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Positive real constraints on the closed-loop of linear systems
guarantee stable interaction with arbitrary passive environments.
Two such methods of H1 optimal controller synthesis subject to a
positive real constraint are presented and demonstrated on
numerical examples. The first approach is based on an established
multi-objective optimal control framework using linear matrix
inequalities and is shown to be overly restrictive and ultimately
infeasible. The second method employs a sector transformation
to substitute the positive real constraint with an equivalent H1
constraint. In two examples, this method is shown to be more reli-
able and displays little change in the achieved H1 norm com-
pared to the unconstrained design, making it a promising tool for
passivity-based controller design. [DOI: 10.1115/1.4036073]

1 Introduction

Closed-loop passivity is often employed to guarantee interaction
stability with uncertain passive environments. In the context of tac-
tile human-robot interaction, for example, passivity of the mechani-
cal impedance is prescribed to enable safe interaction with a
human user. Traditionally, this is achieved by exploiting controller
structure, such as proportional-derivative-type control of
Euler–Lagrange systems [1], or finding the passivity preserving
parameter regions of fixed structure controllers and plants [2]. For
linear time invariant (LTI) systems, the correspondence of passivity
to positive real transfer functions if well known and can be
expressed through linear matrix inequalities [3]. This has recently
been exploited in the design ofH2 optimal controllers with positive
real transfer functions, which are thus robust to arbitrary uncer-
tainty in a passive plant [4]. In this contribution, we consider robust
optimal control under the constraint that the closed-loop transfer
function remains positive real, in order to guarantee stability in
interaction with passive environments. An approach using optimal
robust control was presented in Ref. [5]. There, a H2 controller
design that satisfies a positive real constraint is described, in which

loop performance can be shaped by solving a guaranteed cost prob-
lem. In Ref. [6], the H1 optimal control with closed-loop positive
realness is considered for the special case of symmetric state space
systems. Another approach is presented in Ref. [7], where the H1
norm of the distance to passive transfer function is minimized.
This, however, cannot guarantee closed-loop passivity a priori.

This paper aims to augment the established methods of H1
optimal control with a passivity constraint. This enables controller
design free of restrictive controller structure with the additional
benefit of established robustness properties of theH1 design.

Two approaches are pursued in this paper. The first is based on
a multi-objective controller synthesis framework presented by
Scherer et al. [8]. Here, the possibility is given to augment an H2

or H1 objective with a QSR-Dissipativity constraint, including
positive realness constraints. The resulting procedure, however,
restricts the solution-space during controller synthesis due to a
common matrix Lyapunov variable. In this contribution, the feasi-
bility of this approach is evaluated.

The second approach relies on a nonlinear sector transformation
called the Cayley transformation. In Safonov et al. [9], the authors
have shown how to employ similar transformations for controller
synthesis to ensure that the controlled plant’s transfer function be
positive real [9]. The approach, however, does not consider a
performance objective, making controller design with regard to
performance goals difficult. Bao et al. presented similar ideas
to robustify H1 controllers for arbitrary passive uncertainties
[10,11]. They rely on an optimization over the parameterized
central H1 controller, which necessitates an iterative and often
unstructured outer optimization.

This contribution presents direct approaches to the constraint
problem by solving constrained optimization problems and is
structured as follows: Section 2 introduces the considered problem
formulation and states necessary definitions and Lemmas. In
Sec. 3, the investigated approaches are individually presented
and finally evaluated on numeric examples in Sec. 4. Section 5
summarizes the results in a short conclusion.

2 Preliminaries

Consider a stable linear time invariant (LTI) system

(1)

with states x 2 Rn, inputs u 2 Rm, outputs y 2 Rp, and transfer
function matrix

GðsÞ ¼ Cðs I� AÞ�1
Bþ D (2)

Positive realness for LTI systems, which entails passivity, can be
established through the following Lemma.

LEMMA 1 (Positive Real Lemma). The LTI system G has a
(extended strictly) positive real transfer function G(s) if and only
if there exists a positive definite solution in Xpr to the following
linear matrix inequality (LMI):

ATXpr þ XprA XprB� CT

BTXpr � C �D� DT

" #
� 0 (3)

where it is extended strictly positive definite if the strict inequality
holds.

A passive system in negative feedback with any passive envi-
ronment will maintain passivity. An LTI system is furthermore
asymptotically stable if at least one system is strictly passive [12].
For single-input single-output (SISO) systems, positive realness
corresponds to the fact that the real part of the systems frequency
response Re(T(jx)) is nonnegative for every x 2 R.

The H1 norm of the system G can be evaluated using the
Bounded Real Lemma.
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LEMMA 2 (Bounded Real Lemma). The LTI system G has a
transfer function G(s) with limited gain kGðsÞk1 < c if and only
if there exist a positive definite solution in X1 to the LMI

ATX1 þ X1A X1B CT

BTX1 �cI DT

C D �cI

2
664

3
775 � 0 (4)

This linear matrix inequality description has frequently been
exploited forH1 optimal controller synthesis [13,14].

It is possible to express the positive realness constraint as an
equivalent constraint on a H1 norm using the Cayley transforma-
tion [10,15].

LEMMA 3 (Cayley Transformation). Consider the LTI system G
with transfer function G(s). Let the Cayley transformation be
given by

G0ðsÞ ¼ ðI� nGðsÞÞðIþ nGðsÞÞ�1
(5)

where n is any positive real number. System G is (extended
strictly) positive real if and only if

kG0ðsÞk1 � 1

where it is extended strictly positive real if the strict inequality
holds.

We will consider a multi-objective generalized plant configura-
tion as presented in Fig. 1, which consists of one channel for the
H1 objective and one for a positive real constraint.

The state-space representation of the generalized plant can be
expressed as

(6)

where we assume D2¼ 0 without loss of generality. The systems
dimensions are given by

A 2 Rn�n; B1 2 Rn�m1 ; Bpr 2 Rn�mpr ; B2 2 Rn�m2 ;

C1 2 Rp1�n; Cpr 2 Rppr�n; C2 2 Rp2�n (7)

With a state-space description of the controller

(8)

the closed-loop system is given by

(9)

where (�) are cross coupling terms that are irrelevant in the multichan-
nel design. A realization of the closed-loop matrices can be obtained
using the lower linear fractional transformation of P(s) and K(s)

PclðsÞ ¼ F lðPðsÞ;KðsÞÞ

which has a state-space realization

Acl ¼
Aþ B2DcC2 B2Cc

BcC2 Ac

� �
; Bcl;i ¼

Bi þ B2DcD2;i

BcD2;i

� �
;

Ccl;i ¼ Ci þ Di;2DcC2 Di;2Cc

� �
; Dcl;i ¼ Di þ Di;2DcD2;i

� �
(10)

where i � {pr,1} denotes either the positive-real (PR) or the H1
channel.

3 Controller Design With Closed-Loop Positive

Real Constraints

3.1 Linear Matrix Inequality Approach. Applying Lemmas
1 and 2 to the closed-loop system of Eq. (9) yields matrix inequal-
ities that are nonlinear in the controller parameters Ac;Bc;Cc;Dc

and Lyapunov variables Xpr;X1. A nonlinear variable transfor-
mation to linearize the resulting inequalities was presented, which
facilitates effective optimization. In order to apply the transforma-
tion to the multi-objective case, however, one needs to restrict the
Lyapunov variables to be equal

X1 ¼ Xpr ¼ X (11)

This was demonstrated to be of little conservatism for combined
H2 �H1 applications [8]. The change of variables transforms
the controller parameters and the Lyapunov variable X to obtain
linearized synthesis equations

Ac Bc

Cc Dc

� �
! Â B̂

Ĉ D̂

" #
and X! Y; ~Y (12)

For details on the linearizing variable transformation and control-
ler reconstruction refer to the cited material [8,16].

With this change of variables, the positive real constraint
(Lemma 1) is transformed to the following linear synthesis LMIs

AYþB2ĈþðAYþB2ĈÞT AþB2D̂C2þÂ
T ð1;3Þ

? ~YAþB̂C2þð~YAþB̂C2ÞT ð2;3Þ
? ? ð3;3Þ

2
664

3
775�0

(13)

with

ð1; 3Þ
ð2; 3Þ
ð3; 3Þ

2
4

3
5 ¼

BD̂D2;pr � CprYþ Dpr;2ĈÞT

~YBpr þ B̂D2;pr � ðCpr þ Dpr;2D̂C2ÞT

�ðDpr þ Dpr;2D̂D2;prÞ � ðDpr þ Dpr;2D̂D2;prÞT

2
664

3
775

and ? representing terms easily deduced by symmetry.
Equally, application of the transformation to the H1 objective

(Lemma 2) yieldsFig. 1 Multi-objective generalized plant configuration
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AYþ B2Ĉ þ ðAYþ B2ĈÞT ? ? ?

ðAþ B2D̂C2ÞT þ Â ~YAþ B̂C2 þ ð~YAþ B̂C2ÞT ? ?

ðB1 þ B2D̂D2;1ÞT ð~YB1 þ B̂D2;1ÞT �cI ?

C1Yþ Di;2Ĉ
T

C1 þ Di;2D̂C2 D1 þ D1;2D̂D2;1 �cI

2
666664

3
777775 � 0 (14)

and the positive definiteness condition on X results in

Y I

I ~Y

" #
� 0 (15)

A closed-loop system that satisfies Eqs. (13)–(15) is guaranteed
to have positive real transfer function from wpr to zpr and has H1
norm smaller c from w1 to z1. Because the equations are linear

in all unknowns ~A; ~B; ~C; ~D; Y; ~Y and c, it is suitable for optimi-
zation with regard to c, which can be achieved using established
methods [17]. The resulting semidefinite program (SDP) is

min
Â;B̂;Ĉ ;D̂;Y; ~Y

c ;

subject to

Eq: ð13Þ;

Eq: ð14Þ;

Eq: ð15Þ

8>>><
>>>:

(16)

3.2 Non-Smooth Optimization With the Cayley Approach.
As an alternative to fairly standard LMI techniques, we have
decided to evaluate tailored non-smooth programming techniques
as discussed in Refs. [18,19]. Such techniques indeed offer full
flexibility to designers.

(1) Controller complexity is kept under control as they can be
used to compute reduced-order or even highly structured
controllers such as proportional–integral–derivatives (PIDs)
controller, observer-based controllers or any controller
architecture made of PIDs, transfer functions and/or state-
space models. More formally, a controller K of the form
(8) is called structured if the state-space matrices
Ac;Bc;Cc;Dc depend smoothly on a design parameter
vector j varying in some parameter space Rnj , or in a con-
strained subset of Rnj . In other words, a controller structure

Kð�Þ, or K(j), consists of four smooth mappings Acð�Þ : Rnj

!Rk�k; Bcð�Þ : Rnj !Rk�p2 ; Ccð�Þ : Rnj !Rm2�k, and
Dcð�Þ : Rnj !Rm2�p2 .

(2) Non-smooth optimization techniques are inherently multi-
objective and can encompass general casts of the form

minimize kF lðP1;KðjÞÞk1
subject to kF lðPi;KðjÞÞk1 � ci; i ¼ 2;…;N

K stabilizes Pi internally; i ¼ 1;…;N

K has a fixed structure KðjÞ

(17)

where ci are some threshold limiting the H1 norm of zi in
response to wi. Furthermore, the plants in the objective and
H1 constraints of Eq. (17) need not be identical, such that
multimodel problems are readily accessible.

For completeness, we should stress that program (17) is
NP-hard [20]. This means global solutions are not generally
reachable in polynomial time. A more modest and practical goal
consists in computing local solutions. The approaches in
Refs. [18,19] and implemented in the MATLAB routines hinfstruct
and systune [21] have been developed for this purpose. Abundant
testing since 2010 indicates local solutions makes sense in prac-
tice. To partly overcome nonconvextiy issues, multiple starting
points can be used to somewhat globalize the approach. It is also
important to note that the program (17) involves a mixture or soft
and hard constraints. Hard constraints correspond to classical con-
straints in mathematical programming and prevail over soft con-
straint. Practically speaking, this means a controller has to satisfy
hard constraints to be acceptable. A local solution is by definition
a locally optimal controller in the set of hard constraint feasible
controllers. Refer to the cited material [18,19] for details on the
nonsmooth optimization.

Given the cast (17), our second approach to PR constraints is
based on the Cayley transformation (Lemma 3). We aim to
employ the transformation to change the mixed H1 -PR problem
into a multichannel H1 problem. The Cayley transformation

Fig. 2 Block diagram representation of the multi-objective Cayley transformation
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G0prðsÞ ¼ ðI� nGprðsÞÞðIþ nGprðsÞÞ�1
can be expressed through

simple feedback and feed-forward operations. The application of
the procedure to the multi-objective plant (Fig. 1) is displayed
in Fig. 2 in form of a block diagram, where the P0 refers to the
transformed plant.

Applying linear fractional transformations, we can identify the
system equations of the plant after transformation. In transfer
function representation, this yields for the H1 part of the plant
(for readability, we drop the dependency on s in the following
equations when convenient)

P01 ¼
G01 G01;2

G02;1 G02

" #

¼
G1 þ nG1;prðIþ nGprÞ�1

Gpr;1 G1;2 þ nG1;prðIþ nGprÞ�1
Gpr;2

G2;1 þ nG2;prðIþ nGprÞ�1
Gpr;2 G2 þ nG2;prðIþ nGprÞ�1

Gpr;2

" #
(18)

and the positive real part

P0pr ¼
G0pr G0pr;2

G02;pr G02

" #

¼
ðIþ nGprÞ�1ðI� nGprÞ �2ðIþ nGprÞ�1

Gpr;2

nG2;prðIþ nGprÞ�1
G2 þ nG2;prðIþ nGprÞ�1

Gpr;2

" #

(19)

while the entire plant can be given by

P0 ¼
G01 ð�Þ G01;2
ð�Þ G0pr G0pr;2

G02;1 G02;pr G02

2
664

3
775 (20)

where again the terms in (�) can be neglected because cross-
coupling terms are not considered in the optimization. A deriva-
tion of Eq. (20) is given in the Appendix.

It is obvious from Eq. (18) that the H1 channel is not unaf-
fected by the transformation. The individual terms consist of the
sum original terms and terms that are due to the feedback connec-
tion of the transformation. The gain n can, however, theoretically
be chosen to be arbitrarily small to reduce the influence of the
feedback connection. In practice, however, this will result in a
badly conditioned problem and numerical difficulties, such that a
tradeoff has to be found. The resulting H1 optimization proce-
dure is given by

min
K

c ;

subject to

���� z01
w01

����
1

<c ;���� z0pr

w0pr

����
1
� 1

8>>>><
>>>>:

(21)

which is in the form of problem (17).

4 Numerical Examples

In the following, two examples are presented to evaluate the
feasibility and possible conservativeness of the proposed control-
ler synthesis methods. First, we consider a simple disturbance
rejection problem. We show, that a classic H1 design renders the
closed-loop transfer function nonpassive and demonstrate that this
can be overcome with the additional positive realness constraint.

4.1 First Example

4.1.1 Setup. Given a simple first-order plant G with transfer
function TðsÞ ¼ ð1=ð1þ sÞÞ, we wish to design a controller for
disturbance rejection using H1 methods. To this end, we employ
a performance weight Wp and an input weight Wu in the configura-
tion shown in Fig. 3.

To limit controller effort, we choose an input weight of

Wu sð Þ ¼ sþ 5

sþ 50
(22)

and as a performance weight, we have

Wp sð Þ ¼
5

s=2þ 1
(23)

This way, theH1 objective becomes

����� Wp Tð1þ KTÞ�1

Wu KTð1þ KTÞ�1

" #�����
1

< c (24)

where Tð1þ KTÞ�1
is the closed-loop disturbance transfer

function.
Additionally, we wish to ensure positive realness of the closed-

loop system and define the transfer function from d to y as the

Fig. 3 Block diagram of a simpleH‘ disturbance rejection problem
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positive real objective. The generalized plant for the multi-
objective approach is

P ¼

Wp Tð1þ KTÞ�1 ð�Þ �WpTð1þ KTÞ�1

Wu KTð1þ KTÞ�1 ð�Þ �Wu KTð1þ KTÞ�1

ð�Þ Tð1þ KTÞ�1 �Tð1þ KTÞ�1

Tð1þ KTÞ�1 Tð1þ KTÞ�1 �Tð1þ KTÞ�1

2
66664

3
77775

(25)

with

w1
wpr

u

2
4

3
5 ¼ d

d
u

2
4
3
5; and

z1
zpr

y

2
4

3
5 ¼

zp

zu

� �
y
y

2
664

3
775 (26)

Note that certain signals are duplicated. For example, d is the
input to both the H1 channel and the PR channel. Similarly, y is
both the feedback signal and objective of the positive real
channel.

4.1.2 Linear Matrix Inequality Approach. The plant in Eq.
(25) is readily put into state space form for application in Eqs.
(13) and (14). Solutions to the optimization problem are investi-
gated using the MATLAB toolboxes Yalmip [22] and SeDuMi [23].
Yalmip acts as an interface to the solver toolbox SeDuMi and
allows for the direct use of the LMIs in the presented form.

The optimization problem is successfully solved for the trans-
formed variables and the controller KLMI can be reconstructed.
The maximum singular value plot of the closed-loop system is
given in Fig. 4. For reference, a classic H1 controller Kclassic is
designed using same LMI procedure without the additional posi-
tive real constraint.

The multi-objective controller does not decrease the H1
performance in this example. As can be observed in Fig. 5, the
positive real condition is also satisfied whereas the conventional
H1 approach does not provide a positive real port transfer
function.

A weakness of the procedure, however, is revealed when check-
ing the objective function of the optimization problem. The opti-
mization procedure terminates with a value of

c ¼ 87:95

which is highly conservative with respect to the actually achieved
H1 norm of ����� Wp Tð1þ KLMITÞ�1

Wu KLMITð1þ KLMITÞ�1

" #�����
1

¼ 1

Since the only source of conservatism in the approach is the con-
straint on the Lyapunov variable X1¼X2¼X, this implies that

the constraint severely diminishes the set of feasible solutions
which can result in conservative controller designs or unfeasible
optimization procedures.

4.1.3 Cayley Approach. As discussed earlier, the Cayley
approach can conveniently be implemented using the nonsmooth
H1 optimization procedure systune in MATLAB. The optimization
procedure furthermore requires a fixed structure controller. For
better comparability, a general full (fourth)-order state-space con-
troller is chosen. Because of the nature of the Cayley transforma-
tion, the positive real objective has to be solved with high
accuracy; the tolerance is set to eps¼1e-10 and a scaling factor
for the positive real channel of n¼ 10�2 is chosen.

As presented in Fig. 4, the multi-objective Cayley solution also
introduces no conservatism on the H1 channel in this example.
The positive real constraint is met as shown in Fig. 5. The prob-
lem is reliably solved by the optimization procedure. It is, how-
ever, nonconvex and depends on initial values of the controller
and error tolerances.

4.2 Second Example. As a second example, we consider the
torque control of a series elastic actuator. They are frequently
used in rehabilitation robotics because of their inherent compli-
ance and their ability to physically decouple patient and robot
[24]. These cases necessitate stable interaction with human users,
which can be achieved by guaranteeing a passive mechanical load
impedance

Timp sð Þ ¼ �
sl sð Þ
_ul sð Þ

(27)

We will consider a simple actuator model as depicted in Fig. 6
consisting of motor inertia J, viscous motor friction Ff ¼ b _um,

Fig. 5 Bode plot of the closed-loop frequency response
Tcl ðjxÞ5 yðjxÞ=dðjxÞ

Fig. 4 Singular value plot of the H‘ channel with different
controllers

Fig. 6 Simple series elastic actuator (SEA) model consisting of
motor inertia J, viscous friction coefficient b, and ideal spring
constant k
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and an ideal spring as the series elastic element with FSEA

¼ �kðul � umÞ.
A minimal order state-space realization is given by

, with

A¼
0 1

�k=J �b=J

" #
; B¼

�1 0

0 1=J

" #
; C¼ ½ k 0 	 ; D¼ 0

(28)

and the states x ¼ ½um � ul _um 	T, inputs u ¼ ½ _ul sm 	T, and
output y¼ sl. The plant parameters used for the controller design
are J ¼ 3:25 kg=m2; b ¼ 17:5 N s=rad; k ¼ 200 N=rad.

We wish to design a torque tracking controller, and therefore,
introduce weights on tracking performance and control effort

Wp sð Þ ¼
sþ 30

sþ 0:001
; Wu sð Þ ¼

1

5

sþ 50

sþ 200
(29)

With these weights and the additional PR constraint on the
mechanical impedance, the generalized plant is given as in Fig. 7,

with inputs ½w1 wpr u 	T ¼ ½ sref _ul u 	T and outputs

½ z1 zpr y 	T ¼ ½ ½Wpe Wusm 	 �sl sl 	T.

4.2.1 Linear Matrix Inequality Approach. The system is again
brought to the form of Eqs. (13) and (14), and optimized using the
toolboxes Yalmip and SeDuMi. Solving these linear matrix
inequalities, however, is not successful, with the solver reporting
either infeasibility or numerical problems.

To investigate this apparent failure of the procedure, we man-
ually design a controller that fulfills the positive real constraint

and stabilizes the system. For this controller, the closed-loop sys-
tem can be analyzed with regard to the positive real and bounded
real Lemma (Lemmas 1 and 2). We discover that we can find sol-
utions for both LMIs of Eqs. (3) and (4) in individual Lyapunov
variables Xpr and X1, respectively. If, however, we apply the
restriction Xpr¼X1 necessary for the controller synthesis, the
problem again becomes infeasible.

This suggests that the restriction on the Lyapunov variable crit-
ically reduces the solution space of the problem, that is, there
seems to exist no Lyapunov variable X to solve the positive real
and H1 problem simultaneously.

4.2.2 Cayley Approach. As before, controller design is
performed for a full (fourth)-order state-space controller to enable
better comparison with a classic H1 controller design, which
is carried out using the LMI approach without PR constraint.

Figure 8 shows the closed-loop Nyquist plots of the impedance
transfer function for both the classic unconstrained controller and
the one designed using the Cayley approach. It is apparent, that
the designed Cayley controller satisfies the PR constraint, while
the classicH1 controller fails to do so.

Fig. 7 Augmented plant for controller design of simple SEA

Fig. 8 Nyquist plot of the impedance transfer function for sim-
ple SEA example with either classically designedH‘ controller
or positive real constraint Cayley approachH‘ controller

Fig. 9 Bode plot of the controller transfer function for both clas-
sic H‘ controller and positive real constraint Cayley approach
H‘ controller
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The controllers achieve aH1 norm of

cCayley ¼ 1:901

cClassic ¼ 1:745

which corresponds to an increase of roughly 9% from the uncon-
strained to the constrained cased.

Generally, both controllers show similar structure, as evident
from their bode plot in Fig. 9. Most noticeably, the Cayley con-
troller does not have low pass characteristics toward very high fre-
quencies, as the classic H1 controller provides. Results in the
time domain are slightly stronger oscillatory behavior and over-
shoot, as depicted in Fig. 10. This results from an imperfect pole
zero cancelation, which is forced by the PR constraint and is evi-
dent in Table 1.

5 Conclusion

We addressed two approaches forH1 optimal controller design
under closed-loop positive real constraints.

The first one, based on a multi-objective design framework [8],
yielded infeasible results in example applications, due to a restric-
tion on the Lyapunov variable that limits the solution space of the
synthesis equations. However, it should be noted that parameter-
ization approaches were presented for multi-objective control
problems (see for example Refs. [25,26]). These approaches are
intended to reduce conservatism by employing finite dimensional
Q-parameterizations that lead to an increase in the controller
states. Moreover, only the multi-objective H2=H1 case is consid-
ered in the literature and solutions are presented in discrete time
only. We, therefore, did not include a comparison to our study.

The second approach was based on a nonlinear sector transfor-
mation, the Cayley transformation, that transforms the positive
real problem in an equivalent H1 problem. The approach extends
results in Ref. [9], by augmenting it with a H1 performance
objective. It was successfully demonstrated in two examples, in
which it led to little conservatism compared to the unconstrained
design. Due to the reformulation as an H1 problem, it also

enables the use of established robust control technique. As such, it
can be a powerful tool toward a robust controller design with
regard to plant interaction with passive environments.

Appendix: Multi-Objective Cayley Transformation

The transformation with respect to the individual signals is
defined through

wspr ¼ nðw0spr � zsprÞ (A1)

z0spr ¼ �zspr þ w0spr (A2)

and using Eq. (A1) on the system equations of P, we find

_x ¼ Axþ B1w1 þ Bsprnðw0spr � zsprÞ (A3)

zspr ¼ Csprxþ Dspr;1w1 þ nDsprðw0spr � zsprÞ þ Dspr;2u (A4)

z1 ¼ C1xþ D1w1 þ nD1;sprðw0spr � zsprÞ þ D1;2u (A5)

y ¼ C2xþ D2;1w1 þ nD2;sprðw0spr � zsprÞ þ D2u (A6)

Solving Eq. (A4) for zspr yields

zspr ¼ ðIþ nDsprÞ�1ðCsprxþ Dspr;1w1 þ nDsprw
0
spr þ Dspr;2Þ

(A7)

Substituting this in Eq. (A3) yields after reorganizing the terms

A0 ¼ A� nBsprðIþ nDsprÞ�1
Cspr (A8)

B01 ¼ B1 � nBsprðIþ nDsprÞ�1
Dspr;1 (A9)

B0spr ¼ nBspr � nBsprðIþ nDsprÞ�1nDspr ¼ nBsprðIþ nDsprÞ�1

(A10)

B02 ¼ B2 � nBsprðIþ nDsprÞ�1
Cspr (A11)

Substituting Eq. (A7) in Eq. (A5)

C01 ¼ C1 � nD1;sprðIþ nDsprÞ�1
Cspr (A12)

D01 ¼ D1 � nD1;sprðIþ nDsprÞ�1
Dspr;1 (A13)

D01;spr ¼ nD1;spr � nD1;sprðIþ nDsprÞ�1nDspr

¼ nD1;sprðIþ nDsprÞ�1
(A14)

D01;2 ¼ D1;2 � nD1;sprðIþ nDsprÞ�1
Dspr;2 (A15)

Substituting Eqs. (A7) and (A1) in Eq. (A2) yields

C0spr ¼ �2ðIþ nDsprÞ�1
Cspr (A16)

D0spr;1 ¼ �2ðIþ nDsprÞ�1
Dspr;1 (A17)

D0spr ¼ �2ðIþ nDsprÞ�1nDspr þ I ¼ ðIþ nDsprÞ�1ðI� nDsprÞ
(A18)

D0spr;2 ¼ �2ðIþ nDsprÞ�1
Dspr;2 (A19)

Substituting Eq. (A7) and Eq. (A1) in Eq. (A6) yields

C02 ¼ C2 � nD2;sprðIþ nDsprÞ�1
Cspr (A20)

D02;1 ¼ D2;1 � nD2;sprðIþ nDsprÞ�1
Dspr;1 (A21)

D02;spr ¼ nD2;spr � nD2;sprðIþ nDsprÞ�1nDspr

¼ nD2;sprðIþ nDsprÞ�1
(A22)

Table 1 Pole zero location of the controllers designed for the
simple SEA example

Cayley Classic

Poles Zeros Poles Zeros

�2.53þ 7.95i �2.77þ 7.93i �2.70þ 7.37i �2.70þ 7.36i
�2.53� 7.95i �2.77� 7.93i �2.70� 7.37i �2.70� 7.36i
–3.15 –3.35 32.5 �200
–21.6þ 24.2i –99.8 –43.6� 28.2i �1.88� 107

–21.6� 24.2i –43.6� 28.2i
–50.7 –9.72� 105

Fig. 10 Reference tracking step response for simple SEA
example with either classically designedH‘ controller or posi-
tive real constraint Cayley approachH‘ controller
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D02 ¼ D2 � nD2;sprðIþ nDsprÞ�1
Dspr;2 (A23)

with the state-space representation

(A24)
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