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Abstract. The Kreiss constant K(A) of a stable matrix A conveys information about the transient behavior of system3
trajectories in response to initial conditions. We present an efficient way to compute the Kreiss constant K(A), and we show4
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1. Introduction. Given a stable autonomous system10

(1.1) ẋ = Ax, x(0) := x0, A ∈ Rn×n ,11

the time-dependent worst-case transient growth of the trajectories in response to initial conditions x0 is

max
‖x0‖=1

‖eAtx0‖ = ‖eAt‖ ,

where ‖ · ‖ denotes both the vector 2-norm and the induced spectral matrix norm or maximum singular value12
norm. The maximum transient growth, or transient growth for short, is then the quantity13

(1.2) M0(A) = sup
t≥0
‖eAt‖,14

which gives information about the maximum amplification of system responses to all possible initial conditions15
at all times.16

The Kreiss constant K(A) of the matrix A ∈ Rn×n may be introduced by means of its resolvent as17

(1.3) K(A) := max
Re(s)>0

Re(s) ‖(sI −A)−1‖ ,18

and its importance is due to the Kreiss Matrix Theorem [43, p. 151, p. 183], which relates it to the transient19
growth M0(A) by providing lower and upper bounds:20

(1.4) K(A) ≤M0(A) = sup
t≥0
‖eAt‖ ≤ e nK(A) ,21

where e = 2.7183... is the Euler number. Alternatively, the Kreiss constant has also the representation22

(1.5) K(A) = sup
ε>0

αε(A)

ε
,23

where αε(A) is the ε-pseudo spectral abscissa [43].24
The Kreiss constant was originally introduced in the discrete setting as an analytic tool to assess stability25

of numerical schemes [22]. Since then it has manifested itself as a quantitative measure of non-normal behavior26
of matrices [43, 7], owing to the fact that K(A) ≥ 1, with equality e.g. if A is normal. More precisely, the27
global minimum K(A) = 1 is attained if and only if M0(A) = 1 attains its global minimum, which is at those28
matrices A where eAt is a contraction in the spectral norm. Outside the realm of dynamical systems, this29
quantitative aspect of K(A) has for instance been of interest in the analysis of networks [7].30

Even though our principal concern here is with matrices, it is worthwhile having a look at the case31
of C0-operator semi-groups. Here the left hand estimate K(A) ≤ M0(A) from (1.4) is still valid, as is the32
observation that K(A) = 1 impliesM0(A) = 1, with the global minimum attained at least in Hilbert space for33
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2 P. APKARIAN, AND D. NOLL

contraction semi-groups in the spectral norm. Both facts are easy consequences of the Hille-Yoshida theorem34
[15]. The conclusion is that even for semi-groups the transient dynamics are suitably assessed through the35
Kreiss constant.36

While the Kreiss constant K(A) has received ample attention in numerous books, treatises and articles37
as a theoretical quantity to analyze transient system behavior, [43], its computation has only very recently38
been addressed. In [31] the author uses a variety of local optimization techniques in tandem with global39
searches to compute K(A) with certificates. In [43], K(A) is simply estimated graphically by plotting the40
ratio αε(A)/ε against ε and searching for the maximum, and this seems to have been pioneered in [30].41

In the present paper, we show that the Kreiss constant K(A) can be computed exactly with limited42
complexity using techniques from robust control. Our new characterization opens the way to more challenging43
situations, where the Kreiss constant is not just computed, but more ambitiously, minimized in closed loop44
with the goal to constrain the transient growth of a plant (1.1) by the use of feedback. For short, one may45
wish to use feedback to bring the closed-loop Acl closer to contractive transient behavior than the original46
matrix A.47

This is expected to have consequences in feedback control of non-linear systems, where it is known that48
non-normality of the system Jacobian at steady state may lead to large transient amplifications even for well-49
damped spectra, which trigger non-linear effects responsible for instability, or lead to undesirable limit-cycle50
dynamics. This phenomenon is well known in the fluid dynamic community [25, 38, 40, 44, 36].51

The structure of the paper is as follows. In section 2, we obtain a formula for K(A) which can be used52
to compute it with reasonable effort, by relating it to the structured singular value or µ known in robust53
system analysis. In section 3 we widen the scope and address the problem of minimizing K(Acl) in closed54
loop. Since this is an NP-hard problem, a fast heuristic is presented, which is based on non-differentiable55
optimization techniques. Section 4 gives a short overview of these techniques, and shows how the result of the56
local optimization can be certified using the techniques of section 2. Numerical experiments and additional57
concurrent techniques are presented in section 5.58

Notation. For complex matrices XH stands for the conjugate transpose. The terminology follows [48].
Given partitioned matrices

M :=

[
M11 M12

M21 M22

]
and N :=

[
N11 N12

N21 N22

]
of appropriate dimensions and assuming existence of inverses, the Redheffer star product [28, 37] of M and
N is

M ?N :=

[
M ?N11 M12(I −N11M22)−1N12

N21(I −M22N11)−1M21 N ?M22

]
.

When M or N do not have an explicit 2 × 2 structure, we assume consistently that the star product
reduces to a linear fractional transform (LFT). The lower LFT of M and N is denoted M ?N and defined as

M ?N := M11 +M12N(I −M22N)−1M21,

and the upper LFT of M and N is denoted N ?M and obtained as

N ?M := M22 +M21N(I −M11N)−1M12 .

With these definitions, the ? operator is associative.59

2. Exact computation of the Kreiss constant. It is readily seen from (1.4) that the Kreiss constant60
is finite if system (1.1) is stable, that is, has strictly negative spectral abscissa α(A) < 0. When unstable61
matrices are concerned, it is convenient to consider translated bounds, cf. [43], which correspond to shifting62
the matrix A to stability, e.g. by its spectral abscissa. For the rest of the paper the symbol K(A) will63
therefore only be used when A is stable.64

Theorem 2.1. The Kreiss constant K(A) can be computed through the robust H∞-performance analysis65
program66

K(A) = max
δ∈[−1, 1]

∥∥∥∥(sI − ( 1−δ
1+δA− I

))−1∥∥∥∥
∞

= max
δ∈[−1,1]

max
ω∈[0,∞]

σ

((
jωI −

(
1−δ
1+δA− I

))−1)
.(2.1)67

68
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OPTIMIZING THE KREISS CONSTANT 3

Proof. Note that for δ = −1 the expression between the norm signs is understood to denote the zero69
matrix, which contributes only the value 0 to the maximization.70

Starting with s := x+ jy in (1.3) gives71

K(A) = sup
x>0,y

x‖((x+ jy)I −A)−1‖ = sup
x>0,y

∥∥∥((1 + j yx
)
I − 1

xA
)−1∥∥∥ .72

73

The change of variables (y/x, 1/x) = (ω, 1−δ1+δ ) is a bijective mapping from R×R+ into R× (−1, 1] and leads74
to the characterization in (2.1).75

For future use we express program (2.1) using the Redheffer star product or equivalently the upper LFT76
(see e.g. [46, 13]):77

(2.2) K(A) = max
ω∈[0,∞]

max
δ∈[−1,1]

σ
(
jωI − ((δIn ? Q)A− I)

−1
)
,78

where

Q =

[
−In

√
2In

−
√

2In In

]
,

and where δIn ? Q is understood as of repeating the rational term 1−δ
1+δ n times on the diagonal.79

As one notices the computation of (2.1) involves two global maximization steps, one over the frequency80
axis ω ∈ R, and one over the uncertainty δ ∈ [−1, 1], which can be performed in either order. This leads to81
two strategies, which will both be exploited in this text.82

The interpretation of (2.1) is that of a transfer function Twz(s, δ) with uncertainty δ ∈ [−1, 1], where the83
worst-case H∞-norm maxδ∈[−1,1] ‖Twz(·, δ)‖∞ has to be computed. In order to highlight this, we represent84
the situation in state-space using the plant:85

(2.3) P (s) :


ẋ = Ax− x+

√
2wδ + w

zδ = −
√

2Ax− wδ
z = x

86

which represents the transfer function form (wδ, w) to (zδ, z), and which is in upper feedback with the block87
wδ = δzδ, leading to Twz(·, δ) = δIn ? P and giving the Redheffer representation88

(2.4) K(A) = max
δ∈[−1,1]

‖δIn ? P‖∞89

of the Kreiss constant as a worst-case H∞-norm. See Fig. 1.90
Formula (2.2) leads to a different approach. Namely, as is common in robustness analysis, the performance

channel w → z can be replaced with a fictitious full block ∆p ∈ Cn×n, leading to a specially structured robust
stability problem. See Fig. 1. The problem has now two blocks and can be addressed using the structured
singular value (SSV) or µ-singular value [47, 13, 46]. Recall that for a complex matrix M and a structure ∆
of uncertain matrices ∆, µ∆(M) is defined as

µ∆(M) :=
1

inf {‖∆‖ : ∆ ∈∆, det(I −M∆) = 0}
,

where as usual inf ∅ = +∞, so that µ∆(M) = 0 if no ∆ ∈∆ makes I −M∆ singular.91
In our case the structured singular value is computed with respect to the structure ∆ = {diag(δIn,∆p) :92

δ ∈ R,∆p ∈ Cn×n}. We have by [48, Thm. 11.9]:93

Lemma 2.2. Let ω be fixed. The following statements 1. and 2. are equivalent:94
1. (i) δIn ? P (jω) is well-posed over [−1, 1] and95

96
(ii) max

δ∈[−1,1]
σ (δIn ? P (jω)) < γ97

98
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Fig. 1: Diagram representation of Kreiss constant

2. µ∆

(
P (jω)

[
In 0
0 In/γ

])
< 1.99

This implies the following:100

Theorem 2.3. For any fixed ω, the optimal value of the inner program of (2.2) is obtained with arbitrary101
precision ε > 0 as the value of the one-dimensional optimization program102

minimize γ

subject to µ∆

(
P (jω)

[
In 0
0 In/γ

])
≤ 1− ε(2.5)103

where the structured singular value µ∆ is computed with respect to the block structure diag(δIn,∆p) with δ104
real, and ∆p ∈ Cn×n.105

Since the constraint 2. in Lemma 2.2 has to be satisfied strictly in order to assure robust stability, µ∆ < 1106
had to be replaced by µ∆ ≤ 1− ε in program (2.5) for an arbitrarily small ε > 0.107

It is well-known that the evaluation of the structured singular value µ∆ is in general NP-hard [42, 11], so108
that the constraint in (2.5) may appear intractable. This is why µ∆ is usually replaced by its upper bound109
µ∆(M), where in general only µ∆ < µ∆. However, there are five cases, where the upper bound is exact, and110
presently we have one of these five, because ∆ consists of only one repeated real block and one single full111
complex block. See [48, p. 282], and also the elegant derivation in [29]. This means the constraint in (2.5) is112
computable exactly by a linear matrix inequality or a convex SDP. We have113

Theorem 2.4. For fixed ω, the optimal value of the inner optimization program in (2.2) may be obtained114
by the following convex semi-definite program (SDP):115

(2.6)

minimize γ
subject to X,Y ∈ Cn×n, X = XH , Y H = −Y, γ ∈ R[

P (jω)
I2n

]H 
X 0 Y 0
0 In 0 0
Y H 0 −X 0
0 0 0 −γ2In

[P (jω)
I2n

]
� −εI.

116

Proof. The cast (2.5) is a direct consequence of the Main Loop Theorem [48]. Program (2.6) computes117
the µ∆ upper-bound [13, 48], but since for the specific block structure involving one repeated parameter δ118
and a single complex full block the upper bound is exact, this now coincides with the true value of µ∆ [29].119
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OPTIMIZING THE KREISS CONSTANT 5

Since program (2.4) can be solved exactly at any given frequency, one is left with a search over the120
frequency axis. A straightforward idea would appear to be frequency gridding, but a more advisable approach121
is based on dividing the frequency axis into intervals, on each of which the Hamiltonian test can be applied122
[16, 23, 39].123

In summary, the above results show that the Kreiss constant can be computed to any prescribed accuracy124
using fairly standard robust analysis techniques.125

126

Example 2.5. As simple test set, we consider Grcar (named after Joseph Grcar) matrices of various127
dimensions and estimate the Kreiss constant using either the method of Theorem 2.1 or the one in Theorem128
2.4. The Grcar matrices considered here are band-Toeplitz matrices with the first subdiagonal and main129
diagonal set to −1 and 3 superdiagonals set to 1 and zero entries elsewhere. Such matrices are known130
to possess very sensitive eigenvalues and therefore deviate from normality. SDP-related computations in131
Theorem 2.4 are based on the LMI Control Toolbox [19, 18].132

Table 1: Kreiss constant estimates and running times (sec.) based on Theorems 2.1 and 2.4. I: impractical

size method of Theorem 2.1 method of Theorem 2.4
estimate cpu estimate cpu

10 1.1855e+00 2 1.1881e+00 2
20 2.7199e+00 4 2.7255e+00 68
30 8.7803e+00 7 8.7989e+00 720
40 3.3155e+01 12 3.3223e+01 6800
50 1.3548e+02 22 1.3577e+02 30968
100 2.4837e+05 127 I I

Estimates of the Kreiss constant for problems of increasing size are given in table 1. We observe that133
while the worst-case H∞-norm approach in Theorem 2.1 is operational for medium size problems, the µ134
certificate based on Theorem 2.4 becomes quickly impractical which is an incentive to develop dedicated135
methods. For the case n = 50, the H∞ norm vs. δ and the transient growth ‖eAt‖ are presented in Fig. 2.136
Note the shape and peak value 135.5 of the left curve in Fig. 2 are consistent with the results in [30] based137
on f(ε) := αε/ε with estimated peak value of 133.6.138
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Fig. 2: Left: H∞ norm vs. δ, Right: Transient growth

3. Feedback control of transient growth. In this section, we further explore the Kreiss constant139
and its link to transient growth by employing feedback to reduce it in closed loop. Consider a plant G(s)140
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6 P. APKARIAN, AND D. NOLL

with control inputs u ∈ Rm and outputs measurements y ∈ Rp:141

ẋ = Ax+Bu, x ∈ Rn

y = Cx+Du ,
(3.1)142

143

in loop with either a static feedback controller K ∈ Rm×p giving u = Ky, or a dynamic output-feedback144
controller K(s) giving145

ẋK = AKxK +BKy, xK ∈ RnK

u = CKxK +DKy .
(3.2)146

147

We make the assumption D = 0, which incurs no loss of generality, while considerably simplifying the
presentation. The closed-loop autonomous system is described as

ẋcl = Aclxcl, xcl(0) = x0cl ,

with state matrix Acl obtained in both cases as

Acl = A+BKC or Acl =

[
A+BDKC BCK

BKC AK

]
.

The transient growth of the closed loop may now be assessed either by M0(Acl), or by concentrating on the148
plant state trajectories x(t) generated by initial conditions x0. The latter are described by149

M0(Acl) = sup
t≥0

max
‖x0‖=1

‖JT eAcltJx0‖ = sup
t≥0
‖JT eAcltJ‖150

151

where J := In for a static output feedback controller and J := [In, 0]T for a dynamic output-feedback152
controller. Clearly M0(Acl) = M0(Acl) for static controllers. Note that M0(Acl) is generally not the same153
as M0(JTAclJ). The inequality M0(Acl) ≤ M0(Acl) follows from ‖J‖ ≤ 1, so that M0(Acl) ≤ 1 if eAclt is154
a contraction. Note, however, that we are not primarily interested in rendering eAclt contractive. Instead,155
we want to control the amplification of the x-part of the closed loop trajectories, so thatM0(Acl) = 1 may156
occur even for non-contractive Acl.157

Example 3.1. A simple illustration of this is Acl =
[
−2 0; 3 −1

]
where for JT = [1 0], M0(Acl) =158

supt≥0 ‖JT eAcltJ‖ = supt≥0 |e−2t| = 1 whereas M0(Acl) > 1 because Acl has numerical abscissa ω(Acl) > 0,159
i.e., does not generate a contraction; see Lemma 5.1.160

Remark 3.2. In some applications it may be of interest to control transient growth of the controller161
state trajectories, for instance, when saturation of the control action has to be avoided. This is arranged162
by choosing J := [0, InK

]T . In the same vein, any combination of closed-loop trajectories (x, xK) is easily163
accounted for by selecting J accordingly, where J := In+nK

corresponds to full-state transient growth.164

Similarly, to assess the transient behavior of the closed loop, we may either use the Kreiss constant
K(Acl) directly, or again its restriction to the plant states only, by introducing

K(Acl) := max
Re(s)>0

Re(s) ‖JT (sIn+nK
−Acl)−1J‖ ,

which in view of Theorem 2.1 and the definition of J above is expressed as165

(3.3) K(Acl) = max
δ∈[−1, 1]

∥∥∥∥JT (sI − ( 1−δ
1+δAcl − I

))−1
J

∥∥∥∥
∞
.166

For any fixed controller this can be computed with the tools in Theorems 2.1 and 2.4. For static controllers,167
K(Acl) = K(Acl), and clearly K(Acl) ≤ K(Acl) in general because of ‖J‖ ≤ 1.168

Note that the analogue of the Kreiss matrix theorem for K(Acl) is obtained with little effort:169

Lemma 3.3.

K(Acl) ≤M0(Acl) ≤ enK(Acl).170

This manuscript is for review purposes only.



OPTIMIZING THE KREISS CONSTANT 7

Proof. For the left hand inequality, we take171

‖JT (sI −Acl)−1J‖ =

∥∥∥∥∫ ∞
0

e−stJT eAcltJdt

∥∥∥∥172

≤ sup
t≥0
‖JT eAcltJ‖

∫ ∞
0

e−Re(s)tdt =M0(Acl)Re(s)−1.173
174

For the upper-bound, we follow the argument in [24] improved by [41]. We have for two test vectors u, v175

uTJT eAcltJv =
1

2πi

∫
Re(s)=µ

est uTJT (sI −Acl)−1Jv︸ ︷︷ ︸
=:q(s)

ds176

= − 1

2πi

∫
Re(s)=µ

est

t
q′(s)ds = − 1

2πi

eµt

t

∫ +∞

ω=−∞
eiωtq′(µ+ iω)idω.177

178

Hence if we let Re(s) = µ = 1/t and take norms179

∥∥uTJT eAcltJv
∥∥ ≤ e

2π

1

t

∫ ∞
−∞
|q′(1/t+ iω)|dω =

e

2π
Re(s)‖q′(Re(s) + i·)‖1.180

181

Now [41] improves the estimate of [24] to the extent that ‖q′‖1 ≤ 2πn‖q‖∞, hence we get182

|uTJT eAcltJv| ≤ enRe(s) sup
ω
|uTJT ((Re(s) + iω)I −Acl)−1Jv|183

≤ en sup
Re(s)>0

Re(s)|uTJT (sI −Acl)−1Jv|184
185

and since u, v are arbitrary, we get the right-hand estimateM0(Acl) ≤ e nK(Acl).186

For the purpose of feedback synthesis, we have decided against the use of design techniques based on187
the LMI characterization in (2.6). The reason is that the size of the scaling matrices X and Y grows as188
O((n+ nK)2) for an output feedback controller of order nK and most SDP solvers will succumb beyond 50189
states. The LMI approach (2.6) shall be used only for certification. More precisely, once a controller has190
been synthesized, a lower bound of K(Acl) is obtained by the local optimizer. The exact value of K(Acl) at191
the final controller is then re-computed via the methods of section 2, and thereby certified. Our experiments192
show that certification is practically always redundant, which corroborates what was already observed for193
the rich test sets in [6, 1], where uncertainty in several parameters and complex blocks was considered.194

For synthesis, we privilege the worst-case approach in (2.1) applied in closed loop. This leads to the195
min-max synthesis program196

minimize max
δ∈[−1,1]

∥∥∥∥JT (sI − ( 1−δ
1+δAcl(K)− I

))−1
J

∥∥∥∥
∞

subject to K robustly stabilizing, K ∈ K ,
(3.4)197

198

where K ∈ K denotes a prescribed controller structure. This could for instance be PIDs, observed-based199
or low-order controllers, decentralized controllers, as well as control architectures assembling simple control200
components. Note that the stabilizing constraint on K in (3.4) enforces stability of the whole set of matrices201 {

1−δ
1+δAcl − I : δ ∈ [−1, 1]

}
, and in particular, that of Acl(K) as desired.202

In some cases it may be advisable to add further specifications on the closed loop in (3.4). Those may203
concern the parametric robust loop, the nominal loop, or elements of the loop, like K, which would allow to204
distinguish further among multiple solutions of (3.4).205

206

4. Algorithm & optimization programs. Using standard state augmentations

Aa =

[
A 0
0 0nK

]
, Ba =

[
0 B

InK 0

]
, Ca =

[
0 InK

C 0

]
,Ka =

[
AK BK

CK DK

]
, xa =

[
x
xK

]
,
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8 P. APKARIAN, AND D. NOLL

and exploiting the open-loop state-space representation of P in (2.3), the closed-loop system in program (3.4)207
can be rewritten in LFT form as δIn+nK

? Pa ? Ka where Pa has the state-space representation208

Pa(s) :


ẋa = (Aa − In+nK

)xa +
√

2wδ + Jw +Bau

zδ = −
√

2Aaxa − wδ −
√

2Bau

z = JTxa

y = Caxa .

209

This means program (3.4) may be recast as210

(4.1) min
K∈K

max
δ∈[−1,1]

‖δI ? Pa ? Ka‖∞.211

Note that program (3.4), (4.1) has three sources of non-differentiability. For fixed δ the H∞-norm212
‖δ ? Pa ? Ka‖∞ already is non-smooth (a) due to the maximum singular value σ, and (b) due to the semi-213
infinite maximum over the frequency range ω ∈ [0,∞]. To this we have to add (c), the semi-infinite maximum214
over δ ∈ [−1, 1], which is the severest difficulty, because here a non-concave maximum has to be computed215
globally. To overcome this difficulty, we use the method of [33, 1, 6], which we now discuss in more detail.216

4.1. Algorithmic approach to minimizing the Kreiss constant. The basic idea in solving (4.1)217
locally is to select a small but representative set of scenarios δν ∈ [−1, 1], ν = 1, . . . , N , such that the218
multi-model H∞-synthesis program219

(4.2) min
K∈K

max
ν=1,...,N

‖δνI ? Pa ? Ka‖∞220

gives an accurate estimation of the optimal value of (3.4), respectively, of (4.1). This hinges on an intelligent221
selection of these worst-case scenarios δν , which we achieve by the scheme shown in Fig 3 and in algorithm222
4.1.223

The current controller estimateK∗ from step 2 undergoes testing whether it is truly robust, by computing224
two types of worst-case scenarios δ∗ ∈ [−1, 1]. Firstly K∗ may fail to achieve robust stability. This is revealed225
by computing the worst-case spectral abscissa226

(4.3) δ∗ = arg max
δ∈[−1,1]

α (δI ? Pa ? K
∗
a) ,227

where α(·) is the spectral abscissa. If α∗ ≥ 0 in step 3, then robust stability fails. Secondly, even when no228
instability is found, K∗ may still be unsatisfactory when its worst-case H∞ (or possibly H2) performance is229
bad. This is detected in step 4 by the program230

(4.4) δ∗ = arg max
δ∈[−1,1]

‖δI ? Pa ? K∗a‖∞,2 .231

In both events, after aggregating the problem cases, a new controller K∗ is computed via (4.2).232
Programs (4.3) and (4.4) are of max-max type, which when solved locally represents a light form of non-233

smoothness, addressed conveniently by a first-order non-smooth trust-region technique very close in spirit234
to its classical smooth antecedents. Convergence certificates have been established in [5]. The fact that235
the uncertainty cube is one-dimensional, as compared to the general case treated in [33, 1, 6], is of course236
favorable and leads to fast and reliable estimates.237

In turn, when the set of scenarios δν , ν = 1, . . . , N is fixed, program (4.2) has to be re-run, and this238
is now of min-max type, which represents the serious form of non-differentiability. Here the full force of a239
nonsmooth bundle or bundle trust-region technique as discussed in [5, 3, 4] is required, and this now differs240
substantially from a classical trust-region method.241

Finally, the overall multi-scenario synthesis involving programs (4.3), (4.4) and (4.2) can be performed242
efficiently using the method of [1], implemented in the MATLAB facility systune [2]. Global certificates are243
now obtained by post-processing using e.g. the wcgain function of [8], or branch-and-bound techniques as244
discussed in [35, 34].245
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Programs (4.2)-(4.4) are dominated by eigenvalue and singular value computations and thus have O(m3)246
complexity, where m = n + nK for (4.3), (4.4) and (4.2). More specifically, (4.4) and (4.2) are much more247
expensive programs since they are semi-infinite in s = jω and Hamiltonian matrices involved in H∞ norm248
computations are twice as large than those in (4.3). Fast algorithms to compute the H2 norm and its gradient249
using Lyapunov equations also have O((n+ nK)3) complexity.250

It should be stressed that feedback operations generate data fill-in even when the original data are sparse.251
In consequence cubic complexity cannot be avoided which currently limits the proposed method to systems252
with a few hundred states.253

Algorithm 4.1 Kreiss constant minimization through parametric robust synthesis

. Step 1 (Initialize). Put S = {0} and go to multi-model design.

. Step 2 (Multi-model). Given finite set S ⊂ [−1, 1] of scenarios, perform multi-model H∞ (or H2)
synthesis

h∗ = min
K∈K

max
δ∈S
‖δI ? Pa ? Ka‖∞,2

and obtain multi-scenario controller K∗ ∈ K .
. Step 3 (Destabilize). Compute worst-case scenario δ∗ ∈ [−1, 1] by solving

α∗ = max
δ∈[−1,1]

α (δI ? Pa ? K
∗
a) .

If δ∗I ?Pa ?K∗a is unstable (α∗ ≥ 0), add δ∗ to bad scenarios S and go back to step 2. Otherwise (α∗ < 0)
continue.

. Step 4 (Degrade). Compute worst-performance scenario δ∗ ∈ [−1, 1] by solving

h∗ = max
δ∈[−1,1]

‖δI ? Pa ? K∗a‖∞,2.

. Step 5 (Stopping). If h∗ < (1 + tol)h∗ degradation is only marginal, then accept K∗a and goto post-
processing. Otherwise add δ∗ to bad scenarios S and go back to step 2.

. Step 6 (Certify). Use method of section 2 to certify final value h∗.

5. Applications, competing methods & a test set. In this section, we consider minimization of the254
Kreiss constant in closed loop. The results are then compared to a variety of other techniques, also allowing255
to reduce the effect of transients, possibly by less direct means. We work with an example borrowed from256
[45]. State-space data of the plant G(s) = C(sI −A)−1B in (3.1) are given as257

(5.1) A =



−1 0 0 0 0 0 −625
0 −1 −30 400 0 0 250
−2 0 −1 0 0 0 30
5 −1 5 −1 0 0 200
11 1 25 −10 −1 1 −200
200 0 0 −150 −102 −1 −103

1 0 0 0 0 0 −1

258

259

(5.2) B =

[
I4

03×4

]
, C = [0 0 0 0 0 1 0] , D = 01×4 .260

The plant has therefore four control inputs and a single measurement.261
In [45], the problem of transient growth minimization is approached using LMI techniques. Large signal262

amplifications are constrained by reducing the eccentricity of the Lyapunov level-curves, where Lyapunov263
function candidates are chosen as quadratic functions V (x) = xTPx. This is implemented as reducing the264
condition number of P , that is, minimizing γ subject to I � P � γI in combination with additional closed-265
loop stability constraints. The Lyapunov derivative condition d

dtV (x) ≤ 0 over all state trajectories then266
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Fig. 3: Iterative selection of bad scenarios such that multi-model synthesis for these covers the full
uncertain range.

ensures x(t) ∈ {ζ ∈ Rn|ζTPζ ≤ 1} at all times t ≥ 0, and for all initial conditions in that same set. The267
synthesis problem can be converted to a convex SDP at the price of using the Youla parameterization of268
stabilizing controllers [10]. This leads to controllers of the form K(s) = (I + Q(s)G(s))−1Q(s) with Q(s)269
the Youla parameter optimized over a finite Ritz basis subspace in RH∞. Controllers computed using this270
technique have order n+nQ, where nQ is the state dimension of Q(s). In [45], a controller of order 7+9 = 16271
was obtained with corresponding transient growth of supt≥0 ‖JT eAcltJ‖ =

√
11919 = 109.2.272

To allow for unbiased comparisons, all techniques discussed in the sequel are implemented in their native273
formulation. In more practical applications, design programs should be complemented with more conventional274
control requirements such as robust stability margins, noise attenuation and pole clustering constraints related275
to settling times and damping. The only exception to this rule is a constraint on the closed-loop spectrum276
in a half-disk as shown in Fig. 4, to avoid excessively slow responses or much too high gain controllers. The277
latter constraint is of paramount importance, since pure performance design problems as in (3.4) tend to278
generate unacceptable high-gain controllers.279

We have used restarts to improve local solutions. The very same 10 starting points have been used for280
all techniques described in the sequel. The best over the 10 local solutions is then retained for simulation281
and assessment. The controller structure K is specified as the set of 3rd-order controllers for all approaches,282
which leads to 28 unknowns.283

All results are assessed via comparison with the open-loop transient growth ‖eAt‖ shown in Fig. 5 (left).284

5.1. Kreiss constant approach. For minimization of the Kreiss constant in feedback loop, the cast285
in (3.4) is changed as286
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Fig. 4: Disk D of closed-loop spectrum constraint: minimum decay of 0.001 and disk constraint of radius
100.

minimize max
δ∈[−1,1]

∥∥∥∥JT (sI − ( 1−δ
1+δAcl(K)− I

))−1
J

∥∥∥∥
∞

subject to K stabilizing,K ∈ K
σ(Acl(K)) ∈ D ,

(5.3)287

288

with σ(Acl(K)) denoting the spectrum of Acl(K).289
The best controller over 10 restarts is obtained as

K(s) =


−42.9038 11.5813 0.0000 0.0128
−164.9255 70.3235 152.7735 −13.6539
0.0000 −25.9407 −149.4428 11.8197
−167.0674 318.3261 809.8411 −66.1531
200.4722 413.5407 −666.0200 72.5131
−66.2768 27.6020 76.9643 −2.4021
385.9815 −189.8190 −229.6792 22.6246


with the standard notation

K(s) = CK(sInK
−AK)−1BK +DK =

[
AK BK
CK DK

]
,

and its transient growth is shown in Fig. 5 (right), with a peak value of 42.8. This improves over the higher-290
order LMI controller of [45], which achieves 109.2. Our solution gives a reduction by one order of magnitude291
over the open-loop transient growth 680.4 displayed in Fig. 5 (left). The closed-loop Kreiss constant computed292
via program (5.3) is 10.90, which we certified as 10.91 using the exact approach in Theorem 2.4. Program293
(5.3) was solved using systune based on [1, 17, 3, 9] from The Control System Toolbox of MATLAB, while294
the certificate was computed using the routine wcgain from The Robust Control Toolbox.295

5.2. Numerical abscissa approach. The numerical abscissa of (1.1) is defined as

ω(A) := 1
2 λ(A+AT ),

where λ stands for the maximum eigenvalue of a symmetric matrix. The central properties of the numerical296
abscissa are summarized by the following297

Lemma 5.1. Consider a possibly unstable autonomous system (1.1). Then the following hold:298
(a) The transient growth satisfies ‖eAt‖ ≤ 1 for all t ≥ 0 iff ω(A) ≤ 0.299
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Fig. 5: Transient growth in open loop (left) and in closed loop (right) by minimizing the Kreiss constant.

(b) For every t ≥ 0, ‖eAt‖ ≤ eω(A)t.300
(c) In the limit we have

lim
t↓0

d

dt
‖eAt‖ = ω(A).

(d) If A is normal, then ω(A) = α(A).301

Proof. Proofs in various forms can be found in [43, 45, 20].302

Property (a) gives a simple computational test whether A generates a contraction, hence whetherK(A) =303
1. Property (c) indicates that the numerical abscissa determines the behavior of the transient growth as t→ 0,304
that is, in a short time range. Property (b) on the other hand suggests that transient growth at intermediate305
times might also to some extent be contained by making the numerical abscissa as small as possible.306

Example 5.2. Strong dissipativity A + AT < 0 implies K(A) = 1 by condition (a) in Lemma 5.1. For307
upper triangular 2 × 2 matrices A = [a b; 0 c] a necessary and sufficient condition for strong dissipativity is308
a < 0 and 4ac− b2 > 0. This easily leads to non-normal matrices with K(A) = 1.309

The numerical abscissa has been used in numerous studies and specifically in fluid flow analysis to assess310
transition to turbulence, instabilities and limit cycles [12]. This suggests considering the following indirect311
approach to mitigate transient growth of the plant state x in closed loop:312

minimize Ω(Acl) := ω
(
JTAcl(K)J

)
subject to K stabilizing,K ∈ K

σ(Acl(K)) ∈ D .
(5.4)313

314

This is an eigenvalue optimization program, which can in principle be solved using BMI techniques [27, 21],315
but again we privilege a nonsmooth approach as in [3], thereby avoiding size inflation due to Lyapunov316
variables.317

A closed-loop numerical abscissa of Ω(Acl) = 502.0 was achieved, thus improving over the open-loop318
value of ω(A) = 680.4. Naturally, the optimal controller of (5.4) has a lower closed-loop numerical abscissa319
than the Kreiss controller in section 5.1, which gave the numerical abscissa of 656. However, as can be320
observed in Fig. 6 (left), minimization of the numerical abscissa did not achieve the desired effect of limiting321
the transient growth. The controller of (5.4) did not even improve over the open-loop behavior in Fig. 5322
(left). Those results are in line with the qualitative analysis [43], which identifies the numerical abscissa as323
a good indicator for t→ 0 only.324

The locally optimal 3rd-order controller for program (5.4) is given as

K(s) =


59.9714 140.8838 0.0000 125.1870
100.3809 151.4666 −0.9285 152.6506
0.0000 −271.6638 −612.4505 514.0162
−180.2674 2.4115 610.7701 −818.7354
−1.9939 17.2208 896.7905 248.2384
134.2585 322.4479 198.7380 27.7581
145.1514 114.7305 −229.1801 350.4296


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Fig. 6: Transient growth in closed loop. Minimization of numerical abscissa (5.4) left. H2-norm matching
with normal model (5.5) middle. Worst-case energy response (5.6) right.

5.3. H2 model matching with normal dynamics. In this section, we discuss yet another method325
to constrain transient growth in closed loop. For given initial conditions x(0) = x0, the state responses of326
the closed-loop plant Pcl are described by327

Pcl :

{
ẋcl = Acl(K)xcl + Jw, w = x0δ(t)

z = JTxcl .
328

By tuning the controller K ∈ K , we would like this system to behave similar to an ideal reference system329
Gr(s) deliberately constructed to exhibit small transient growth, say,330

ẋr = Arxr + wr, wr = x0rδ(t)331

zr = xr .332333

This leads to a model matching optimization problem, where we minimize the mismatch z − zr between the334
responses of both systems, started from the same initial conditions w = wr = x0δ(t). If z − zr is measured335
in the energy norm, this leads to336

‖z − zr‖2 = ‖Pclx0δ(t)−Grx0δ(t)‖2 ≤ ‖Pcl −Gr‖2‖x0‖ ,337338

where for systems ‖G−Gr‖2 means the H2-norm. Consequently, we consider the following cast:339

minimize ‖JT (sI −Acl(K))−1J − (sI −Ar)−1‖2
subject to K stabilizing,K ∈ K

σ(Acl(K)) ∈ D ,
(5.5)340

341

where as before, one enforces structural constraints on the controller K ∈ K , and spectral constraints342
σ(Acl(K)) ∈ D on the loop, ruling out slow responses and much too high gain controllers.343

This indirect approach to transient growth mitigation is illustrated for the system in (5.1)-(5.2), where
the reference model is selected with normal dynamics Gr(s) = (sI− (−I))−1 and numerical abscissa ω(Ar) =
α(Ar) = −1. With K the set of 3rd-order controllers, and the semi-disk D unchanged as in Fig. 4, solving
program (5.5) leads to the controller

K(s) =


−10.0166 32.8652 0.0000 4.2887
−5.3332 −75.2766 74.7646 83.9716
0.0000 246.4755 −258.5282 −246.5133
−205.9510 236.5090 −123.3962 −152.2283
−1153.0456 −879.8479 −71.1224 150.9151
−13.2672 −120.1666 21.8126 115.6246
21.5530 3.7044 60.9500 127.7649

 .
The associated transient growth ‖JT eAcltJ‖ in closed-loop is shown in Fig. 6 (middle), with peak value344
M0(Acl) = 44.37, indicating that this indirect approach is competitive with the Kreiss constant minimization.345
Even better results might be obtained by using a more plausible reference model Gr, but this has not been346
pursued further in this work.347
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5.4. Worst-case energy response approach. In this section, we change metrics and replace

max
‖x0‖≤1

sup
t≥0
‖x(t)‖ = max

‖x0‖2≤1
‖x‖∞

with the new norm

max
‖x0‖∞≤1

‖x‖2 = max
|x0,i|≤1, i=1,...,n

√∫ ∞
0

x(t)Tx(t)dt ,

and investigate whether the substitute has some merit in reducing transient growth in closed loop with output348
feedback.349

The closed-loop formulation in state-space is now given by the system:350

ẋcl = Aclxcl + Jw351

z = JTxcl (= x)352

w = x0 δ(t), ‖x0‖∞ ≤ 1 .353354

This in turn leads to the minimization problem355

minimize max
‖x0‖∞≤1

∥∥∥JT (sI −Acl(K))
−1
Jx0

∥∥∥
2

such that K stabilizing,K ∈ K
σ(Acl(K)) ∈ D ,

(5.6)356

357

which is similar in nature to the worst-case performance problem of the Kreiss constant approach in (5.3)358
and can be solved with the same techniques.359

For fixed K, program (5.6) has a certificate in terms of a convex SDP. To see this, we note first that the
state-space data in (5.6) range over a matrix polytope{

2n∑
i=1

θi

[
Acl Jvi
JT 0

]
:

2n∑
i=1

θi = 1, θi ≥ 0

}
,

where the vi’s, i = 1, . . . , 2n denote the vertices of the unit cube [−1, 1]n. The optimal value of program (5.6)360

is then < γ iff there exist a Lyapunov matrix X(v) = X(v)T � 0, where v =
∑2n

i=1 θivi, θi ≥ 0,
∑2n

i=1 θi = 1,361
such that362

(5.7)
[
AclX(v) +X(v)ATcl Jv

(•)T −1

]
≺ 0, Tr(JTX(v)J) < γ2, ∀v ∈ [−1, 1]n .363

In particular, taking v = vi and denoting Xi := X(vi), this implies364

(5.8)
[
AclXi +XiA

T
cl Jvi

(•)T −1

]
≺ 0, Tr(JTXiJ) < γ2, i = 1, . . . , 2n .365

Conversely, taking convex combinations of the inequalities in (5.8) shows that X(v) =
∑2n

i=1 θiXi is a366
suitable Lyapunov matrix for which (5.7) holds.367

We have thus established that certification of H2 performance γ reduces to constraints at the vertices368
and can be performed by solving the SDP:369

minimize γ2

subject to
[
AclXi +XiA

T
cl Jvi

(•)T −1

]
≺ 0,

Xi = XT
i � 0,Tr(JTXiJ) < γ2, i = 1, . . . , 2n

370

371

with decision variables Xi, γ. See [14] for examples of polytopic linear differential inclusions. Again one has372
to stress that such a certificate may be too expensive even for medium size applications due to the limitation373
of current SDP solvers.374
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With the same starting points, controller structure K and semi-disk D, a solution K(s) to program (5.6)
was obtained as

K(s) =


−11.5489 78.9907 0.0000 53.2452
199.9054 −357.8574 329.8169 −206.2099
0.0000 −60.0656 −22.2754 −40.3642
−136.5439 −7.6336 193.7006 30.1711
−1434.8960 269.1622 −473.4523 27.1643
−482.9145 868.9921 −824.9746 499.5364
−39.9217 559.8141 −80.1572 351.7574

 .
The transient growth in closed-loop is presented in Fig. 6 (right), indicating that this alternative tech-375

nique, while inferior to the Kreiss approach with a peak transient growth ofM0(Acl) = 57.1, and closed-loop376
Kreiss constant of K(Acl) = 24.8, may be a valid alternative.377

All results obtained so far are presented in table 2. Synthesis based on the Kreiss constant is clearly the378
best approach in terms of peak value amplification at the expense of longer computational times.379

Table 2: Summary of results in closed-loop: transient growthM0, Kreiss certificate K, numerical abscissa Ω
and mean running time per run in sec.

M0 K Ω cpu
section 5.1 42.8 10.91 656 32
section 5.2 1208 349.6 502 1.3
section 5.3 44.37 23.5 621 1.7
section 5.4 57.1 24.8 686 4.7

5.5. A nonlinear example. In this section, we illustrate how optimizing the Kreiss constant can380
be used to mitigate adverse effects of nonlinearities. The example is borrowed from [44] and was used to381
illustrate how non-normality in the linear portion of the system can trigger nonlinear effects and thereby382
generate convergence to undesired critical points. It has been complemented by one actuator and one sensor383
so that feedback control becomes applicable. The non-linear system dynamics are given as384

ẋ = Ax+ ‖x‖Bxx+Bu

y = Cx
(5.9)385

386

with387

A =

[
−1/R 1

0 −2/R

]
, Bx =

[
0 −1
1 0

]
, B =

[
1
1

]
, C =

[
1 0

]
, R = 25 .388

389

The linear dynamics are indeed non-normal with Kreiss constant K(A) = 4.36, and according to section 2,390
one can anticipate significant transient growth. This is confirmed in Fig. 7 left for a set of initial conditions391

x0 =
[
0 x2(0)

]T , with x2(0) ∈ {1e−7, 1e−6, 1e−5, 1e−4, 4e−4, 5e−4, 1e−3, 1e−2}.392
According to [44], the open-loop system converges to a remote unexpected critical point for x2(0) >393

4.22e−4, which evokes a butterfly effect with big consequences. See Fig. 7 right.394
In an attempt to mitigate these unwarranted nonlinear effects, we minimize the Kreiss constant as395

discussed in sections 3 and 4. The program is again (5.3) with disk constraints of Fig. 4 unchanged and using396
for K the set of 2nd-order controllers. This gives the following controller and corresponding closed-loop397
A-matrix:398

K(s) =

 −3.4146 −0.1902 −1.7997
−0.2856 −2.6781 −0.1119

−1.8068 −0.1095 −1.3710

 , Acl =

−1.4110 1.0000 −1.8068 −0.1095
−1.3710 −0.0800 −1.8068 −0.1095
−1.7997 0.0000 −3.4146 −0.1902
−0.1119 0.0000 −0.2856 −2.6781

 .
A nearly unit closed-loop Kreiss constant K(Acl) ≈ 1 is achieved, where J = [I2 0]T . This is confirmed in Fig.399
7 (middle), where identical plant-state initial conditions now converge monotonically to the zero equilibrium400
as desired.401
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Fig. 7: Simulations of nonlinear system. Left: open loop. Middle: closed loop. Right: open-loop phase
portrait for x0 = [0; 5e−4]

5.6. Test cases from the CompLeib collection. In this section, the controller design technique from402
sections 3 and 4 is assessed against a variety of test cases from the CompLeib collection [26].403

Table 3: Optimizing the Kreiss constant.
Test cases from the CompLeib collection.

Tests carrying a "*" are sparse.
REA: Reactor, CM: Cable Mass, AC: Aircraft, DLR: Space Structure, LAH: LA hospital, EB: Euler

Bernoulli beam, ISS: International Space Station, CBM: Clamped Beam Model.

test n m p K(Acl) certif. iter cpu (sec.)
REA3 12 1 3 1.11 1.11 83 2.16
CM1∗ 20 1 2 8.38 8.38 64 7.63
AC13 28 3 4 30.18 30.19 176 18.68
AC14 40 3 4 30.26 30.26 154 23.39
DLR2∗ 40 2 2 68.51 68.54 49 16.07
LAH∗ 48 1 1 42.72 42.73 60 21.37
CM3∗ 120 1 2 51.78 51.74# 41 298.41
EB6∗ 160 1 1 3197.71 3200# 21 113.93
CM4∗ 240 1 2 103.36 103.27# 41 1407.59
ISS1∗ 270 3 3 30.52 30.50# 97 3886.97
CBM∗ 348 1 1 26.82 26.82# 68 5037.63
CM5∗ 480 1 2 205.70 205.70# 41 15516.12

Table 3 shows the tests, identified by their acronym in column 1, the number of states, inputs, and404
outputs in columns 2, 3 and 4, respectively. The controller K(s) was chosen as a second-order controller405
(nK = 2) for all tests. The optimal Kreiss constant K(Acl) with the technique discussed in section 4406
is given in column 5, while column 6, “certif.” shows the SDP certificate from Theorem 2.4 when com-407
putable. In the remaining cases, verification is based on a dense gridding of the one-dimensional curve408

f(δ) :=

∥∥∥∥JT (sI − ( 1−δ
1+δAcl(K)− I

))−1
J

∥∥∥∥
∞

over [−1, 1]. This is flagged by a “#” symbol in column 6.409

The number of iterations for controller design are given in column “iter” and corresponding running times410
are given in column “cpu”. Computations were performed on a MacBook Pro with 2.7 GHz Intel Core i7411
processor and 16 GB RAM.412

These results indicate that design by optimizing the Kreiss constant is fairly reliable, even for sizable413
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systems. A relatively small number of iterations is required even for large size problems while execution414
times deteriorate as expected. Posterior certification of robust stability and performance, while expensive415
for large systems, turns out to be redundant as a rule. Future work may strive to make this step more416
convenient, for instance by developing SDP solvers which exploit the specific structure of (2.6), by use of the417
interpolation-based global certificates in [32], or by using dedicated branch-and-bound [35, 34].418

6. Conclusions. In this work, we have introduced a new exact computational technique for the Kreiss419
constant which essentially reduces to solving a robust performance analysis problem of low complexity acces-420
sible to fairly standard µ tools. The new characterization is then further exploited by minimizing the Kreiss421
constant in closed loop, with the goal to mitigate transient growth of potentially highly non-normal dynamics422
by the use of feedback. This leads to a special class of parametric uncertain structured H∞-control prob-423
lems that are conveniently addressed with specialized non-smooth optimization methods. The development424
of mixed methods using jointly the Kreiss constant (peak growth), the numerical abscissa (initial growth),425
and the spectral abscissa (asymptotic growth) to better shape the transient behavior is easily derived as a426
byproduct of this work.427

A number of comparisons have been made with indirect, more heuristic techniques. Our preliminary428
testing indicates that while seemingly conservative in the Kreiss matrix Theorem, the Kreiss constant can be429
an effective indicator of transient growth, and can be used to reduce it in closed loop. Some of the indirect430
approaches to transient growth, even though suboptimal in theory, could constitute valuable and less costly431
alternatives.432

The LMI technique in section 5.1 is suited for small to medium size problems. For large scale problems433
more dedicated calculation methods will be required. This is in particular true for the µ-certificate, which is434
a very general technique covering a wide class of problems, but leads to LMI-programs, which are currently435
not fit for large dimensions. This is why in larger dimensions minimization and certification for K(A) is436
performed with the SDP-free method of section 4, which is functional for systems up to several hundred437
states as shown on a test set from the CompLeib collection.438
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