kaqs for f,k both time-varying and for values of their maximum rate of
variation ranging between 107® to 10*. The purpose is to assess whether combined
time variations of f and k can further shrink the estimated stability region. The
outcome of this test is presented in the 3D plot of Figure 8.9.

In each experiment, the estimate Kjqs was computed by dichotomy.
Figure 8.7 shows that time variations of f alone have no effect on the stability region.
This is consistent with the fact that the system remains dissipative regardless of the rate of
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variation of f. Indeed, the parameter-dependent Lyapunov function V(z, &, k) := 2% + ka?
proves stability whenever k is time-invariant and f > 0 since then

d—V:ZZ:'E(fé—I—k;v):—IZf:thO.
dt
In contrast, Figure 8.8 shows that the estimated stability region is strongly affected by the
rate of variation of k. While the parameter margin stays close to its best possible value
1 for slow variations of &, it gradually drops as femas increases and finally settles around
the quadratic stability value 0.5 near fepmae = 30. According to these results, the quadratic
stability test is optimal only for rates of variation larger than 30 N/m/s. For moderate
rates of variation however, the AQS test is significantly less conservative while offering the
same stability guaranties against parameter variations. Finally, Figure 8.5 indicates that
simultaneous variations of f and k do not restrict the estimated stability region any further.
Hence the stability region seems to be essentially determined by femas-

Summing up, the AQS approach is a promising alternative for robust stability analysis
in the face of time-varying parameters with known maximum rates of variation.

Parameter margin for fixed k
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Figure 8.7: AQS parameter margin for time-varying f.
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Figure 8.8: AQS parameter margin for time-varying k.
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Figure 8.9: AQS parameter margin for time-varying f and k.
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8.5 Minimum stability degree
This last example is an application of AQS concepts to the computation of the minimum
stability degree (MSD) of a system. For a linear parameter-dependent system
&= A(f)x
with 6 ranging in a parameter box H, the MSD is defined as

sup{a: A(0)+ al is stable for all 8 in 'H } .

In general, computing the MSD of an uncertain system is a NP-hard problem. That is, the
required computational effort grows exponentially with the problem size. In special cases
however, extensions of Kharitonov’s Theorem allow to compute the MSD exactly [31]. This
is the case of the example considered in [10] which is now revisited from the AQS perspective.

Consider the system of Figure 8.10 where 64, 6,, 05 are uncertain time-invariant parame-
ters ranging in:

2 <0, <3, 3 <0, <5, —1<0;<1. (8.17)

Using a branch and bound technique, the MSD for this system was estimated as —0.2757,
which coincides with the true value provided by Kharitonov’s theory. For comparison pur-
poses, we computed a lower bound on the MSD using the AQS technique.

In AQS terms, this problem can be formulated as:

Maximize « ,

subject to the LMI constraints:

(A(v;) + a])TX(vZ-) + X(v;) (A(v;) +al) < 0, 1=1,...,8 (8.18)
X(v) > I, i=1,....8 (8.19)
ATX;+ X4, > 0 j=1,...,3 (8.20)

where the v; denote the corners of the parameter box (8.17) and the matrices A(v;) and A,
are readily derived from the problem description.

Proceeding by dichotomy, these LMI conditions were found feasible for o = —0.2757 and
unfeasible for a = —0.2756. In other words, the AQS approach provides a non-conservative
estimate of the MSD in this problem.
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Figure 8.10: System used in the MSD example.

9 Conclusions

We have proposed new LMI-based tests for the robust stability /performance of linear systems
with uncertain or time-varying real parameters. These tests rely on the concept of Affine
Quadratic Stability (AQS) and involve parameter-dependent Lyapunov functions with an
affine dependence on the parametric uncertainty.

Their relative sharpness has been demonstrated on a variety of physically motivated
examples. In particular, the AQS test significantly improved on the standard quadratic
stability test and often outperformed the real p upper bound. Interestingly, quantitative
information about the rate of parameter variation is readily included in the AQS test to
reduce conservatism in the time-varying case.

These preliminary results are encouraging and motivate further investigation of the po-
tential and applications of AQS concepts.
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