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Abstract— We present a new technique for tuning arbitrary
linear control structures against multiple plant models, mul-
tiple H> and H., performance requirements, and additional
constraints on open-loop stability and closed-loop pole loca-
tions. Our approach relies on non-smooth optimization and
strikes a good balance between flexibility and effectiveness. Its
capabilities are illustrated on two challenging applications.

I. INTRODUCTION

Control theory values formulations with analytic solutions
or nice numerical properties such as convexity. In the area of
controller design, some of the most celebrated achievements
include H, (LQG) synthesis [1], H., synthesis [2], and
formulations based on Linear Matrix Inequalities (LMIs)
[3], [4]. Control engineers, on the other hand, typically
face a multitude of design requirements and constraints
that make it difficult to apply such mathematically elegant
techniques. They often need to work with low-complexity
control architectures (e.g., cascaded PID loops with low-pass
filters) to facilitate implementation, validation and possibly
on-site re-tuning. Their requirements may include a mix of
time- and frequency-domain criteria such as settling time
and overshoot, stability margins, noise or gain attenuation in
prescribed frequency bands, and damping constraints on the
closed-loop poles. Their requirements may pertain to differ-
ent closed-loop transfers or different feedback configurations
(some loops open or closed). Finally, their design ought to
be robust to plant variations that may be difficult to model
systematically.

There are two main ways to cope with such practical diffi-
culties: engineering know-how and optimization. Optimiza-
tion methods have the advantage of being extremely flexible.
Express each requirement as an objective or a constraint,
and just use nonlinear programming to search for optimal
values of the design parameters. Without care, however,
generic optimizers often struggle to find good designs in
reasonable time. Simulation-based approaches tend to be
slow, and lack of continuity, smoothness, and convexity all
conspire against effectiveness. Yet, by carefully selecting the
formulation and using well-adapted optimizers, it is possible
to strike a reasonable balance between flexibility and effec-
tiveness. One such example is the non-smooth optimization
technique developed in [5], [6] for tuning fixed-structure con-
trol systems. By recasting the design requirements in well-
posed frequency-domain terms and by using specialized non-
smooth optimizers, this approach can solve many practical
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linear control problems in a matter of seconds.

The paper is organized as follows. Section II discussed
the steps involved in turning design requirements for fixed-
structure control systems into a multi-model, multi-objective
non-smooth program. Section III discusses the non-smooth
solvers with emphasis on handling hard constraints. Finally,
the last two sections present realistic applications to reliable
flight control and active vibration control.

II. FROM DESIGN REQUIREMENTS TO NON-SMOOTH
OPTIMIZATION

This section considers the problem of tuning the control
elements in a linear, fixed-structure control system and
summarizes the key steps involved in formulating this as
a non-smooth optimization program.

The first challenge is coping with the array of possible
feedback architectures and with structural constraints on the
tunable elements (gains, PIDs, etc). If we separate the tunable
and fixed blocks in the block-diagram representation of the
control system, we can transform any control architecture
into the Standard Form of Figure 1 where C4,...,Cy are
the tunable elements. This Standard Form is identical to the
one used for H, synthesis [2] except for the block diagonal
structure of the controller. Note that tunable elements with
additional structural constraints (e.g., a PID or a notch filter)
can themselves by modeled as in Figure 1 with C4,...,Cxn
now comprised of their free parameters [7].
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Fig. 1. Synthesis against multiple requirements

The second challenge is coping with the range of design
requirements. Here we give up some generality by using
a frequency-domain formulation of the control objectives.
While control engineers tend to be more comfortable with
time-domain specifications, we believe that the frequency-
domain perspective has key advantages: it provides a more
precise and comprehensive assessment of system perfor-
mance, it extends nicely to MIMO systems [8], and most
design objectives can be expressed in terms of simple



metrics: the Hs norm (average gain), the H,, norm (peak
gain), and the decay rate, damping, and natural frequency of
closed-loop poles. For example, tracking performance can
be quantified in terms of open-loop gain and closed-loop
peak gain; disturbance rejection can be quantified in terms of
minimum loop gain in the rejection band; adequate transient
responses can be enforced via model matching; SISO or
MIMO stability margins are related to some scaled H,, norm
[9]; noise attenuation can be quantified with the Hs norm;
etc.

The third challenge is that different requirements may
be placed on different closed-loop transfer functions or
different feedback configurations. For example, in a cascaded
architecture, we may have requirements on the inner loop
performance when the outer loop is open. We may also insist
on open-loop stability to rule out unstable compensators.
Such scenarios are depicted in Figure 1 by multiple w; —
z; channels for performance assessment, as well as loop
openings to model loss of feedback, e.g., due to fault.
Finally, we often need to distinguish between hard (must-
have) requirements and soft (nice-to-have) requirements.

The fourth challenge is coping with plant uncertainty
and plant variations during operation. Plant uncertainty can
be handled with u-synthesis techniques [10], [11] when a
detailed uncertainty model is available. Otherwise, a practical
if less rigorous alternative consists of tuning the controller
against a set of plant models representative of plant variations
during operation. This approach is depicted in Figure 2 where
one set of control elements must now be tuned against a
family of closed-loop models.
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Fig. 2. Synthesis against multiple requirements and models
Addressing these various challenges naturally leads to an
optimization problem of the form
minimize  max { | T, (C(s,p))]| |
p i,

(D
subject to Hﬁx{llT&ijzj(C(&p))H} <1.

where p is the vector of tunable parameters, qujk_)m denotes
the closed-loop map from signal w to signal z for the k-
th plant model, and ||.|| denotes either the H., or the Ho
norm, possibly restricted to prescribed frequency intervals.
This seeks to minimize the worst-case value of the soft
requirements \|T1§,’jqu|| while enforcing the hard require-
ments ||T1§,Ij)_>zj ||. Note that all terms should be normalized

for this formulation to make sense. Also, we dropped terms
associated with requirements on pole location for notational
simplicity.

Problem (1) is nonlinear, non-convex, and non-smooth be-
cause the H,, norm is a maximum over frequency. It cannot
be tackled with LMI methods without overly conservative
relaxations. And conventional constrained minimization [12]
tends to stall when differentiability is lost because the peak
gain is achieved at two or more frequencies. Specialized non-
smooth algorithms are therefore needed. Surprisingly, such
algorithms perform quite well in practice, both in terms of
execution speed and quality of the solutions [11], [13].

III. NON-SMOOTH SOLVER

Design problems involving requirements of different na-
ture as well as multiple models can be formalized through
the general program

minimize  f(z) @
subject to  g(z) < 1,

where z € R™ is the decision vector consisting of tunable
parameters in the (structured) controller. The functions f and
g capture requirements of different nature over a family of
models. Each of these requirements is referred to as f; and
g; for simplicity, and we define requirement aggregates using
max operations as follows

f) = max fi(z), gx):= max g;(). )

sMg

We also assume that all terms have been adequately nor-
malized so that program (2) makes sense. Weighted sums of
squares is a conventional way to combine multiple objectives.
However, the max formulation (3) offers advantages in terms
of pruning non-contributing terms, which translates into
substantial computational savings. No matter the number of
constraints, only nearly active constraints are relevant when
solving (2). We say an objective f;, is nearly active at x
whenever f; (z) > (1—k)f(x), and similarly for constraints
g;’s. In our numerical implementation, a typical value for the
threshold x is 0.2 which leads to significant speedup in the
early iterations of the non-smooth solver.

The challenges in solving (2) are two-fold. The max
aggregates are non-smooth by construction and some of the
components f; and g; themselves are non-smooth (H, norm
and pole clustering constraints). In addition, the aggregates f
and g are non-convex for structurally constrained controllers.
So (2) is a non-smooth and non-convex program. For the
rich set of control design requirements considered here,
the properties of the functions f; and g; are well-known
[5]. They are Lipschitz and even Clarke regular [14]. An
immediate consequence is that Clarke’s sub-differentials of
f and g are easily computed using convex hull operations
over sub-gradients. First-order information is therefore easily
accessible to build a specialized and thus highly efficient
non-smooth solver.

It remains to discuss how constrained minimization in
(2) is addressed. This again remains challenging since con-
strained non-smooth programming is by no means as well



advanced as the unconstrained case. One straightforward
option is to combine objectives f and constraints g using
the concept of barrier functions. Very often, logarithmic
or reciprocal barriers are used to enforce feasibility of
constraints along iterations [12], [15]. This is not entirely
satisfactory as these techniques suffer from numerical prob-
lems when barrier parameters are driven to their limits. Also,
they lead to two-phase algorithms in which feasibility is
achieved in phase 1 and objective minimization is carried
out in phase 2. This is often inefficient since non-smooth
constraint boundaries strongly restrict displacements in the
search space. The progress function approach introduced
in [16] and further explored for control design in [17]
overcomes the limitations due to ill-conditioning but it is
again a two-phase algorithm for which slow progress is
often observed in phase 2. Exact penalty functions [12], [18]
somewhat remedy this difficulties. They are of the form

pe(®) = f(2) + cmax(g(z) - 1, 0), )

and for large enough values of the penalty parameter c, local
solutions of (2) can be computed by minimizing (4), hence
the name exact penalty. However, schemes for selecting
adequate values of ¢ can be complex and breakdowns may
occur when ¢ becomes very large. Note admissible values
for c satisfy ¢ > A*, where \* is a Lagrange multiplier
associated to the Karush-Kuhn-Tucker (KKT) conditions for
(2) [12]. Our implementation of the non-smooth solver relies
on the related objective function

@, (x) := max{f(z),ng(x)} (5)

and uses a Lagrangian method to adjust 7 and locally solve
the KKT conditions for (2).

The basic principle of this method is as follows (see
[19] for a more detailed treatment). If constraints g are not
competing with f then we are left with simply minimizing
f alone. Otherwise, we infer that constraints g should be
active at a local solution, i.e, g(z*) = 1. Solutions z*
are then obtained by minimizing ®, for a sequence of 7
values that lead to saturating the constraint g(x) < 1. More
precisely, i is adjusted by a bisection scheme that increases
or decreases 7 based on constraint feasibility (7 is increased
when the constraint g is violated and vice versa). The
subproblem of minimizing ®,, for a given 7 is tackled with
the unconstrained algorithm developed in [5] and originally
implemented in hinfstruct [11]. This algorithm has solid
local convergence properties and performs well in practice
[13].

This basic principle admits many refinements beyond the
scope of this paper. In particular, the aggregate (5) lends
itself to pruning of non-active f;, g; terms which translates
into considerable speedup when dealing with multiple re-
quirements on multiple models. Note that this technique is
of exterior type since boundary crossing is allowed and thus
potentially larger steps are performed at every iteration. Fi-
nally, as with any local method, it is advisable to use several
runs with different initial points to weed out unsatisfactory

local solutions. The method described above is the core of
the systune solver in [11].

IV. FAULT-TOLERANT CONTROL

Our first example is an application of multi-model, fixed-
structure tuning to reliable flight control. The flight control
system is required to maintain stability and adequate per-
formance in both nominal operation and in situations when
the aircraft undergoes outages in the elevator and aileron
actuators. In particular, wind gusts must be alleviated in all
outage scenarios to maintain safety.
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Fig. 3. Synthesis interconnection

The control system is depicted in Fig. 3. The aircraft
is modeled as a Gth-order state-space system with body
velocities w, v, w and pitch, roll, and yaw rates g, p,r. The
state vector is available for control as well as the flight-
path bank angle rate p (deg/s), angle of attack « (deg), and
sideslip angle 8 (deg). The control inputs are the deflections
of the right elevator, left elevator, right aileron, left aileron,
and rudder. The controller consists of a 3 x 6 state-feedback
gain matrix K, in the inner loop and a 3 x 3 integral gain
matrix K; in the outer loop, a total of 27 parameters to tune.

In addition to nominal operation, we consider 8 outage
scenarios modeled as a 5 x 5 diagonal “outage gain” at the
aircraft input and summarized in Table I.

TABLE I
OUTAGE SCENARIOS WHERE O STANDS FOR FAILURE

Outage cases Diagonal of outage gain
nominal mode 1 1 1 1 1
right elevator outage o 1 1 1
left elevator outage 1 0 1 1 1
right aileron outage 1 1 0 1 1
left aileron outage 1 1 1 0 1
left elevator and right aileron outage 1 0 0 1 1
right elevator and right aileron outage o 1 0 1 1
right elevator and left aileron outage o 1 1 0 1
left elevator and left aileron outage 1 0 1 0 1

The design requirements are as follows:

o Good tracking performance in u, o, and 3 with adequate
decoupling of the three axes.

o Adequate rejection of wind gusts of 5 m/s.

o Maintain stability and acceptable performance in the
face of actuator outage.



The tracking requirement is expressed as an LQG-like cost
function that penalizes the integrated tracking error e and the
control effort w:

. 1 ’ 2 2
Tlgch<T/0 [Weell” + [[Woull dt)- (6)

The diagonal weights W, and W,, provide tuning knobs for
trading responsiveness and control effort and balancing the
three channels. We use W, = diag(20,30,20),W, = I3
for normal operation and W, = diag(8, 12,8),W,, = I3 for
outage conditions.

The gust alleviation requirement is treated as a hard
constraint limiting the variance of the error signal e due
to white noise wg driving the Dryden wind gust model.
Specifically, the variance of e is limited to 0.01 for normal
operation and to 0.03 for the outage scenarios.

With the notation of section III, the functions f(z) and
g(x) in (2) are given by f(x) := max;=1, 9 fi(z) and
g(x) == max;=1, g9 g;(x), where x is the vector comprised
of the entries of K; and K, 7 is the scenario index, the f;’s
are the square roots of J in (6) with appropriate weightings
W, and W, and the g;’s are the RMS values of e suitably
weighted to reflect variance bounds of 0.01 and 0.03. Note
that all f; and g; terms measure the Hy norm of some closed-
loop transfer function and are covered by the Variance and
WeightedVariance requirements in [11].

With this setup, we tuned the controller gains K; and K,
for the nominal scenario only (nominal design) and for all 9
scenarios (fault-tolerant design). The responses to setpoint
changes in p, «, and § with a gust speed of 5m/s are
shown in Fig. 4 for the nominal design and in Fig. 5 for
the fault-tolerant design. As expected, nominal responses are
good but noticeably deteriorate when faced with outages.
By contrast, the fault-tolerant controller maintains acceptable
performance in outage situations. The optimal performance
(square root of LQG cost J in (6)) for the fault-tolerant
design is only slightly worse than for the nominal design
(26 vs. 23). The non-smooth program (2) was solved with
systune and the fault-tolerant design (9 models, 11 states,
27 parameters) took 30 seconds on Mac OS X with 2.66
GHz Intel Core 17 and 8 GB RAM. See [11] for the model
data and additional details.
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V. ACTIVE VIBRATION CONTROL IN THREE-STORY
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Fig. 6. Active mass driver control system

In this example, we consider an Active Mass Driver
(AMD) control system for vibration isolation in a three-story
experimental structure. This setup is used to assess control
design techniques for increasing safety of civil engineering
structures during earthquakes. The structure consists of three
stories with an active mass driver on the top floor which
is used to attenuate ground disturbances. This application
is borrowed from [20] where a 28-state scale model of the
building including actuator and sensors was derived from
experimental data (see related example in [11] for data). The
relevant states for control purpose are shown in Table II. The
inputs are the ground acceleration z,4 (in g) and the control
signal u fed to the actuator. The actuator generates left and
right motions of the mass to attenuate ground disturbances.
The earthquake acceleration is modeled as a white noise
process filtered through a Kanai-Tajimi filter [20], see Figure
7. Bode plots of the transfer functions from control signal
u and ground acceleration z,, to the first floor acceleration
24(1) are shown in Figure 8. The building features a number
of structural flexibilities with dominant peaks at 5.80, 17.67
and 28.53 Hz and associated damping 0.3%, 0.23% and



0.30%. Such structural modes may incur serious damage
when excited by ground disturbances.

TABLE II
RELEVANT STATES FOR THREE-STORY BUILDING

(1) displacement of i-th floor relative to the ground (cm)
Tm displacement of AMD relative to 3rd floor (cm)
o (3) velocity of ¢-th floor relative to the ground (cm/s)

Tym(4)  velocity of AMD relative to the ground (cm/s)
Zq (%) acceleration of i-th floor relative to the ground (g)
Tam acceleration of AMD relative to the ground (g)

d(i) d(1) = z(1), d(2) = z(2) — z(1),
d(3) = x(3) — z(2), inter-story drifts

Kanai-Tajimi filter
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to 1st floor acceleration

The open-loop standard deviations of drifts and accelera-

tions in response to white noise colored by the Kanai-Tajimi
filter are displayed as the blue bars in the bar plot of Figure
9. Observe that ground disturbances generate large drifts for
the first floor and significant accelerations for both the second
and third floors which need to be reduced using feedback.

The controller uses four measurements of the accelerations
4 and x4, to generate the control signal u. Physically, the
control u is an electrical current driving an hydraulic actuator
that moves the masses of the AMD. The design requirements
include:

o Minimization of the inter-story drifts d(i) and acceler-
ations x,(4),

o Hard constraints on control effort in terms of mass
displacement z,,, mass acceleration x,,,, and control
effort u.

All design requirements are assessed in terms of standard
deviations of the corresponding signals. Each variable is
scaled by its open-loop standard deviation to achieve uniform
relative improvement in all variables. The design problem is
expressed as a constrained non-smooth program (2) where f
and g are defined as

Od(i Taq (i
f(x) := max{ max #, ) Zzal®)
=123 Oag (i) =123 O o (i)

and

. g
g(x) — maX{O'Q:L))m’ Tq ,

where og4,(;) and o, (;) are the open-loop standard devia-
tions of the drifts and accelerations for each floor.

As mentioned before, the controller complexity is a design
parameter in our approach and we can therefore adjust it
by trial-and-error, starting with sufficiently high order to
gauge the limits of performance, then reducing the order
until a noticeable performance degradation is observed. In
this example, a 5Sth-order controller with no feedthrough
term was found sufficient. This controller was optimized
with systune in 11 seconds on a Mac OS X with 2.66
GHz Intel Core i7 and 8 GB RAM. An overall reduction
of 40% in standard deviations was achieved while meeting
all hard constraints. Figure 9 compares the resulting open-
and closed-loop standard deviations. Finally, we simulated
the response of the three-story structure to an earthquake-
like excitation in both open and closed loop. The earthquake
acceleration is modeled as before as a white noise process
colored by the Kanai-Tajimi filter. Simulations results appear
in Figures 10 and 11. More details on this example can be
found in [11].
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Fig. 11. Accelerations in open and closed loop

CONCLUSION

We have presented a non-smooth programming technique
for solving control problems with realistic sets of require-
ments, constraints on the controller structure, and robustness
goals. A core ingredient for tackling problems with soft and
hard requirements is the use of a driving function whose
critical points are KKT points of the original problem. This
can be implemented very efficiently by exploiting basic
sub-differential properties of max functions. This technique
has been fully implemented in the systune software and
proven effective for a wide range of applications. We believe
this tool will help control engineers leverage the full power
of frequency-domain design techniques within the practical
constraints of their application.

REFERENCES

J. M. Maciejowski, Multivariable Feedback Design. Addison-Wesley,
1989.

J. Doyle, K. Glover, P. Khargonekar, and B. A. Francis, “State-space
solutions to standard Ho and Hoo control problems.”

S. Boyd, L. ElGhaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in Systems and Control Theory, ser. SIAM Studies in
Applied Mathematics. Philadelphia: SIAM, 1994, vol. 15.

C. Scherer, “Multi-objective control without Youla parameterization,”
in Perspectives in robust control, ser. Lecture Notes in Control and
Information Sciences, S. O. Moheimani, Ed. Springer Berlin /
Heidelberg, 2001, vol. 268, pp. 311-325.

P. Apkarian and D. Noll, “Nonsmooth Ho, synthesis,” IEEE Trans.
Aut. Control, vol. 51, no. 1, pp. 71-86, 2006.

J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton, “HIFOO
- a MATLAB package for fixed-order controller design and Hoo
optimization,” in 5th IFAC Symposium on Robust Control Design,
Toulouse, France, July 2006.

P. Gahinet and P. Apkarian, “Decentralized and fixed-structure Hoo
control in MATLAB,” in Proc. IEEE Conf. on Decision and Control,
dec. 2011, pp. 8205 —8210.

S. Skogestad and I. Postlethwaite, Multivariable Feedback Control -
Analysis and Design. Wiley, 1996.

J. D. Blight, R. L. Dailey, and D. Gangsaas, “Practical control law
design for aircraft using multivariable techniques,” Int. J. Control,
vol. 59, no. 1, pp. 93-137, 1994.

G. Stein and J. Doyle, “Beyond singular values and loopshapes,” ATAA
Journal of Guidance and Control, vol. 14, pp. 5-16, 1991.

Robust Control Toolbox 5.0. MathWorks, Natick, MA, USA, Sept
2013.

R. Fletcher, Practical Methods of Optimization. John Wiley & Sons,
1987.

P. Apkarian, “Internet pages,” http://pierre.apkarian.free.fr, 2013.

F. H. Clarke, Optimization and Nonsmooth Analysis, ser. Canadian
Math. Soc. Series. New York: John Wiley & Sons, 1983.

D. P. Bertsekas, Nonlinear Programming. Belmont, Mass.: Athena
Scientific, USA, 1995.

E. Polak, Optimization : Algorithms and Consistent Approximations.
Applied Mathematical Sciences, 1997.

P. Apkarian, D. Noll, and A. Rondepierre, “Mixed Ha/H control
via nonsmooth optimization,” SIAM J. on Control and Optimization,
vol. 47, no. 3, pp. 1516-1546, 2008.

D. P. Bertsekas, Constrained optimization and Lagrange multiplier
methods. Academic Press, London, 1982.

P. Apkarian and D. Noll, “Nonsmooth optimization for multiband
frequency domain control design,” Automatica, vol. 43, no. 4, pp. 724—
731, April 2007.

B. F. Spencer, S. J. Dyke, and H. S. Deoskar, “Benchmark problems
in structural control: part 1 - active mass driver system,” Earthquake
Engineering & Structural Dynamics, vol. 27, no. 11, pp. 1127-1139,
1998.

[1]
[2]
[3]

[4]

[5]
[6]

[7]

[8]
[9]

[10]
[11]
[12]

[13]
[14]

[15]
[16]

[17]

[18]

[19]

[20]



