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Abstract

This paper is concerned with the robust control problem of LFT (Linear Fractional Rep-
resentation) uncertain systems depending on a time-varying parameter uncertainty. Our main
result exploits an LMI (Linear Matrix Inequality) characterization involving scalings and Lya-
punov variables subject to an additional essentially non-convex algebraic constraint. The non-
convexity enters the problem in the form of a rank deficiency condition or matrix inverse relation
on the scalings only. It is shown that such problems but also more generally rank inequalities
and bilinear constraints can be formulated as the minimization of a concave functional subject
to Linear Matrix Inequality constraints. First of all, a local Frank and Wolfe feasible direction
algorithm is introduced in this context to tackle this hard optimization problem. Exploiting
the attractive concavity structure of the problem, several efficient global concave programming
methods are then introduced and combined with the local feasible direction method to secure
and certify global optimality of the solutions. Convergence and practical implementation details
of the algorithms are covered. Stopping criteria are introduced in order to reduce the overall
computational overhead.

Computational experiments indicate the viability of our algorithms, and that in the worst
case they require the solution of a few LMI programs. Power and efficiency of the algorithms
are demonstrated through realistic and randomized numerical experiments.

Key words. Linear Matrix Inequalities, parametric uncertainty, global concave minimization,
Frank and Wolfe algorithms.

1 Introduction

A number of challenging problems in robust control theory fall within the class of rank minimization
problems subject to LMI (convex) constraints. An important example is provided by the reduced-
order Hy, control problem. It has been shown in [24, 8, 18] that there exists a k-th order controller
solving the Hy, control problem if and only if one can find a pair of symmetric matrices (X,Y’)
satisfying LMIs constraint with
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where n designates the plant’s order. The hardness of this problem stems from the rank condition
(1) which is essentially non-convex. Different proofs of NP-hardness are given in [29, 7].

As it plays a central role in robust control theory, many researchers have devoted their efforts
to developing adequate algorithms and heuristics for determining solutions to this class of prob-
lems. In [13], Grigoriadis and Skelton consider a heuristic method based on alternating projections
for iteratively finding a solution to the rank constraint (1). In [17], Iwasaki derives an heuristic
iterative scheme taking advantage of primal and dual formulations of the fixed-order control prob-
lem and demonstrates its practicality by extensive tests and investigations. Non-trivial lower and
upper bounds of the above problem are obtained in [21] which however are used for a relaxation
rather than for Branch and Bound (BB) refinement schemes to locate approximate solutions. Earlier
works on the use of general-purpose global optimization for solving BMI problems can be found in
[25, 12] and references therein. In [10] Geromel et al. introduce a min/maz algorithm for solving
the reduced-order stabilization problem and discuss its convergence properties. A closely related
algorithm, referred to as the cone complementary linearization algorithm is elaborated in [11] by El
Ghaoui et al. The authors introduce a nonlinear objective functional whose optimal value corres-
ponds to solutions to the lower-order stabilization problem. Following the ideas of Frank and Wolfe
(FW) in [6], each step of the algorithm utilizes a local linearization of the functional to determ-
ine a “best” feasible descent direction and therefore a feasible line segment in the constraint set.
In addition to convergence, it is shown that the algorithm enforces some rank deficiency at each
step. In [30], we developed a global optimization technique based upon d.c. (difference of convex
functions/sets) optimization techniques exploiting the fact that the reverse convex constraints are
of relatively low-rank, which is of primary importance to ensure practicality of the algorithm. This
technique is however currently limited to the case of symmetric scalings and hardly generalizes to
more complex structures.

The contribution of this paper is threefold.

e [t is first shown that several important problems in robust control theory which involve bi-
linear constraints, equality and inequality rank constraints or matrix inverse constraints, can be
recast as finding zero optimal solutions to generalized concave programs. These generalized concave
programs consist in the minimization of a concave functional subject to convex constraints con-
sisting of LMIs. A distinguished characteristic of these problems is that only zero solutions are of
interest. This significantly reduces the difficulty of the search and thus makes the problems much
more computationally attractive and painless than the conventional concave programs which seek
an arbitrary minimum of a concave function over a convex set. A sample list of control applica-
tions of this new formulation includes robust control and robust multi-objective problems based on
any kind of scalings or multipliers, robust fixed- or reduced-order control problems, multi-objective
Linear Parameter-Varying (LPV) control, reduction of LFT representations, and more generally
combinations of such problems. Starting from this viewpoint, the work here provides first a full
generalization of the technique in [11] to handle robust control problems for plants subject to time-
varying LFT (Linear Fractional Transformation) uncertainties. More precisely, we show that the
robust synthesis problems involving either pairs of symmetric and skew-symmetric scalings or full
generalized scalings as discussed in [26] are equivalent to zero-seeking concave programming prob-
lems where the convex constraints express in terms of LMIs. Although, this is not the central object
of this paper, we reveal that BMI (Bilinear Matrix Inequality) problems can also be formulated in
the same fashion, so that in this respect, concavity appears to be the most prominent feature of a
very vast array of problems in control theory.



e It develops generalizations of local and global optimization methods for solving these zero-
seeking concave programs. In this respect, we indicate how the FW algorithm must be modified
to handle our problems. We prove that due to the concave structure, the FW algorithm is not
only guaranteed to generate strictly decreasing sequences for the objective functional but also that
the sequence of points is either infinite or reaches a local optimal solution. Also the traditional
line search at every iteration can be bypassed as a consequence of concavity. However, the FW
algorithm is a local method and is not guaranteed to provide a global solution. This naturally leads
us to combining recently available global search techniques with the FW algorithm to certify global
optimality of the solutions or invalidate feasibility of the problem.

As concave programming is the best studied class of problems in global optimization [15, 16, 20,
32], we have exploited several key basic concepts for developing efficient and practical algorithms
suitably generalized to the matrix context of our problems. As mentioned previously, the properties
of zero-seeking concave programs make them much more computationally tractable than conven-
tional concave programs. Our efforts in this direction are thus to maximally exploit this fact.
Namely, we have paid special attention for developing extensions of the simplicial and conical BB
concave minimization methods which work with matrices and over the positive semidefinite cone.
These methods respectively divide the feasible set into matrix simplices and matrix cones of decreas-
ing sizes. Their main thrust is that they rely heavily on our specific matrix structures, on concavity
and convexity geometric concepts which make them particularly appropriate for our problems. Each
step of the proposed techniques exploits both the convexity of the constraint set and the concavity
of the functional and also the fact that only zero optimal values are of interest. This allows large
portions of the feasible set to be eliminated at each iteration. The most computationally demand-
ing operation in each step comes down to solving one LMI program, hence the practicality of the
methods.

There is a obvious trade-off between local and global search techniques. The FW algorithm
is much less costly but in return, is prone to non-global optimality. On the other hand, concave
programming techniques provide global optimal solutions but generally require intensive compu-
tations. Therefore, an important target of this paper is to maintain a reasonable computational
cost by combining local and global techniques. Hence, the global concave programming techniques
are used either to refine a local solution issued from the FW algorithm until global optimality is
achieved or to provide a certificate of global optimality.

e As with many other methods, both FW and concave programming algorithms may have slow
convergence in the viccinity of a local or global solution. Therefore, again based on the fact that
we are only interested in zeros of the functional, an important part of the paper is dedicated to a
thorough description of the practical implementation of algorithms, including initialization, feasible
descent directions and stopping criteria to avoid slow final convergence. A special emphasis is put on
developing accurate and non-conservative stopping criteria that do not require modification of the
LMI characterization of the problem but use perturbation techniques on the non-convex variables
(that are responsible of the nonconvexity /hardness of the problem). A key idea of these stopping
criteria is to limit as far as possible the zigzagging phenomenon which characterizes first-order
descent methods such as the FW algorithm or to reduce the computational burden in global search
and hence to ensure reasonable computational time.

This description is followed by a set of numerical experiments for a realistic and randomized
robust control problems. Interestingly enough, in almost all of our computational experiments, the
local solutions found by FW algorithms are very close to optimality and are either certified global
or quickly improved to optimality after a few iterations of the simplicial and conical techniques.



The remainder of the paper is organized as follows. A description of the robust control problem,
its solvability conditions, motivations and difficulties are given in Section 2. Section 3 focuses on
deriving a new formulation of the robust control problem as a concave minimization program where
the constraints consist of LMIs. This section starts with a general result for converting BMI prob-
lems into rank constrained LMI problems. In turn, rank constrained LMI problems are shown to be
equivalent to generalized concave programs where the usual linear vector inequalities are replaced
with inequalities over the cone of positive semidefinite matrices. Extensions of the technique to
other classes of scalings and problems are also discussed. A detailed presentation of a Frank and
Wolfe feasible direction algorithm for solving the concave program is given in Section 4. Various
stopping tests based on simple perturbation techniques of the scaling are derived in order to main-
tain reasonable computational cost. Section 5 is devoted to global concave optimization algorithms.
More precisely, we generalize simplicial and conical concave minimization techniques over the pos-
itive semidefinite cone of symmetric matrices and provide their formulation for the robust control
problem under consideration. A special emphasis is placed on convergence and implementation
issues. This discussion has a general value and can be applied with minor modifications to a wide
class of problems. Computational experiments are conducted in Section 6.

The following definitions and notations are used throughout the paper. M7 is the transpose of
the matrix M, and M™ denotes its complex-conjugate transpose. The notation Tr M stands for the
trace of M. For Hermitian or symmetric matrices, M > N means that M — N is positive definite
and M > N means that M — N is positive semidefinite. The notation co {p1,...,pr} stands for
the convex hull of the set {p1,...,pr}. The notation vert (P) is used to denote the set of vertices
of a polyhedron P. Simplices and cones are defined in the usual way. In symmetric block matrices
or long matrix expressions, we use % as an ellipsis for terms that are induced by symmetry, e.g.,

S M _ T S M
|5 plr=rr] 0 plx

We shall also use V f(z) to denote the gradient of the function f. Finally, in algorithm descriptions
the notation X* is used to designate the k-th iterate of the variable X. The notations int S and 95
are used for the relative interior and the boundary of the set S.

2 Problem presentation and motivations

This section provides a brief review of a basic result that will be exploited throughout the paper.
We are concerned with the robust control problem of an uncertain plant subject to LE'T uncertainty.
In other words, the uncertain plant is described as
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where A(t) is a time-varying matrix-valued parameter and is usually assumed to have a block-
diagonal structure in the form

A(t) = diag (..., 0, ...,A(t),...) e RV (3)



and normalized such that
AWTAR) <I,  t>0. (4)

Blocks denoted d;I and A; are generally referred to as repeated-scalar and full blocks according to
the p analysis and synthesis literature [5, 4]. Note that straightforward computations lead to the
state-space representation

T A Bl .BZ BA xz
V4 = Ci Dy1 Dy |+ | Dia A(t)(] — DAAA(t))_l [CA Da1 DAQ] w |,
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hence the plant with inputs w and u and outputs z and y has state-space data entries which are
fractional functions of the time-varying parameter A(t). Hereafter, we are using the following
notation: u for the control signal, w for exogenous inputs, z for controlled or performance variables
and y for the measurement signal.

For the uncertain plant (2)-(4) the robust control problem consists in seeking a Linear Time-
Invariant (LTT) controller

itk = Agzk+ Bky, 5)
U = Cgzg + Dgy,
such that

e the closed-loop system (2)-(4) and (5) is internally stable,
e the Ls-induced gain of the operator connecting w to z is bounded by 7,

for all parameter trajectories A(t) defined by (4).

It is now well-known that such problems can be handled via a suitable generalization of the
Bounded Real Lemma which expresses as the existence of a Lyapunov matrix X and scalings S
and T with adequate structure such that X, > 0 and
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where the state-space data A., By, Cep and D,y determine the closed-loop system (2)-(5) with the
loop wa = A(t) za open. The following LMI characterizations for the solvability of such problems
is then obtained. The reader is referred to references [23, 22, 1, 2, 14, 28] for more details and
additional results.

The characterization of the solutions to the robust control problem for LFT plants requires
the definitions of scaling sets compatible with the parameter structure given in (3). Denoting
this structure as A, the following scaling sets can be introduced. The set of symmetric scalings
associated with the parameter structure A is defined as

Sa:={S:ST=8, SA=AS, VA with structure A} .

Similarly, the set of skew-symmetric scalings associated with the parameter structure A is defined
as
Ta := {T :TT =T, TA=ATT, VA with structure A} .



Equivalently, it is easily verified that with § > 0, the uncertain matrix A satisfies the quadratic
constraints

Tr_ T
[?] [ TS 1;* ] [?] >0, VAs. t. ATA < I, with structure A. (6)

With the above definitions and notations in mind, the following algebraically constrained LMI
characterization for the solvability of the problem can be established.

Theorem 2.1 Consider the LFT plant governed by (2) and (4) with A assuming a block-diagonal
structure as in (3). Let Nx and Ny denote any bases of the null spaces of [Co, Doa, Da1,0] and
(BT, D%, DL,,0], respectively. Then, there exists a controller such that the (scaled) Bounded Real
Lemma conditions hold for some Lo gain performance -y if and only if there exist pairs of symmet-
ric matrices (X,Y), (S,X) and a pair of skew-symmetric matrices (T,T') such that the structural
constraints

S, 2e€S8aandT, I €Ta (7)
hold and the matriz inequalities
ATX + XA XBa +CXTT XB, C%1s 7
BIX +TCxn —S+TDaan+ DA\TT TDar DiAS DIy
LMI[1] : % BTXx DR 17 —yI DYS DI |Nx < 0,(8)
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LMI [3] [ 7 Y] < 0(10)
S 0
LMI[4] : — [O 2] < 0(11)
subject to the algebraic constraints
(S+T) ' =(Z+1), (12)
or equivalently,
s 11" [2 1T
|:TT _S:| |:P _Z:| ) (13)

are feasible.

Note that due to the algebraic constraints (12), the problem under consideration is non-convex and
has been even shown to be NP-hard. See |3] and references therein. This feature is in sharp contrast
with the associated Linear Parameter-Varying control problem for which the LMI constraints (8)-
(11) are the same but the nonlinear conditions (12) or alternatively (13) fully disappears.



3 Rank constraints, BMIs and concave programs

For tractability reasons, it is interesting to find alternate formulations that are amenable to nu-
merical computations. A potential technique was introduced in [11] and amounts to constructing
a nonlinear functional whose feasible optimal points satisfy the algebraic constraints (12). Here-
after, we develop different extensions of this technique that is applicable to structured u-scalings
(6), to full-block generalized scalings as considered in [26] but also more importantly to bilinearly
constrained LMI problems. We begin the presentation by a more general result which reveals the
close connections between BMIs, rank constrained LMI problems and concave programming.

Lemma 3.1 (Rank formulation) Introduce the bilinear constrained LMI problem

L(z) < 0 (14)
W(z) = L(z)CR(z) (15)

where x denotes the vector of decision variables, the inequality (14) is a general LMI constraint and
L(z) and R(x) are matriz-valued functions of x. The matriz C is constant and assumes a minimal
rank factorization of rank v, that is C = UV where the column dimension of U is r. Then, the
feasibility problem (14)-(15) is equivalent to

L(z) < 0 (16)
Rank [Vv}/](;(;l) L(:;)U] = r. (17)

Proof: The equivalence follows from the rank-perserving transformations

A ) Lt 270

|
Lemma 3.1 has important algorithmic consequences that we examine in the sequel. It also provides a
direct link between BMI problems and rank constrained LMI problems. A more easily implementable
form of Lemma 3.1 is as follows.

Lemma 3.2 (Concave representation) With the notations of Lemma 3.1, we assume without
loss of generality that W (z) € RY€ with | > c¢. The bilinearly constrained LMI problem (14)-(15)
is equivalent to the existence of a symmetric (slack) matriz Z and xz such that L(xz) < 0 and

Z Z3 W(z)'  R(z)TV
7= [% 2] ’ Vlg(i) L(?)U UTI}(x)T 0 | =0 (18)
VTR(z) I 0 I
with the additional Schur complement constraint,
Tr(Z1 — 232, Z3) = 0. (19)

Moreover, the trace function in (19) is concave over the cone of positive semidefinite matrices and
1s bounded below by zero.



Proof: Necessity is trivial and follows from the choice

[ 2= [ "5 [ 19"

for which (18) and (19) hold.

Sufficiency: It follows from (18) and (19) that Z has a loss of rank of dimension ¢ and that Z
is invertible. Select a basis N € R(ETT)*¢ of the nullspace of Z. We infer by a Schur complement
argument with respect to the identity term in the inequality (18) that

[ W(z) L(z)U

VI'R(z) I, ]NZO'

But since A is a full rank matrix, we deduce that

Rank [VVTVJS:(:Q)U) L(Z)U] =r.

It then follows from Lemma 3.1 that (15) holds.
The concavity of the trace function in (19) is easily seen by looking at its hypograph. Using
(22) one can rewrite the inequality

T (Z) — Z3Z,Z3) > t,

in the form

Zy—P Zj
> >
which defines a convex set. Also, we deduce that the trace function is bounded below by zero for
any Z such that (18) holds. This terminates the proof. |

Note that when W(z), L(z) and R(x) are affine functions of x, which is the case of interest,
then inequality (18) reduces to an LMI and thus the new formulation is a concave program where
usual vector linear inequalities are replaced by inequalities over the positive semidefinite cone.

One important consequence of Lemma, 3.2 is that BMI problems can be equivalently formulated
as the search of zero optimal solutions of concave programs. These problems however exhibit a high
degree of nonconvex dimensionality and consequently are generally harder to solve than the problems
investigated in this paper. Important advantages lie in the simplicity of this new formulation but
also in the fact that matrix structures are preserved in the concave program. This is an important
factor for efficient implementation of algorithms that we shall consider in the sequel. Because of
the special properties of concave programs, it is possible to develop algorithms local or global which
take advantage of the problem properties to enhance efficiency. A fairly extensive discussion of
concave programs is provided in Sections 4 and 5. Before going further, we must point out that
feasibility problems involving LMIs and rank inequalities can be handled in the same fashion. This
is achieved by remarking that

Rank W(z) < k

is equivalent to the existence of a (slack) matrix U € R/*¥

W) W(z)—-UU" >0, Tr(W(z)"W()-UU")=0.



Then one can linearize the terms W’ W using Lemma 3.2 while the term UU?” is linearized using
Schur complements. Similarly, when W (z) and L(z) are affine matrix-valued functions of z, the
inversion constraint

W(z) = L(z) ",

can be given the concave programming representation

Zl Zg W(:L‘) I
zZ¥ Zy I L(z) 1Ty

0
I L(z)T 0 I
This is readily obtained from Lemma 3.2 by noting that

W(z) I

Rank [ 7 L(z)

] — Rank [W(w) L(x)l] .

I I

The outcome of this discussion is that a non-exhaustive list of potential control applications of
the proposed algorithms include also

e reduced- and fixed-order robust control,
e multi-objective robust and Linear Parameter-Varying control,
e reduction of LFT representations,

Moreover, since positive combinations of concave functions remain concave these problems can be
aggregated in many different ways to formulate more complex practical requirements.

3.1 Concave representations of robust control problems

An immediate application of Lemma 3.2 leads to a concave programming formulation of the robust
control problem introduced in Section 2 and characterized in Theorem 2.1.

Corollary 3.3 Introduce the concave LMI-constrained minimization program

Pbl: minimize Tr (Z, — Z3Zy " ZT) (21)

subject to LMIs (8)-(11) and

Z Z3 S+T I
LMI[5] : — (S-lz—i‘)T ZIZ § E:)FF <0. (22)
I (z+D)7F 0 I
Then, any feasible point to Pb1l which further satisfies
Tr (Z1 — Z3Z5 ' Z3 ) = 0, (23)

1s optimal and is a solution to the problem described in Theorem 2.1 and conversely.



Proof: The result follows from the inversion form of Lemma 3.2 in (20) and the fact that S and
3 are invertible. u

Note that without loss of generality, it can be assumed that the matrix

1z Zs
7= [ng ZQ]

has a structure conformable with that of the particular block-diagonal structure of the scalings.
This simple observation reduces the number of “nonconvex variables” and avoids a wasteful search
in an unduly large space. The number of nonconvex variables is also reduced when some subblocks
T; and I'; in the skew-symmetric matrices 7" and I vanish. This is the case when the corresponding
A; in A is scalar or is considered as a complex block. In such case, one can remove this block from
both LMI (22) and the objective functional (21). The sizes of Z;, Zs and Z3 are then reduced
accordingly and the (concave) objective functional becomes

T (Z1 — Z3Z5 ' Z3 ) + Tr (S; — 5;71) (24)
with the additional LMI s 7
7
[I zi] 20.

One advantage of the formulation of the problem as in Corollary 3.3 is that one completely
gets rid of the hard set constraints (12) and the non-convexity is reflected in the functional to
be optimized. It is also important to note that the approach considered in [11] is not directly
applicable since the above rank constrained LMI problems cannot be reduced to standard bilinear
or cone complementary problems for which specialized algorithms are already available. See [3] for
a survey. This is easily verified on simple examples. A central target of this paper is to point out
and discuss adequate algorithms for solving this class of problems. Before going into the details of
the algorithm, we must stress out that the proposed concave reformulations apply with the same
degree of simplicity to other classes of scalings such as the full block scalings introduced in [27] and
also to dynamic scalings or multipliers hence providing a complete concave formulation of the pu
synthesis problem.

4 A local search: Frank and Wolfe algorithm

In this section, we discuss a Frank and Wolfe algorithm for finding solutions to Corollary 3.3.
Analogous algorithms can be derived in the context of any of the control problems mentioned
previously. Such algorithms are of local nature in the sense that they cannot guarantee global
optimality but have proven very efficient in practice [3, 11].

4.1 Basic principle

The basic principle of Frank and Wolfe (FW) algorithms is to determine a segment line in the
feasible set pointing towards a “best” descent direction and then to perform a line search on this
segment to minimize the cost function [6]. Consider the minimization problem

minimize f(Z) subject to Z € X (25)

where the function f has continuous first-order partial derivatives on X and is bounded below on
the matrix set X, a convex subset of the space of symmetric matrices. The algorithm of Frank and
Wolfe can be detailed as follows:

10



1. Find a steepest descent direction by solving the convex programming problem

k . k
D Earglgnelg Tr (Vf(Z%) D)

2. Perform a line search on the segment [Z*, D*] to get

Zkt = (1 —oF)Z* + o* DF,
where o € arg min f((1 — ) Z* 4+ aD¥) (26)
0<a<l1

Under the above very mild assumptions Bennett and Mangasarian have proved in [3] that for
a general differentiable f the algorithm terminates at a point that satisfies the minimum principle
necessary optimality conditions, or each accumulation point of the generated sequence satisfies also
the minimum principle. Hence, there is a risk of cycling or jamming with such algorithms though
it turns out to be very low in practice. Interestingly, when f is moreover concave, the algorithm
generates strictly decreasing sequences that can only terminate to a point satisfying the minimum
principle local optimality conditions. This can be clarified as follows. Let Z* denote the k-th iterate
of the FW algorithm, then from the concavity of f, we have

1(2) = f(Z*) <Tx(Vf(Z") (2 - Z%), VZex.
Since f is bounded from below on X', we can write

—oo < inf f(Z) - f(ZF) <Tx(Vf(Z) (2 - Z7)),

so that the FW step
minimize Tr(Vf(Z*)(Z — Z*)) subject to Z € X

is well defined and generate a new iterate Z¥*! in X. We also infer Tr (V f(Z*)(Zk*+! — ZF)) <0,
since ZF is feasible. Thus, only two situations can occur. Either Tr (Vf(Z*)(Z*+! — Z¥)) < 0 and

consequently
F(ZFY) < f(Z9) + Te (VH(ZF) (29 - Z9) < §(Z9).

The sequence is therefore strictly decreasing from Z* and can only stop when the second situation
Tr (Vf(Z*)(Z*¥+1 — Z*)) = 0 occurs. In such case, we obtain

Tr (Vf(ZF) (2 - ZF) >0, VZex,

which is nothing else than the minimum principle local optimality condition for symmetric matrices.
To sum up, the sequence f(Z*) is strictly decreasing and Z* is either infinite or reaches a local
optimum.

Also for a general function, a line search on the matrix segment

7]

will be required, where DF is a solution of the FW step above. In virtue of the concavity of the
objective function (21), as well as for all the functions introduced in Section 3, the line search can
be completely bypassed and one can perform a full step size of one, hence reducing the overall
computational overhead.

11



4.2 Implementation of FW algorithm for robust control

In this section, we reexamine the algorithm of Frank and Wolfe in the context of the robust control
problem introduced in Section 2. In order to facilitate the presentation, we shall assume that the
notation LMI[i] , 4 = 1,...,5 is nothing else than the difference between the left-hand and the
right-hand side of the corresponding LMI in (8)-(11) and (22), respectively.

4.2.1 Initialization

The initialization phase simply consists in determining a feasible point of the constraints. In order
to favor large step sizes in the course of the algorithm and avoid stucking initially to the boundary
of the constraints, it is advisable to perform a “centering step”. It amounts to seeking an initial
point that renders the LMIs (8)-(11) and (22) maximally negative. This is easily formulated as the
LMI program

minimize ¢ subject to LMI[i] < ¢, i=1,...,5

We also mention that for all LMI runs used throughout, we put a norm constraint on the decision
variables for preventing solutions at infinity. This is easily done with currently available LMI solvers.

4.2.2 Phase I - FW step

In this phase, we determine a feasible segment pointing towards a descent direction. Remarking
that the gradients of

J="Tr(Z1 — Z3Z, ' 73 ),
at the k-th iterate are given as

oJ oJ —1,4T -1 oJ
= =1, Go:= =75 Z§ Z57Z% = —
Gr=gp =1 2=, =% B B G= gy
the FW step can be described by the following LMI program:
minimize Tr (G121 + G2Zs + G3Z3)
subject to LMI[i] <0, i =1,2,3,4; LMI[5] <0.

= _2Z§_1Z§T )

Note that this problem is always solvable, since we are only manipulating feasible points and direc-
tions.

4.2.3 Stopping criteria

Given the current point of the algorithm determined by the variables (X*,Y*), (S, T%), (k,T%),
Z{“, Z§ and Z§ our goal is to verify whether this point or a closely related point is a solution to the
LMIs (8)-(11) subject to the algebraic constraint (12). In such case the algorithm will terminate
and a controller solution to the problem in Section 2 can be constructed, avoiding long sequences
of iterates. In our new notation, our test takes the form

LMI[i] <0, 1=1,2,3,4 (27)

(Sk +TF)~1 = (Tk +T*). (28)

Note that in the course of the algorithm, the current point is not generally optimal so that the
constraint (12) does not hold. It is, however, possible to terminate the program without reaching
optimality. Our stopping criteria are based on the following perturbations techniques. We assume

that a current feasible point of LMIs (8)-(11) and (22) is given. There exists a controller for which the
conditions in Theorem 2.1 hold whenever one of the following perturbation techniques is successful.
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e Compute W = (S* + T*)~! and update X*¥ and T* using the substitutions

_W+wT o W-WT
2 ' 2

Then, stop if new point passes the test (27).

sk (29)

e If previous test fails, then compute W = (X* + I'*)~! and update S* and T* using the
substitutions - -
s WAW e W-WT
2 ’ 2
Then, stop if new point passes the test (27).

(30)

Note that since we do not alter the original characterization of the solutions in Theorem 2.1, our
stopping criteria are generally less conservative than those in [11] which necessitate a modification
of the problem.

5 Global concave programming based methods

Concave programming constitutes a class of well-developed methods in global optimization whose
foundations were mostly layed in [31]. It offers a wealth of practically efficient techniques for solving
difficult problems which seem, however, to have been overlooked by the control community. Reasons
for this disinterest lie in the fact that most successfully developed concave programming algorithms
[15, 16, 20, 32] deal with (linear) polytopic constraints, thus having a finite number of extreme
points, and are restricted to the usual vector space R™ which could be an obstacle for applicability
of these methods to robust control problems. In this section, we shall show that several important
basic concepts of concave programming carry over matrix spaces and the positive semidefinite cone
of symmetric matrices and that these generalizations can be exploited to handle our problems. The
discussion here is deliberately very short and avoids the abstract convergence theory that can be
found in textbooks. The reader is referred to the recent book of Tuy [32] for further details on
concave programming.
Return to the problem of checking whether there exists

Z* e X ={(21,2,23): IX,Y,S,T,%,T) st. LMI[i] <0, i=1,...,4; LMI[5] <0} (31)

satisfying f(Z*) = 0 where f(Z) := Tr (Z) — Z3Z5 ' ZT) is concave. Such a Z* when it exists will be
called a zero of f. It is important to note that since f satisfies f(Z) > 0,VZ € X, any zero of f is
also a global optimal solution of (25), and consequently, our problem is much more computationally
attractive than conventional concave programs in which minimal values of the cost function are
unknown. In the methods presented hereafter, we can stop the search as soon as either such a zero
is found in which case global optimality is ensured, or the minimum cost value is strictly positive
in which case our problem has no solution.

In view of the recent developments in global optimization, it seems that a BB method is the
most suitable for our global search. Our intention in the present work is to maximally exploit the
structure and properties of the problem to make our search algorithms much more efficient than
general BB schemes. The overall scheme goes as follows.

Branching: The function f is not only concave in (Z1, Z3, Z3) but is also linear in Z; with (Z2, Z3)
held fixed, i.e. only (Zs,Z3) are the "complicating" variables, responsible for the noncon-
vexity /hardness of the problem. The global search thus is concentrated on the reduced-
dimensional space Z of variables (Zs, Z3). Accordingly, the feasible set can be interpreted as
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the projection of the convex set defined by the LMIs (8)-(11) and (22) on the space Z. This
space is partitioned into finitely many matrix polyhedrons of the same kind (simplices, cones
etc.). At each iteration, a partition polyhedron M is selected and subdivided further into
several subpolyhedrons according to a specified rule.

Bounding: With the branching strategy determined and given a partition set M, the convexity of
X, the concavity of f and its linearity in Z; are further exploited in the search of a zero of
f over (Zy,Z3) € M. This is carried out through computing a number S(M) by a convex
program such that

IB(M) < V(M) = 1nf{f(Z1, Zo, Z3) : (Zl, Zo, Z3) € X, (ZQ, Zg) € M} (32)

Clearly, the partition sets M with 3(M) > 0 cannot contain any zero of f and therefore
are discarded from further consideration. On the other hand, the partition set with smallest
B(M) < 0 can be considered the most promising one. To concentrate further investigation
on this set, we subdivide it into more refined subsets. With a given tolerance € > 0, the stop
criterion of the BB algorithm is

min §(M) > e. (33)

Stopping rule: The branching operation is devised for speeding up the convergence. The optimal
solution Z(M) of the problem for computing S(M) is used for the stopping test developed
above to reduce the time of global search.

Based on the kind of polyhedrons which are used in branching, we develop 2 different BB algorithms.
As one may see, each of them has its own advantage depending on the more specific structure of
the objective f(Z). It is important to mention that all branching and bounding operations must
be developed consistently to secure global convergence of the search to a global solution. Global
convergence is often a delicate issue in BB techniques. Proofs are provided in Appendix A.

5.1 Simplicial algorithm

In the simplicial algorithm, the space Z is partitioned into simplices. From now on, N will denote

the dimension of Z. For every simplex M with vertices u',%?, ...,V ™! in Z, the affine function

dm(Z) defined for every Z1 and x = (Zy, Z3) = ngl Aiut, A >0, Zf‘jl Ai =1by

N+1 ) N+1 ‘
br(Z1,7) = Tr (Z1) + o (D Aaw) = Tr (Z1) + Y \f(0,0%),
=1 =1

satisfies ¢ar(Z1,z) = f(Z1,2) Vo € vertM, and any Z; and thus ¢ (Z1,2) < f(z) Vo € M, Z1, i.e.
¢m(Z) is an affine minorant of f in M (in fact the convex envelope of f(Z) over M). On the other
hand, if there is a zero (Z1, Zo, Z3) with (Z3, Z3) € M then again by the concavity of f, one must
have
i h < i H <o0.
z‘:l,g:.l.l,lNﬂf(Zl’u ) <0 Tr(Z1) + izl’g?}.r,lN+1f(O,u ) <0 (34)

Thus a lower bound B(M) satisfying (32) is defined by the convex (LMI) program

N+1 N+1 N+1
BM) = min{gp(Z1, Y Aiu'): (34), D Xi=1, A >0, (Z1, Y A') € X} (35)
=1 =1 =1
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Keeping in mind that the algorithm will stop when the current best value is 0 or there is evidence
that the lower bound of (25) is positive (infeasibility), we can state the simplicial algorithm as
follows. The proof of global convergence of this algorithm is deferred to appendix A.

Step 0. (Initialization) In the Z-space take an N-simplex M large enough such that f is still
concave for (Z2,Z3) € My as the initial simplex. Let Z° be an initial feasible point (the best
available), vg = f(Z°), So = {My}, Po = So, k = 0.

Step 1. (Bounding) For each simplex M = [u!,...,u*!] € P, compute B(M) by (35) and let
Z1(M) and w(M) = ng’l Xi(M)u® be an optimal solution of this (convex) LMI program.

Step 2. (Incumbent) Let Z* be the best among: Z*¥~! and all (Z;(M),w(M)) for M € Py. Let
vp = f(Z¥). If v, = 0, then terminate (a zero has been found). Otherwise, v > 0 (since
f(Z*) > 0, Vk), then go to Step 3.

Step 3. (Pruning) Delete every simplex M € Sy such that S(M) > 0 (this means that f cannot
attain zero with (Zs, Z3) € M N X). Let Ry be the collection of remaining members of Sy.

Step 4. (Termination criterion) If Ry = (), then terminate: there is no zero of f(Z) in X.

Step 5. (Branching) Select My € argmin{3(M)| M € Ry}. Subdivide M}, according to a chosen
normal rule described the Appendix A. Let Py41 be the partition of Mj.

Step 6. (New net) Set Sg11 = (Rg \ {Mk}) UPk+1, k < k+ 1 and return to Step 1.

Figure 1: Simplicial and conical w-subdivisions
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' u3
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Figure 2: Simplicial and conical bisections

5.2 Conical algorithm

Close scrutiny of the objective function properties (Tr (Z; — Z3Z,5 ' Z¥)) in Corollary 3.3 reveals the
following.

(1) If (Z1, Za, Z3) is the solution of Pbl with the zero optimal value then (tZ1,tZ5,tZ3) with ¢t > 1
is also a solution satisfying the same conditions. Thus, without loss of generality, we can set
Tr(Z1) = L, with L a constant large enough.

(#9) Zs > I which means that we can use the change of variable Zy — Z, + eI with Zs > 0 instead
of Zy > 0.

As a consequence, problem Pb1 can be reduced to minimizing the objective function
f(Zy,23) = L — Tx (Z3(Zo + 1)1 ZT) (36)

and LMIs (8)-(22) are changed accordingly using the substitution Zy — Z3 + ¢I. The function f in
(36) is concave in the cone C"* x C™ where C"” is the cone of nonnegative definite matrices with
the same structure as Zo and C™ is the space of symmetric matrices having the same structure
as Zz. It is sufficent to take Z as a large enough finite family of canonical cones approximating
C'"? x C™3 with some tolerance. Perhaps, the most essential property of a concave function f is
that its level sets Cy = {Z = (Z2,23) € Z: f(Z) > 0} are convex and therefore an alternative
formulation of our problem is to find Z € X'\ int Cj or else prove that X C int Cy, where both X, Cy
are convex sets. All these facts are taken into account in the following global search which uses the
so-called concavity cut or Tuy’s cut [31].

In what follows, by a cone we mean a cone with vertex at 0 and exactly N edges. Consider an
initial family Py of cones covering Z and with pairwise disjoint interiors. For each initial cone in Py
take a fixed hyperplane cutting all its edges. Then, the intersection of each subcone of this initial
cone with the above mentioned hyperplane is a simplex with N vertices and is called the base of
the subcone. Let M be a cone with base [u!,u?, ...,u"]. Since f(0) = L > 0, we have 0 € int C
and by the convexity of Cyy the ray from 0 through u® meets the boundary of Cy at a unique point
@' = Q;u’ with 6; > 0 determined by

6; = sup{6 > 0: f(Au’) > 0}. (37)
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Then, since the convex set Cy is closed, %' € Cy and
co{0,@’, i =1,2,...,N} C C. (38)

Consider then the convex (LMI) program

N N
max{» Ai: A >0, Y Nu' € X}, (39)
i=1

=1

and let (M) and A(M) be the optimal value and the optimal solution of this program. Also let
w(M) = ZZA; L Ai(M)@t € X. Only one of the following mutually exclusive possibilities can occur:

(i) #(M) < 1. Then it easily follows that M N X C int Cj, i.e. there is no zero optimal solution in
M N X and so M can be discarded from further consideration;

(ii) w(M) € X\ int Cy (i.e. f(w(M))=0): then we have obtained a zero optimal solution;

(iii) (M) > 1 and w(M) € Cp. In this case w(M) does not lie on any edge of M (so that
the subdivision of M by the ray through w(M) is possible). Indeed, if w(M) lies on some
edge u' of M then we must have w(M) = p(M)@* = p(M)bu' with u(M)8; > 6; and
f(u(M)B;u’) = f(w(M)) > 0, which contradicts the definition (37) for 6;.

Actually, u(M) is not a lower bound for f(z) on M N X but because of the above property,
1 — (M) plays essentially the same role as a lower bound for eliminating portions of the constraint
set. Therefore, using a partition of the cone via the ray through a point in its simplex base defined
according to the normal subdivision rule, the conical algorithm can be described (see Figures 1 and
2 ). Its global convergence can be shown similarly to that of the simplicial algorithm, and is omitted
for brevity .

5.3 Trade-off of two global searches

Let us briefly mention the relative advantages of each of these two global algorithms. Clearly, by
concentrating the search on the boundary of the feasible set, the conical algorithm better exploits
the fact that the global minimum is attained at a boundary point and is therefore more efficient
than the simplicial algorithm in the case of problem Pb.1.

However, the simplicial algorithm is convenient for exploiting the partial linearity of the object-
ive. For instance, in the case when all skew-symmetric matrices T and I" vanish, the objective for
(24) can be reduced to the form

Tr(S) —Tr (271, (40)

which means that it is concave in Y. and linear in S. Since the optimal solution may now project
to an interior point of X', the conical algorithm would require preliminary transformations of the
problem by the introduction of one extra variable, whereas the simplicical algorithm can be applied
directly, with branching operations on the X—space as previously. Thus in this case, the simplicial
algorithm might be preferred.

6 Numerical experiments

This section provides a set of illustrations of the local and global techniques proposed in the pa-
per. As mentioned in the introduction, the overall algorithm can be detailed as follows. The FW
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algorithm is computationally cheaper than simplicial and conical global techniques, and hence is
used first to find a good suboptimal value . Then, the simplicial/conical algorithm are employed
to further reduce =y, or to certify global optimality. As discussed hereafter, in realistic and randomly
generated examples, the FW algorithm is able to locate a suboptimal solution, up to 8% of the global
optimal value, after only a few iterations. The simplicial/conical algorithms starting from this good
initial guess find a global optimal solution very quickly, less than 5 iterations when the problem
is feasible. For infeasible problems, they obtain a positive lower bound of Pb.1 after less than 10
iterations. It is also important to emphasize that for feasible -y, the use of the stopping criteria
in Section 4.2.3 substantially reduces the computational cost since only an approximate solution is
required for termination. This fact and the power of simplicial/conical techniques explains why so
few iterations (LMI runs) are needed and thus the relatively cheap cost of our global algorithms.

6.1 Robust control of an inverted pendulum

The first illustration consists of the robust control problem of an arm-driven inverted pendulum
(ADIP) which is depicted in Figure 3. This is a two-link system comprising an actuated arm (first
link) and a non-actuated pendulum (second link). The main control objective is to maintain the
pendulum in the vertical position using the rotation of the arm. Moreover, this stabilization must be
accomplished on a wide range with respect to the angular position of the arm. A detailed description
of the plant as well as the corresponding physical experiment is given in [19].

Figure 3: Inverted pendulum

By selecting as state vector z :=[z 2 1, 1 ]T, where 1, is the horizontal position of the arm
tip (ry is the vertical position), ¢ and ¢ are the angular positions of the arm and the pendulum,
respectively, and z := r;+ %lz(pg, the following simplified LFT state-space representation is obtained

19].

T = Az + Bawa + Bu
A = Cazx
wA = Aza,
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where the parameter structure is given as

ry 0 0
A= 0 20} 0
0 0 ¢

Therefore, the inverted pendulum admits LPV dynamics and can be controlled using either LPV
or robust control techniques, as those considered here. Given an operating range for the inverted
pendulum, the parameters are normalized such that A = diag(d1,d2l2) with |6;] < 1,4 =1,2.

The synthesis structure used to achieve the design requirements is shown in Figure 4. It simply
translates performance tracking (wyz;) and high-frequency gain attenuation (wgry).

wIixr
wr
[
I I
I 1 I T wqr
T»O—? S K [ ADIP ’ wps =7

| |
"~ “controller 'T’ T

Figure 4: Synthesis structure for the inverted pendulum

Formulated in this way, the local and global robust control techniques discussed in this paper are
immediately applicable. The numerical data of the synthesis interconnection are given in Appendix
B.

The following table displays the performance of each algorithm in terms of number of iterations
and cputime. The computations were performed on a PC with CPU Pentium IT 330 Mhz and all
LMI-related computations were performed using the LMI Control Toolboz [9]. Remember that the
simplicial and conical algorithms are used only after the FW algorithm has failed (y = 0.1903 in
this case). The symbol ’f’ indicates a failure of the FW algorithm to achieve the corresponding
value of v, first column, whereas the symbol ’inf’ is used to specify infeasibility of ~.

From Table 1, we see that the performance found by the FW algorithm is within 5.5 % of the
global optimal value of . It is also worth noticing that with the same -y, there are many solutions
obtained by the global algorithms. For instance, for v = 0.1838, the scaling solutions with the
simplicial and conical algorithms are given as

1.2261 x 107° 0 0 0 0 0
S = 0 0.5110 —0.0231 ., T=10 0 —0.0014 ,
0 —0.0231  0.0042 0 0.0014 0
and
1.2261 x 10~° 0 0 0 0 0
S = 0 0.1719 0.0010 ,T=10 0 0.0073 ,
0 0.0010 4.2145 x 107° 0 —0.0073 0
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FWA SA CA
0% # iter. | cputime | # iter. cputime | # iter. | cputime
0.2 3 65.74 sec. - -

0.1910 10 148.03 sec. - - - -
0.1905 10 152.09 sec - - - -

0.1904 2 56.08 sec - - - -

0.1903 f f 1 12.3 sec. 1 18.73 sec
0.1838 - - 2 84.80 sec. 1 18.95 sec
0.18375 - - 12(inf) | 793.01 sec. 1 18.840 sec.
0.18370 - - 1(inf) | 13.03 sec | 1(inf) | 16.04 sec

Table 1: FWA: Frank and Wolf Algorithm; SA: simplicial algorithm;
CA: conical algorithm; f: the test fails; inf: no zero optimal value (infeas.)

respectively. The optimal scalings with v = 0.18375 and the conical algorithm are

1.2264 x 10~° 0 0 0 0 0
S = 0 0.1748 0.0010 ,T=10 0 0.0074
0 0.0010 3.3449 x 10~° 0 —0.0074 0

The optimal value of v achieved with both the simplicial and conical algorithms are very close to
that obtained using LPV synthesis (y = 0.1830), which indicates that one will hardly find a better
linear time-invariant controller for the specified control objectives.

6.2 Randomly generated examples

Furthermore, our algorithms were tested over a hundred randomly generated robust control problems
with sizes around those of the inverted pendulum (Table 2) and also for problems of much larger
dimensions. Computational experience shows that the number of iterations is almost not sensitive
to the problem dimensions while the cputime is strongly depending on the efficiency of the LMI
solver used in the FW steps and also for lower bound computations in the simplicial and conical
algorithms.

The optimal -y is computed using a bisection scheme in the interval [y;py, Y], Where ypy, is the
best performance reached by the FW algorithm and vy, is the optimal performance achieved using
LPV synthesis. Note that <y, obviously provides a global lower bound on the performance level.

Step 0. Set Yopt = Yiw» Vif = Vipv;

Step 1. Take v = (Yopt + viy)/2 and use the simplicial/conical algorithm to solve Pb. 1. If LMIs
(8)-(22) are feasible then set yop; <= y. Otherwise set ;5 < 7.

In our experiments, the conical algorithm is slower than the simplicial one for finding a feasible
solution but it is faster for proving infeasibility of some . The average performance for tolerance
samples from 8% to 2.5% is presented in Table 2.
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¥ FWA SA CA
# iter. | cputime | # iter. cputime # iter. cputime
Y fw 25.3 | 436.72 sec. - - - -
V8% - - 2.1 75.63 sec. 2.3 137.86 sec.
V5% - - 7.0 405.24 sec. 5.3 300.11 sec.
Y2.5% - - 20.3(t) | 830.85 sec. (t) | 36.7 (t) | 1007.33(t)

Table 2: FWA: Frank and Wolf Algorithm; SA: simplicial algorithm; CA: conical algorithm; t: total
iterations/cputime needed for arriving at the optimal solution in the 7 bisection.

6.2.1 A larger problem

Finally, we consider a larger problem with the data given in Appendix C. This example is intended
to serve as a test example for competing techniques. It is also interesting since standard D — K
iteration schemes fail to reach an optimal solution. The uncertainty structure is described as

A(t) = diag(51 (t)IQ, (52(t)12, ceey (55 (t)IQ) .
This gives rise to the following scaling structure in (7)
S = diag(Sl, SQ, “e ,55), T = diag(Tl,TQ, ‘e ,T5) y

where S; and T; are 2 X 2 symmetric and skew-symmetric matrices. The performance in terms
of iterations of our algorithms is very much like that of the inverted pendulum examples and is
omitted here to save a space. The best performance found by the Frank and Wolfe algorithm is
Yw = 1.7890 while the best (global optimal) performance found by both simplicial and conical
algorithms is 7,y = 1.7835. Here again the FW algorithm provides a very good suboptimal value.
At 7y, both simplicial and conical algorithms need just one iteration with the stopping criterion to
find the corresponding optimal scaling with cputime 266.66 sec. and 566.61 sec., respectively. The
computional times for proving infeasibility of a smaller -y are 236.67 sec. and 299.70 sec.. As for the
random examples in Table 2, the iteration count remains reasonable and the cputime performance
is dictated by the time required for solving an individual LMI problem. The optimal scaling found
by the simplicial algorithm is

S, = [0.6231  0.0078 S, — [ 24.5429 0.2083] S, — [ 24.5255 0.2913]
0.0078 0.8834 |’ 0.2083 24.2111 |’ 0.2913 23.5374
Su — [2.5050 0.2320 S [24.7840 —0.0371 )
0.2320 2.9766 | | —0.0371 24.4618 |’

0 —0.0319 0 —0.2848 0 —0.2694
= 0.03190 » B 02848 0 |° T = |0.26040 ]
T, — [0 —0.0829] T [0 —0.3887 )

| 0.0829 0 ’ | 0.3887 0 ’
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while that found by the conical one is

g _ [06489 —07276] o _ [ 64585 —9.4148 5. _ [ 33073 —4.6313
b7 [-07276  1.0803 |' 77 T | —9.4148 141924 |7 77 T | —4.6313 6.9327 |’
g, _ | 24087 —05502] o _ [ 109920 —16.11i9
Y7 | -05502 26384 |7 P T | -16.1119  24.0839 |’
0 0.6988 0  —0.0206 [ 0 —0.0678
Bo= 1 oeess o |° = loos o | 5= looers o ]
0 06785 0 —0.0108
= | 06785 0 |’ L = 0.0108 0

7 Concluding remarks

In this paper, we show that many important problems in robust control theory can be formulated
as the minimization of a concave functional over a convex set determined by LMI constraints. In
this respect, concavity appears to play a central role in a broad class of problems. This is the
departure point which motivates the development of a comprehensive technique which provides a
global solution of robust control problems admitting scaling-based characterizations. Although,
we do not pursue the vein further, it appears that the technique is applicable with only modest
changes to many other difficult problems encompassing fixed-order robust control, multi-objective
LPV control, ... and any aggregation of these problems. We also derive new results, interesting
in their own, which clarify the equivalence between BMIs, rank constrained LMI problems and
zero-seeking concave programs.

The proposed optimization method comprises a local search algorithm combined with extensions
of global concave minimization techniques which at the final stage secure global optimality of the
solutions or invalidate feasibility of the problem. The method takes advantage of the concavity and
convexity characteristics of the problem. It is also aided by adequate stopping criteria to reduce as
far as possible the overall computational overhead.

Surprisingly, the theoretically predicted high degree of complexity of the problems under consid-
eration never shows up both in realistic and randomized experiments. Therefore, the only limitation
of the method turns out to be the power of currently available semidefinite programming solvers for
handling repeated LMI problems. Experience on large problems demonstrates that it constitutes
a tractable approach for realistic applications. The good results obtained in this paper are not
exception in general nonconvex optimization. For the the geometric problem of point sets bilinear
separation, Bennett and Mangasarian note that experimentally, the FW algorithm provides optimal
solutions without a single failure [3]. Konno, Thach and Tuy point out the fact that for concave
problems with low rank nonconvex structures the time required to get a global solution is often not
much than the time of a few linear programs [20].

This work also raises several important directions for future research.
e The use of the algorithms for handling general BMI problems is currently under study.

e Extensions of the technique to Popov multipliers are also of practical interest to tackle more
sophisticated uncertainty descriptions.

e From an optimization viewpoint, there are different ways for further improving the efficiency
of the algorithms, for instance, by exploiting monotonicity properties of the objective function.
The FW algorithm can be locally accelerated by a Newton-like method with quadratic local
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convergence. There are also possibilities of using multiple restarts of the FW algorithm inside
the simplicial /conical techniques while preserving global convergence and optimality.

A Convergence of simplicial algorithm

Let My, be the simplex chosen for subdivision at iteration k and (Z;(Mjy),w(My)) be the optimal
solution of problem (35) with M = My, ie. w(Myg) € My N My and ¢, (Z1(My),w(My)) =
B(Mj). Note that, as (Z1(Mg),w(My)) is feasible, we must have v < f(Z1(Mg),w(My)), so if it
SO happens that w(Mk) S Vert(Mk) then ﬁ(Mk) = ng(Zl(Mk),w(Mk)) = f(Zl(Mk),w(Mk)) = Vi
and therefore B(M}) will be the exact minimum of f over X and according to the stop criterion (33)
the algorithm will terminate. This suggests that to accelerate the convergence one should subdivide
My, via w(My). Such a subdivision strategy, called the w—subdivision strategy [32], has long been
used [31] and is known to work well in practice though its theoretical convergence is still an open
question [32]. Another subdivision strategy called the bisection strategy consists in subdividing M
via the midpoint of its longest edge. This subdivision guarantees convergence but the convergence
speed is most often much slower than the previous one. Therefore, the following so called normal
subdivision rule which combines w—subdivision with bisections in a mixed strategy is a recognized
good trade-off between convergence and efficiency.

Normal subdivision rule. Let M} be the candidate simplex for subdivision at iteration k.
Select an infinite increasing sequence 11 of natural numbers and define the generation index of every
simplex M by setting T(Mp) = 0 and 7(M') = 7(M) + 1 whenever M’ is a child of M (i.e. M' is
one member of the partition of M ). Then: if 7(My) € II then bisect My. Otherwise w-subdivide
M;.

The idea of the normal rule is to use w-subdivision in most iterations and bisection occasionally,
in such a way that any infinite nested sequence of generated simplices involves infinitely many
bisections. In practical implementation, it suffices to do one or two bisections only when the
procedure seems to slow down.

A basic property of the normal rule ensuring its convergence is the following [32, Th. 5.1].

Lemma A.1 Let {M}, k= 0,1,2,... be any infinite nested sequence of simplices generated by a
given normal rule. Then at least one accumulation point w™ of the sequence {w*} = {w(My)} will
be a vertex of Mo, = N2, M.

Theorem A.2 Fither the simplicial algorithm terminates after finitely many iterations, yielding a
zero optimal solution of (25) (termination at Step 2) or providing evidence that (25) has no zero
optimal solution (termination at Step 4). Or it generates an infinite sequence of feasible solutions
(ZF,wk) converging to a zero optimal solution.

Proof: Suppose the algorithm is infinite. One of the children of My must have infinitely many
descendants, hence must be splitted at some iteration ki, i.e. must be My, for some k; (following
our notation, My is the candidate for further partition at iteration k). Analogously, one child of
My, must be My, at some iteration ka2 > ki and so on. Proceeding that way we see that there
exists a nested sequence My, , v = 1,2,... as in Lemma A.1. For short, let us write M, for M},
and (Zy,w") for (Z1(My,),w(My,)). Without loss of generality, we can assume that (Z},w") —
(Z9°,w™) with w™® € vert(NS2;M,). But it is easy to see that any vertex of My, := N2, M, is
an accumulation point of some sequence {u”* € vert(M,),v = 1,2,...}, where the second index
stands for the vertex number. By passing to subsequences if necessary, we can assume without
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loss of generality that u”! — w™. Then ¢y, (ZY,w") — ¢ar, (ZY,u"') — 0 because this difference
equals Zfﬁil[}\y,i — ) £(0,u”") with ©** — «™* and A\, ; — py; — 0 as v — oo (in view of the fact
w’ — u®! — 0). Therefore,
F(Z7%,w®) = lim f(Z{,u”") = lim ¢ur, (Z7,u') = lim ¢, (27,0") = lim B(M,).
V—0oQ V—0oQ V—0oQ vV—00

Now, as was pointed out earlier, 5(M,) < min{f(Z) : Z € X}. Hence f(Z°,w™) < min{f(Z) :
Z € X}. On the other hand, Step 3 guarantees that (M}, ) < 0, while the termination criterion in
Step 2 implies f(ZY,w”) > 0. Taking the limits yields f(Z{°,w*>) < 0 and f(Z°,w™) > 0, hence

f(Z7°,w>) = 0.

B State-space data for inverted pendulum
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A Ba B1 B>
Ca | Dan | Dar | Daz
C1 | Dian | D11 | D12 o
C2 | Dapa | D21 0
r 0 1 0 0 0 0 0 0 0 0 0 b
48.9844 0 —48.9844 0 0 0 —.35634 —.015548 0 0 0
0 0 0 184940 0 .0750596 0 0 0 0 0.0
0 0 0 —50.0 0 0 0 0 0 0 0
0 0 —.50 0 0 0 0 0 0 .50 0
0 0 0 1 0 0 0 0 0 0 0
436.33231 0 —.043633 0 O 0 0 .043633 0 0 0
1 0 —1 0 0 0 0 0 0 0 0
0 0 O .0036988 O .001501 0 O 0 0 0
0 0 O 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 -1 0 O 0 0 0 0 0 0
L 0 0 0 0 1 0 0 O 0 0 0 i




C State-space data for large problem

Al =
A=[A1 Aq],

A2 =

I 0 0

0 0

0 0

0 0

0 0

0 0

0 0

Ba = 0 0
—0.63080 0.17870
0.63200 —0.83640
2.22270 0.08180
—2.06740 0.35770

0 0

0 0

0 0

L 0 0

[B1 B2] =

L
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[—101 —99.90000 0 0 0 0 0 0 1
0 —101 0 0 0 0 0 0
0 0 —101 —99.90000 0 0 0 0
0 0 0 —101 0 0 0 0
0 0 0 0 -1 0 0 0
0 0 0 0 0 -1 0 0
0 0 0 0 0 0 -1 0
0 0 0 0 0 0 0 -1
0 0 0 0 0 0 427.09800 —46.83410
0 0 0 0 0 0 232.07190 120.46490
0 0 0 0 0 0 —764.24560  85.41540
0 0 0 0 0 0 166.82700 —264.77390
0 0 0 0 0.31620 0 0 0
0 0 0 0 —0.12500 0 0 0
0 0 0 0 0 0.31620 0 0
0 0 0 0 0 —0.12500 0 0 |
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
-1 0 0.42710  —0.04680 0 0 0 0
0 -1 0.23210 0.12050 0 0 0 0
0 0 —1.76420 0.08540 0 0 0 0
0 0 0.16680  —1.26480 0 0 0 0
0 0 0 0 —1.10000 —0.07590 0 0
0 0 0 0 0 -1 0 0
0 0 0 0 0 0 —1.10000 —0.07590
0 0 0 0 0 0 0 -1 |
0 0 —0.00100 0 0 0 —0.00100 0 1
0 0 —0.00100 0 0 0 —0.00100 0
0 0 0 —0.00100 0 0 0 —0.00100
0 0 0 —0.00100 0 0 0 —0.00100
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.00030 0.00010 —0.63080 0.17870 0.00030 0.00010
0 0 0.00010 0.00030 0.63200 —0.83640 0.00010 0.00030
0 0 —0.00050 —0.00030 2.22270 0.08180 —0.00050 —0.00030
0 0 0.00010 —0.00030 —2.06740 0.35770 0.00010  —0.00030
—0.31620 0 0 0 0 0 —0.31620 0
0.12500 0 0 0 0 0 0.12500 0
0 —0.31620 0 0 0 —0.31620 0 0
0 0.12500 0 0 0 0 0 0.12500 |
0 —0.00100 0 0 —9.99500 0 1
0 —0.00100 0 0.19900  —9.99500 0
0 0 —0.00100 0.21100 0 —9.99500
0 0 —0.00100 | —0.23300 0 —9.99500
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0.17870 0.00030 0.00010 0 2.71730 1.42740
—0.83640  0.00010 0.00030 0 1.42740 2.83820
0.08180 —0.00050 —0.00030 0 —4.79090 —2.60320
0.35770 0.00010  —0.00030 0 1.02610 —2.63930
0 —0.31620 0 0.11000 0 0
0 0.12500 0 0 0 0
—0.31620 0 0 0 0 0
0 0 0.12500 0.01000 0 0 |



r 0 0 0 0 0 0 —-6.11370 291140 0 0 —0.00610 0.00290 0
0 0 0 0 0 0 1.55640 3.48340 0 O 0.00160 0.00350 0
0 0 0 0 0 0 0 0 0 0 0 0 —0.47430
0 0 0 0 0 0 0 0 0 0 0 0 0
Ca = 9.99500 9.99500 0 0 0 0 0 0 0 0 0 0 0
0 0 9.99500 9.99500 0 O 0 0 0 0 0 0 0
0 0 0 0 0 O 1.55640 3.48340 0 O 0.00160 0.00350 0
0 0 0 0 0 0 0 0 0 0 0 0 —0.47430
0 0 0 0 0 0 0 0 0 0 0 0 0
1 9.99500 9.99500 0 0 0 0 0 0 0 0 0 0 0
[0 0 0 0 0 0 155640 3.48340 0 O 0.00160 0.00350 0 0 0 0]
Ci=1]0 0 0 0 0 O 0 0 0 0 0 0 —0.47430 0 0 0
_0 0 0 0 0 O 0 0 0 0 0 0 0 0 —0.34790 0_
ro o o 0 0 0 0 0 0 0 0 0 —0.31620 O 0 017
0O 0 0 0 0 0 0 0 0 0 0 0 0 0 —-0.31620 0
Co=]0 0 0 0 0O O 1.55640 3.48340 0 O 0.00160 0.00350 0 0 0 0
00 0 0 0 O 0 0 0 0 0 0 —0.47430 0 0 0
LO O 0 0 O O 0 0 0 0 0 0 0 0 —0.34790 0/
[Daa Da1 Daz]=
[0.59860 —0.00390 0 O 0 0 0.59860 —0.00390 0 0 0.59860 0.02730 0 0 O
0.02730 —0.56130 0 O 0 0 0.02730 —0.56130 0 O —0.00390 —-0.56130 0 O O
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.00010 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.00010 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.59860 0.02730 0 0 O
0 0 0 0 0 0 0 0 0 0 -0.00390 —-0.56130 0 0O O
0 0 0 0 0.00010 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0.00010 0 0 0 0 0 0 0 0 0
0.59860 —0.00390 0 0O O O 0.59860 —0.00390 0 0 O O O O O O
[DIA D11 D12] = 10.02730 —-0.56130 0 0 O O 0.02730 —-0.56130 0 0 0 O O O O O
0 0 0 0 0 0 0 0 00 0 0 0 0 0O

[Daa D21]=0.
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