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Abstract

New control synthesis problems involving assignment of closed-loop
modal shapes using implicit model following (IMF) structure are con-
sidered in the context of My, Mo, , and u-synthesis theories. An
extension to the dynamic output feedback case is first given for the
well-known quadratic or H; IMF problem. The IMF problem is then
embedded within the framework of p control theory and extensions
for including uncertainty discussed. A robust synthesis methodology
is presented using p theory. Finally, an application of the robust IMF
synthesis methodology to modal shape assignment for the longitudinal
axis of a helicopter is demonstrated.

1 Introduction

The purpose of this paper is to study the problem of achieving pre-
cise and robust time domain specifications on specific states of a
closed-loop system using frquency-domain robust control design meth-
ods, and in particular p-synthesis. While most standard methods
for robust control design focus on frequency domain specifications,
many performance specifications in aerospace applications are explic-
itly stated in the time domain in terms of settling times, damping
ratios, and internal state decoupling. Thus the application of robust
control design methods can lead to a large amount of “trial and er-
ror” before obtaining satisfactory conventional specifications in terms
of time domain properties. While it may be worthwhile to encourage
design engineers to reconsider conventional specifications, it would be
immediately useful if frequency domain robust control methods could
be modified to handle conventional specifications. The latter is the
approach taken in this paper.

This paper is organized in six sections. Section 2 defines some
notation that is used throughout the paper. Section 3 reviews some
basic definitions in X2 IMF and gives an extension to the dynamic
output feedback case. The formulation in this section provides a basis
for the extension to the u framework. Sections 4 and 5 review basic -
theories. Section 6 focuses on the solution of the robust IMF problem
within the framework of 4 theory. The paper finishes with an example
illustrating the results developed.

2 Notation

The concept of linear fractional transformations (LFTs) are used
throughout this paper. The LFT is defined on state-space represen-

tations of the form
A|B
Cc|D

C(sI-A)"'B+D

P(s)

(n

A common use of (1) is for systems in which the coefficients, A, B,
C, and D, have a partitioned structure. A commonly used structure
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is the following

G(s)

(2

Gu(s)
Ga(s)

The LFT is defined on (2), and can be thought of as closing loops
with controllers or uncertainty perturbations. There are two general
ways to close loops: either on the upper or lower block of (2). These
transformations are defined as follows

Fe(G(s), K(s)) Gi1 + G12K(I — G K) Gy
FulG(s),A(8)) .= Gu+Gni(I-Gnd)~'Gp

(3)
(4)

where it is assumed that G(s) is partitioned appropriately. The exis-
tence of the inverses is a necessary condition for (3) and (4) to be well
defined; hence, we will always assume that the inverses exist when-
ever an LFT is considered. We will also assume that the functional
dependence on s is implicit when defining LFTs.

3 Hy-optimal IMF with Output Feedback

A new statement of earlier results in quadratic IMF is given in this
section. The results of (8] are extended to the dynamic output feed-
back case and reformulated in the , context.

Consider the linear system described by

]

AZ + B + dpery
Cz
Hz

(8)

where z € R” is the state vector, u € R™ is the input vector, y €
RP are the measured outputs, 2 € R? are the controlled outputs,
H € R¥*" is full rank and selects the controlled modes from the state
vector, and dp.rs is an exogenous signal of state initial conditions,
namely

dpery = z(0)6(t) (8)
One would like to a find dynamic output feedback control law,
u = Ky, for (5) such that the closed-loop dynamics of the controlled
outputs z are as close as possible to the desired system, given by

n= Adﬂ+Hdperj M
where € R?. Note that A4 is usually selected to reflect time do-
main specifications in terms of settling time, damping ratio and state
decoupling.

We now form the error derivative é = Hz — 7. From (5) and (7)
the error can be written

é=(HAz + HBu+ Hdpery) — (Agn + Hdper) (8)
With the IMF paradigm, n = Hz [8], and substitution, (8) reduces to
é=(HA- AgH)z + HBu (9)
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The above problem can then be rewritten in quadratic terms in the
form of a performance index as

5= /ow (7 Roé + u Ryu) dt (10)

where an input weight R; has been introduced for d;esign flexibility.
By substituting (5) into (10) this index becomes

o0
Jz=/ {27 Roz + 227 Reyu + uT Ryu} dt (11)
0
where
R: = (HA-A4H)TRy(HA - A4H)
Rey = (HA-A4H)TR\HB (12)
R, (HBYT Ry(HB) + R,

Thus, the Hs -optimal IMF comes down to minimizing a standard
type quadratic criterion but with a cross-weighted term 27 R u. For
convenience we define the following LFT system representation

Pa(s) = (13)
where
RY*(HA - AH RY*HB
By=1 c‘=[ o : )| by, = 3‘?{/2 (14)
By=B Cy=C

Therefore, the #; -optimal IMF can be restated in the form of
the minimization of
Ka= argxse:gi{izing”}-‘ (P2, K) 2 (15)
Before continuing, it is useful to note that the M, -optimal IMF
problem involves the solution of a singular problem because the mea-
surements have been assumed to be noise free, (13). The H; -optimal
controller achieving IMF is given by the following theorem which ex-
tends the results of [8].

Theorem 3.1 (X, IMF)

Define Xy > 0 and Yz > 0 as solutions of the following Riccati
equations

0
0

ATXy + XoA - Xo B, BT Xy, + CTC, (16)
Y247 + AY; + B, BT ()
—(Y2AT + B, BT)CT(C, 8, BT ¢T)~1C,(AY: + B, BT)

Define the state feedback mairiz as
Fy = ~(D{;D12)" (DT,C1 + B X) (18)

Then under the assumption that C2By is full rank, the reduced order
H3 -optimal controller achieving IMF is given by

[ (NA+NBF,)M | (NA+ NBF,)E

Ko = | oM I o= ] (19)
where
== (Y>AT + B, BT)CT (¢, B, BT ¢T)~! (20)
and N and M are matrices of appropriate dimensions solving
C: =
[N’][.-_M]=1,. (21)
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Proof 3.1 (H, IMF)

Note first that the full rank assumption of C2 B, is satisfied triv-
ially for the IMF problem defined by (13,14), with By = I and Cy = C.
Otherwise, derivatives of the measurements would be necessary, and
the transfer function matric of the observer becomes improper. It also
ensures that the order of the observer isn—p [2, 7]. Using a stochastic
interpretation of the above Mz problem [3], the results of [1] yields the
reduced-order optimal observer

_ [ NAM| NB NAE
obs = l M l 0
where the output of the observer, # € R” is the estimated state. Using
the facis that the separation principle holds in this case [2] and that
the LQ optimal static full-state feedback controller associated with (15)
is given by (18), the controller, (19) follows immediately.

K. (22)

4 Introduction to u Analysis

In this section we will briefly review the methods for analyzing the sta-
bility and performance properties of interconnected systems subject
to norm-bounded structured uncertainty. Any linear interconnection
of inputs, outputs, and uncertainty perturbations can be rearranged
to fit the interconnection structure of Figure 1 {4, 5, 6, 9, 10].

Ay
€rop L] e | dros
€pers ~4— M [e——— dpers
¥ — le— %
K

Figure 1: General Interconnection with Norm-Bounded Structured
Uncertainty

M describes a plant along with all the weighting functions on
the inputs and outputs used to scale the norm-bounds to 1. K is
a condroller mapping the measurements, y, to the plant control in-
puts, u. A, is the norm-bounded structured uncertainty perturbation,
and the mapping dr,; — eros characterizes the uncertainty model
being used. The mapping dpery — €pery characterizes the desired
performance. The objective is to check if a controller, K, achieves
robust performance, where rcbust performance is defined as achiev-
ing stability and performance over the entire set of norm-bounded
perturbations. Hence, robust performance is achieved if X stabilizes
Fu(M,Ay), YA, € BA, and ||Fy (Fo (M, K), ) Jlo < 1, YA, €
BA, [5, 6].

A matrix function 4 will now be discussed which can be used to
analyze the stability and performance properties of the interconnec-
tion structure in Figure 1.

Define G = ¥, (M, K). Note that all of the matrices in Figure 1
are functions of a frequency parameter w. We will now close the loop
from epers to dpery with a complex full block and define the matrix
function p at a single frequency wq.

Referring to Figure 2 we will evaluate M, K, and A at wo. It
will be assumed that d,.; and e,,; are of equal dimension n;, and
similarly that dy..; and ep.,s are of equal dimension n,. If this is not
the case then augmentation of the rows or columns of F; (M, K) by
zeros wil' be used to force the previous conditions.

Let F be the number of complex full blocks in the uncertainty

perturbation A;. Then the set A, is defined as
A1 = { Al

A,

: Ay = block diag(Ay, , ..
€CkXk j=1, .. F)

Bk}, (23)
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[ €rob ] [ drob ]
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K

Figure 2: General Interconnection for u-analysis and -synthesis

where 2{;1 ki = ny. Now the robust performance block structure
can be defined by augmenting the uncertainty perturbation A, by a
complex full block

A ={A: A =block diag (A1, Az),A; € Ay, Ap € C*2%"3)
(24)
# can now be defined on the robust performance block structure A as

Definition 4.1 (u for constant matrices [4])

-1
( min {7 (A) : det (I + Glwo)A) = 0}>
A (Glwo)) ={ \aed

0if no A € A satisfies (I + G(wp)A) =0

Now with the previous definitions in mind a precise definition of robust
performance can be made.

Theorem 4.1 (Main Loop [9])

BA (Glwo)) <1 <= pa (Gulwo)) <1

& max Fu (G VA <1
A,eBA,uA’( (Glwo), A1)

Where BA; = {A € A, :7(A) < 1} and BA, () =7(-) because of
the block structure of A, [4].

If BA, (Gii(wo)) < 1 and G(wp) is stable then there are
no Ay € BA, which can destabilize F,(G(wo), A1) and if
max, pA HA, (Fu(G(wo), A1) < 1 then performance is achieved
at wo since 7 (¥, (G(wo), A1)) <1 YA, € BA;. By a similar analysis
it can be shown that if the right hand side of Theorem 4.1 is greater
than or equal to one robust performance is not achieved. Hence. The-
orem 4.1 demonstrates the equivalence of u 5 (G(wo)) < 1 and robust
performance. at wg.

In the sequel it will be useful to establish an upper bound for x.
With this in mind the following set is defined

D={ D €A:D=block diag(dils,,...,drlk,,In,), (25)
d, €R >0, i=1,..., F)

It is clear from (24) and (25) that elements of D and A commute.
The upper bound for u can now be written as:

Theorem 4.2 (Upper Bound (5, 9])

#a (Glwn)) < jnf 7 (DG(wo)D™")

Henceforth it will be understood that all operations on matrices which
are functions of w will be shorthand for the sup over w. e.g. up (G) =
supp (G(w)).

w

5 Introduction to u Synthesis

The following algorithm [5] will be used to find a controller satisfying
#a (G) < 1. It is assumed that the weighted open loop plant with
the uncertainty and performance blocks (Figure 2) is given by M.

Algorithm 5.1 (DK iteration)

k=-1
dok=k+1
if £ =0 then
My=M
Ko = arg inf  ||Fe (Mo, K) o
K stabilizing
else
D = arggxelt_;)fi (DFe(Mi-y, Kxo1) DY)

_[De 0 Dyt oo
=[G [ [ 57 5,
K = arg inf Fe (Mg, K) || o

g

K stabilizin
end

until ||Fe (M, Ki) llo = 1 Fe(Mk-1, Ki-1) ||oo < tol

It is noted that the D-scalings are computed as the argument of the
infimum in the above algorithm, which yields a matrix of frequency
varying data points. The multiplication of the D-scalings implied in
the algorithm is done before the frequency varying data is fit to a
transfer function. This prevents the states of the D-scalings from
accumulating in each iteration of the algorithm.

Since the infinity norm of the scaled system is norm non-
increasing we know the DK iteration will converge in a finite number
of iterations. However, there is no @ priori guarantee that the algo-
rithm will converge to a global minimum. Suppose it converges on
the N iteration. If || (Mn, KN)|leo < 1, then, from Theorem 4.2.
pa (Fe(M,Kn)) < 1 and, from Theorem 4.1, Ky achieves robust
performance. If pa (F¢ (M, Ky)) > 1 then the DK iteration must be
repeated with the performance and uncertainty weights adjusted to
restrict uncertainty or decrease performance.

6 Robust IMF with g-synthesis

The IMF Problem is concerned with achieving precise time domain
requirements on a plant. Suppose we have the open loop system
given by (5). As in the H, formulation we would like to force certain
modes of (5) to follow those of the reference model given by (7). In
order to express IMF in the u framework, dpers is now considered
as an L£3(0, +o0)-integrable performance disturbance. We form the
error derivative ¢ = Hz — 1. From (5) and (7) the error equation
can be written as (8). Employing the IMF paradigm, n = Hz. the
error equation reduces to (9); minimization of ||é{|> will then implicitly
assign the modes of Hr.

The IMF problem can be further augmented to include model
uncertainty and is formulated as a u problem with the following in-
terconnection,

A | oI B
0 0 0 1
M = Woutl ga_am | o o gg |Win (26)

c -1 0 0
wik oo
Wour = 0 Wf:,rj 0
0 0o I
wreb o o
Win = o w0
0 0o I

1020
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In the above interconnection structure the weights Woy,; and Wi,
are used to force the norm-bounds on the uncertainty and performance
specifications to 1. Comparison of (13) and (26) shows the similarity
in the interconnection structures; they have the same peformance in-
terconnection structure with the exception of the weighting on u in
the M, formulation.

The uncertainty model for this interconnection structure is given
by the transfer function:

rob 1r -1 ~1 rob
dros — erop = Wit K (1= C (sI - 4) BK) Wi (27)

The Ho, norm of the transfer function in (27) for unstructured A,
characterizes additive uncertainty in the plant M, and the weights
Wit and Wi are generally chosen to reflect high-frequency un-
certainty. This model can easily be modified to account for any
structured uncertainty that might be present. The inclusion of struc-
tured uncertainty in the IMF structure will not change any of the
results. The nominal performance is given by the transfer function
dpery — €pers and the weights W2/ and W2 are used to select
the performance level in the region around the spectrum of A4.

The perturbation structure is given by F = 1, reflecting unstruc-
tured additive uncertainty; the block structure for the robust perfor-
mance problem, given by (24), is composed of two complex full blocks,
one for uncertainty and one for performance (n; = q).

The DK iteration defined in Algorithm 5.1 is used to obtain a
controller achieving robust performance. As discussed in Section 5 the
weights may have to be modified before the DK iteration converges
to a controller achieving robust performance.

7 IMF Design Example
7.1 Model Development

As an example, the IMF problem was considered for the longitudinal

model of a helicopter. The model is 4-state, [ u v, ¢ 4 ]T, and
is given by the following

—0.0434 0.0116  0.0457243 —0.1710297
0.00487 -0.976  0.9633508 0.0064921
2.7446699 -0.77928 -2.03 0
0 0 1 0

0.1652705
0.8324608
—16.4
0

0010
0 0 01
The desired modal characteristics of ¢ and § are given by:

-4.08 -2.
Ag= [ - 2089 ]

C

H is used to select the modal characteristics of ¢ and , and is given

by
0010
H‘[0001]

The weights are given by

Wx,b = I
+ 0.00001)(s + 1000)
wrr! = 001528
ous T Tronery -
+1
Wit = 4521
in s+20°
:7:5:rf = 1}

These weights were chosen to reflect uncertainty in the high fre-
quency dynamics and performance in the spectrum of A4. The DK
iteration converged to a controller achieving robust performance for
these weights. W/?® and WZS;/ are plotted on Figure 3.

out

P
sl Uncertainty Weight ]
-~ ;
ar ; J
sl Performance Weight ]
2k 4
N 1
2 107

Froquency (rad/a)

Figure 3: Robustness Weights

7.2 Performance Comparison

Ha Moo and p synthesis methodologies were used to design controllers
for the IMF problem. The H, controller was designed using the in-
terconnection matrix introduced in Section 3. The p controller was
designed with the interconnection structure and weights introduced in
Section 6. The Mo, controiler was designed with the same interconnec-
tion structure as the u controller without the uncertainty block. The
Hoo controller could be designed with this block included in the inter-
connection: this is equivalent to the controller resulting from the k = 0
iteration in the DK synthesis algorithm. However, since H, synthesis
does not account for structured uncertainty this would equivalent to
modelling all the uncerainty as a single complex full block, which is
generally far too conservative.

The robustness properties of the different controllers are tabu-
lated in Figure 4.

Controller

Ha Hoo 13
Gaalles | 0.5402 | 8.5402¢ — 8 | 0.1520
ua, (Gu) | 1.3834 1.2967 | 0.7869
up (G) {1.3836 1.2968 0.8202

Measure

Nominal Peformance
Robust Stability
Robust Peformance

Figure 4: Robustness Measures

Figures 5-7 graph the robustness properties of the different con-
trollers. Each figure includes a graph of the nominal performance,
robust stability, and robust performance measures which were quan-
tified in Figure 4.

1.2f J

Robust Pexformance

o.6f ominal Porformance ]

O.41- / Robust Stability 7

0.2k 4

%5 102 107 100 101 103 103
Frequeacy (rad/s)

Figure 5: M3 Robustness

Referring to Figure 4, it is clear that all the controllers achieve
nominal performance. Only the u controller achieves robust stabil-
ity and robust performance. The H, controller clearly has the best
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1.4

0.6 i <

0.4}

10-t 100 10} 102 10%

%
-

10-2

Froquency (rad/s)

Figure 6: Mo, Robustness

10- 100 10? 103 10%

Frequency (rad/s)

Figure 7: x4 Robustness

nominal performance, and it will be shown to have the best nominal
modal properties.

A time domain simulation was done for each of the closed-loop
systems. Since the IMF formulation establishes modal properties of
the closed-loop system and not steady-state properties, the unforced
system response to changes in the initial conditions of the states se-
lected by H was simulated. For the M3 and M., systems only the
nominal response (A; = 0) to a step change in # has been presented.
For the 4 system the nominal and perturbed response to step changes
in both ¢ and # have been presented. The perturbation used was the
worst case performance perturbation normalized with ||Ai]jee = 1.
These simulations are graphed in Figures 8-13. The graphs all in-
clude the desired response and the actual response for ¢ and 6 as well
as the error, defined as the difference between actual and desired.

Responses for perturbed M, and H, systems were not consid-
ered. From Figures 4-5 it can be seen that the overwhelming lim-
itation with the %2 and M controllers is their inability to achieve
robust stability. Hence, the perturbations of most significance are the
destabilizing perturbations. Using the worst case destabilizing pertur-
bation on both the #;and M, systems normalized so that || Ao = 1
places unstable poles so far into the right half plane that simulation
becomes intractable. Only the u controller had sufficient robustness
to stabilize the system and achieve the performance goal for all of the
perturbations A in the block structure (23) satisfying ||A;[joo < 1.

0 5 10
Time (sec.)
0.15 [_ML‘L
0.1 b
0.05} 4
0
-0.05
0 s 10
Time (sec.)

[ 5 10
Time (sec.)

0.15 Error in theta Response

0.1 1
0.05- 3
0t') 5 10
Time (sec.)

Figure 8: 2, Nominal Response to Step Change in 8

3 Nominal and Desired q Response

2+ 4
1p 4
0 J
0 5 10 0 S 10
Time (sec.) Time (sec.)
3 X103 Error in g Response

0 5 10
Time (sec.)

3 X103 Error in theta Response

4] 5 10
Time (sec.)

Figure 9: H,, Nominal Response to Step Change in §

3 Nominal and Desired g Response

oNeminal and Desired theta Response

5 10
Time (sec.)

0 5 10
Time (sec.)

Figure 10: y Nominal Response to Step Change in §
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Perturbed theta Response

0
-0.05
-0.1
0.15
5 10 _0'20 5 10
Time (sec.) Time (sec.)

Figure 11: u Perturbed Response System to Step Change in 6

6 Nominal and Desired g Response 1.5 Nominal and Desired theta Response
4r -
1 4
2k 4
N ;
0
2 [} Y
[+] 5 10 0 10
Time (sec.) Time (sec.)
0.3 Error in g Response 0.1 Error in theta Response
0.081- -
0.06 -
0.04
0.02 4
0
5 10 [} 5 10
Time (sec.) Time (sec.)
Figure 12: u Nominal Response to Step Change in ¢

6 Perturbed g Response 1.5 Perturbed theta Response

»
T
x

0.1}k 4
0.05 -
0
5 10 ] 5 10
Time (sec.) Time (sec.)

Figure 13: u Perturbed Response to Step Change in g
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Conclusions

In this paper, the IMF problem has been considered and treated in

the

context of Mz, He , and u control theories. New mixed per-

formance/robustness problems, involving the IMF feedback structure
subject to unstructured additive uncertainty have been developed.
Extensions for structured uncertainties were discussed. The advan-
tage of u-synthesis over M2 and My, lies in an @ prior: robustness
measure as a part of the synthesis procedure. The proposed u control
configuration has been shown to be very appealing in dealing with
the issue of achieving robust state-space modal characteristics. Al-
though the method is somewhat ad hoc its success on the helicopter
problem in Section 7 encourages us to develop these ideas into a more
systematic procedure for achieving robust time-domain performance.
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