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SUMMARY

A novel sequential semi-definite programming method is developed for optimization subject to rank con-
straints on matrix-valued nonlinear functions of matrix decision variables, which arise in reduced-order
linear parameter varying-linear fractional transformational control synthesis. The global convergence of the
method is easily proven without any step size control. An intensive simulation shows the clear advantage of
the proposed method over the state-of-the-art nonlinear matrix inequality solvers. Copyright © 2017 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Rank-constrained optimization is referred to optimization problems involving rank constraints on
matrix-valued functions of the decision variables. Initialized by the pioneering work [1], which
reformulates the reduced-order Ho, control synthesis for linear time invariant (LTI) systems as
linear matrix inequality (LMI) optimization subject to a rank constraint on a matrix-valued affine
function of the Lyapunov matrix variables, many other important and difficult problems in robust
control are also reformulated in similar matrix-rank-constrained optimizations [2]. The simplest
approach is to relax or just to drop that rank constraints with hope that the optimal solution of the
relaxed (convex) optimization would satisfy these matrix-rank constraints. For instance, matrix trace
minimization and nuclear norm minimization were proposed to obtain low matrix rank of positive
semi-definite matrix and rectangular matrices, respectively [3, 4]. These techniques are unable to
address the matrix-rank constraints. Indeed, just a trace of a matrix or its nuclear norm does not give
any adequate indication on the matrix rank. Another attempt is to use a Newton-like method to find
a projection of a positive semi-definite matrix to the manifold of fixed-rank matrices [5, 6], which
is equally computationally difficult optimization because of complex geometry of this manifold [7],
especially for lower fixed-rank matrices of larger size. Realizing the challenge by these matrix-rank
constraints on the Lyapunov matrix variables, most later developments in robust control preferred
to avoid them in favor of alternative bilinear matrix inequality (BMI) [2, 8—14]. The state-of-the-art
BMI solvers [12, 14] initialize from a reduced-order stabilizing controller and then move within a
convex feasibility subset containing this initialized point. There are a few difficulties arisen with this
kind of feasibility algorithms. Firstly, finding a good reduced-order stabilizing controller is not an
easy task because its computation is still an NP-hard problem [15]. Secondly, the feasibility set of
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stabilizing controllers is highly nonconvex, which is disconnected in general. This means moving
within a convex neighborhood of such reduced-order stabilizing controller may be trapped by local
minima. Thirdly, usually, the convergence of this kind of algorithms is slow and is dependent very
much on the local geometry around such initial point [16], which may be unpredictable. Within
the past few years, it has been realized that all BMI solvers [12, 14], which address the control
synthesis for LTI systems in state space using Lyapunov functions, could hardly compete with the
nonsmooth optimization solver developed earlier in [17], which addresses the problems directly in
the frequency domain to bypass the Lyapunov variables of high dimension. Nowadays, the Matlab
systune command [18], which is based on [17], is the most powerful tool for control synthesis of
LTI systems and is widely used in industry. This means that rank-constrained optimization and BMI
should seek applications outside uncertain LTI systems such as linear parameter varying (LPV)
systems [19], where Lyapunov function is irreplaceable.

Meanwhile, for solution of indefinite quadratic optimization in signal processing applications,
Phan et al.[20, 21] and Shi er al.[22] developed an approach for optimization on the rank-one
constrained positive semi-definite outer product of decision vector variable. Intensive simulations
even for large scale indefinite quadratic optimization [22] show that the rank-one matrices can be
quickly located, which are turned out to be global optimal solutions of the considered indefinite
quadratic problems in most cases. Reduced-order robust LPV controller synthesis is more difficult
than indefinite quadratic programming and has not been appropriately considered in literature. The
matrix-rank constraints in the former are much more challenging than the rank-one constraint in
the latter. Indeed, they are lower fixed-rank constraints on matrix-valued affine functions of larger
size with very complex geometry. For instance, k-order robust control synthesis for an LPV plant of
order n leads to rank-(# 4 k) constraint on the positive semi-definite matrix-valued affine function of
size (2n) x (2n) [23, 24]. A novel approach proposed in the present paper is to equivalently express
these rank-(n + k) constraints on the positive semi-definite matrix-valued affine function by rank-
k constraint on the matrix-valued nonlinear function of size n, which are then exactly expressed
by spectral nonlinear functions. We then show a simple but effective optimization technique lead-
ing to a path-following optimization procedure for these problems. To the author’s best knowledge,
spectral nonlinear function optimization was not quite considered in the literature.

The paper is organized as follows. After the introduction, Section 2 is devoted to algorithmic
solutions for reduced-order LPV #, controllers while Section 3 is devoted to static output feed-
back LPV controllers. An intensive simulation is provided in Section 4 to support the algorithmic
development of the previous sections. Section 5 concludes the paper.

Notation. Notation used in this paper is standard. Particularly, X > 0, X > 0, X <0,and X <0
mean that a symmetric matrix X is positive semi-definite, positive definite, negative semi-definite,
and negative definite, respectively, while (X, Y) is the dot product of the matrices X and Y. For
simplicity, we also denote tr(X) as the trace of X. I is the identity matrix but when needed we also
use [, to emphasize the size n x n of I. In symmetric block matrices or long matrix expressions,
we use * as an ellipsis for terms that are induced by symmetry, for example,

S+ ST mMT _ S+ (%) *
K[ ¥ Q}KT—K[ ]*

The matrix variables are typed boldfaced in the paper.

2. DYNAMIC REDUCED-ORDER H, LPV CONTROL SYNTHESIS

Consider a continuous LPV system in linear fractional transformation (LFT) [23-25]

(1) A By By B, [ x()
Za(®) | _ | Ca Daa Dar Daz wa (1)
zit) | | C1 Dia D1 D2 w(t) (1)
y(?) Cy Drp Dy O u(z)

wa(r) = Ala(t))zal)
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where

L L
Al(®) = ai)Ai (1) 20, ait) = 1. (@)

i=1 i=1

Here, x(¢) € R", y(t) € R", z(t) € R":, w(t) € R"2, za(t) € R"2, wa(t) € R"2. Note that
we assume without loss of generality that z(¢) and w(z) (za(¢) and wa (¢) , respectively) have the
same dimension. The pair (wa, za) is regarded as the gain-scheduling channel. All matrices in (1)
and (2) are given with appropriate size. Parameters «; (¢) are measured online and exploited by the
controller.

The standard Ho, LPV control design is to find k-order controller in LFT:

xk (1) Ak  Bk1  Bka xk (1)
u) | =1 Ck1 Dk Dkia y(t) 3)
I440) Cka Dgai1 Dikan wg (1)

wg (1) = Mg (@()zk (1)
with
L
Ag(a() =) i Ag; )
i=1

such that the closed-loop system is internally stable and satisfies

T T
/ l|z(0)|[?dt < )/2[ llw(@®)||>dt Yw() € Ly, T < 400, 5)
0 0

initialized from x(0) = 0. Here, xx(t) € R¥, zx(t) € R™» and wi(t) € R">. k is called the
control order, and the pair (wg, zx) is regarded as the control’s gain-scheduling channel.
Note that (1) and (3) are the following LPV LFTs:

x(1) A By B, Ba
z(r) | = Ci D11 Dia |+ | Dia | (I = A(a(t))Dan) ' Aa(t))
y(t) Cy Dy O Doa ©
x(2)
X[ Ca Dar Daz ) | w(r)
u(t)
and
[xf(g)} - ([él; lf,flll ] + [gfi] (I — Ak (a(t))Dxan) ' Ak (a(t)) o

y(@)

respectively. Figure 1 provides a block diagram for a such system.
Let us state the following result adapted from [24]: the feasibility of the following matrix
inequality in X € R™" Y € R, R, H,Q,E, Ag; and

x [ Cxa Dxar ])[’”‘m]

. Ax Bxi1 Bk,
K:=| Cxi Dku Dxia (8)
Cka Dka1 Dkaa
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Figure 1. Closed-loop linear parameter varying-linear fractional transformational system.

is sufficient for the existence of such controller

LML+ ]
LML, LMI; :

R I ATQ A] ©)
I H AL HAT
QA; Axi —Q I
A; AH -1 -E

X I,
(In Y) >0, (10)
rank(X — Y1) <k, (11)
where
XA + Bg1C + (%) * * %
) A£ + A + ByDg11Cs (AY + BzCKl) + (*) E
LMII = BTX—I- DT BT BTDT DT BT Q %
A 2APK1 AP2aAVYx11 52
T T T T
BL, EBT +DL BT —IE
BIX + DIBL, BJ + DI,Dfy,B] 0 0
LML — RCA + Dxa1Cs Cka RDAA + Dka1Doa Dkaa
27| Ca + DasDk11Ca CAY + DasCxi Daa + DasDkiiDaa DaaE + DasDkia
C1+ Di2DgnnCa CiY + D15Ck1 Dia + D12DginDa2a DipaE + D12Dxaa
—yl * % %
RDa1 +D D —R * *
LML = Al kA1D21

Da1 + DaoDku D21 —1 —H
Dii+ DiDknnD2y 0 0 —yl
(12)
Note that (10) and (11) imply that

rank(/, — XY) < k.
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Without loss of generality, assume rank(/,, — XY) = k. Then, factorize
I, — XY = MN”
with full-rank M € R™*¥ and N € R"*k. Their left-inverse matrices are
Mt = M M)~ IMT Nt = (NTN)7INT,
Also, factorize
I —RH =R;;HY, and 7 -QE = QzE],

with invertible matrices Ry, Hi», Q12, and Eq,. Accordingly, the controller (3) can be recovered
as follows [23]:

Dk11 = Dkn (13)
Bg1 = M (Bgi — XB2Dk11) (14)
Ck1 = (Cx1 — D GY)(NDT, (15)

Ax = MT[Ax — (XAY + MBg1 G Y + XBoCiiNT + XB, D1 GY)I(NDT  (16)

Diia = Dxia — Dx11 D2aE)(ET)T (17)
Dga1 = R}, (Dka1 —RDa2Dki1) (18)
Bxa = M7 [Bga — (XBAE + MBy D2AE + XBy D11 DoaE 19)
+ XB, D1 aED)ETHT
Cka = R [Cka — (RCAY + RDpsDg11CoY + Rz Dga1 C2Y @0)
+ RD A CiiNDI(NHT
Dxaa = R [Dkaa — (RDAAE + RDpa» D11 D2AE + Rz Dga; DoaE on

_I\T
+ RDa2Dgi1aED)] (Elzl) :

It should be noted that (10) and (11) are equivalent to (10) and

rank((i %))$n+k (22)

which is a lower fixed-rank constraint on a matrix-valued affine function of (X, Y). Although our
developed algorithms later still work for this constraint (22), we will see that in fact the rank
constraint (11) on a nonlinear function of (X,Y) can be more efficiently handled. The difficulty
degree of formulations in [12, 14, 26] is proportional to the dimension of the control variable
(A, Bk, Ck, D) in (3), that is, it is proportional to the control order k. In contrast, by exploring
the rank constraint (11), the difficulty degree in our formulation is proportional to min{k,n — k},
that is, the computational difficulty with k-order and (n — k)-order controllers is the same.
We formulate the k-order LPV-LFT H 4, control as

min y st (9),(10),(11), (23)

X,Y,y,R,H,Q,E,A g; K
where all the nonconvexity of the problem is concentrated in the rank constraint (11), which is
automatically satisfied for the (full) n-order control. For k < n, as expected (11) is a highly non-
convex and discontinuous constraint. Consequently, the feasibility set (9) and (11) is disconnected
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in general, for which locating a feasible point is already not an easy task. As an aside note, the
aforementioned formulation (23) is based on parameter-independent Lyapunov function and static
multipliers R, H, Q, and E, which may potentially be more conservative than that with either
parameter-dependent Lyapunov functions (e.g., [27]) or dynamic multipliers (e.g., [28]). However,
efficient formulations for k—order LPV-LFT H, control by using parameter-dependent Lyapunov
functions and dynamic multipliers are still very much open for study. The interested reader is also
referred to [29] and the references therein for convex relation-based results for fixed-order LPV
controllers for LPV systems.

The function rank(X — Y~1) in (11) seems to be very complicated. However, we will see shortly
that it can be efficiently handled from the following observation. Suppose f{x](X — Y1) is the sum
of the k largest eigenvalues of X — Y~!, which is positive definite (X — Y~! > 0) thanks to LMI
(10). Then, the matrix-rank constraint (11) holds true if and only if

tX-Y ") = fryX-Y™

because it implies that X — Y~! has at least (n — k) zero eigenvalues. Under the LMI (10), the
quantity tr(X—-Y 1) — Sk (X—Y!) is always nonnegative and can therefore be used to measure the
degree of satisfaction of the matrix-rank constraint (11). Instead of handling nonconvex constraint
(11), we incorporate it into the objective, resulting in the following alternative formulation to (23):

min CFX Y, y) =y pX =Y D) - firgX=YY) st (9)—(10), (24)
X,Y,y,.R.H,QE,A g; K

where i > 0 is a penalty parameter. Without squaring on the factor of u, the aforementioned
penalization is exact, meaning that the constraint (11) can be satisfied by a minimizer of (24) with a
finite value of u (e.g., [30, Chapter 16]). This is generally considered as a sufficiently nice property
to make such exact penalization attractive. On the other hand, any feasible (X, Y, y) to (23) is also
feasible to (24), implying that the optimal value of (24) for any . > 0 is upper bounded by the
optimal value of (23).

Suppose (X @), Y ®) 1) js a feasible point to the convex feasibility set (9) and (10). Using the
following variational principle [31, p. 191]

k
firgX =Y = max Yo X =Y x
Xk

orthonormal x1,..., —
1=

it follows that

k
SinX =Y = > (e H (X = Y Hx ), (25)
i=1
where xi("), i = 1,...,k are the orthonormal eigenvectors corresponding to k largest eigenvalues
of X®) — (Y ®)~1 On the other hand, as tr(Y™!) is convex in Y > 0, it is true that

w(Y™") = (Y O)™) —te((Y )Y — Y O) (¥ @)1y

(26)
= 2((Y ) ™H — (¥ )Ty (r )7,
The following convex optimization is majorant minimization for (24)
min  FEOXY,y) =y prX =200 )T + ()Y ()T
X,Y,y,R.H,Q.E,A ; K
k H 27)
-3 (X}K>) X-YHx®) st (9 - (10).
i=1
Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:4421-4442
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because by (25) and (26), function F, IEK) obeys the two following crucial properties:
FEPXY.y) 2 FuX. Y. p)VX.Y.y) on (9 (10)

and
F;EK)(X(K)7 Y(K), V(K)) — FM(X(K), Y(K), )/(K)).

Therefore, for the optimal solution (X ®+D y t+1) o, (c+1)) of the convex program (27), it is true
that

FM(X(KJ’_I), Y(K+l), ,}/(K"rl)) F}EK)(x(K"rl)’ Y(K+1), J/(K-'rl))

<
<

F/EK)(X(K), Y(K), }/(K))
— FM(X(K), Y(K), )/(K)),

implying that (X ®+1D y&+D o &+Dy js petter than (X©, Y ®) y®) toward optimizing the
objective in (24). By using [32], we can prove the following result of global convergence.

Proposition 1

Initialized by any feasible point (X (@, Y © ©) for LMIs (9) and (10), {(X*), Y ®) y)} is a
sequence of improved feasible points of the nonconvex program (24), which converges to a point
satisfying first-order necessary optimality conditions.

Proof

The sequence {(X®),Y® y@)L terminates (whenever F,(X*+D yU+D oGty —
F,E") (X (D) |y (et D), (c+Dy) or convergence to {(X, Y, 7}, which is the optimal solution of the
convex program:

x,Y,y,RfE?&E,AK,« FuX, Y, p) =y + peX=2Y"H + (Y 1YY )
k (28)
—> EFX-YHE) st (9 - (10).
i=1

where X;,i = 1,..., k are the orthonormal eigenvectors corresponding to k largest eigenvalues of
X — Y~ L. Therefore, ()Z Y, 7) satisfies Kuh-Tucker condition for the convex program (28), which
is also the first-order necessary optimality condition for the nonconvex program (24) [32]. O

Algorithm 1 is pseudocode for implementing the aforementioned procedure.

Alternatively, we can also use the following formulation instead of (24):

min Y+ pr(Y =X = filg(Y=X"Y] st (9) - (10), 31)

XY, 7,RH,QEAk; K

for which the Algorithm 1 can be easily adjusted for solution. Usually, the initial point
(X© Yy © 1) s taken as the optimal solution of the full-order controller program

min y st (9),(10). (32)
X,Y,y,R.H,Q.E,A g; K

and the preference of using (24) or (31) goes to whichever smaller among tr(X© — y©) —
f[k](X(O) — Y(O)) and tr(Y(O) — X(O)) — f[k](Y(O) — X(O)).

On the other hand, we can seek a k-order control to satisfy the Hoo-gain condition (5) for given
y by solving the following nonconvex program

min CFXY) =X -Y ) — firyX =YY st (9) —(10), (33)
X,Y,R,H,Q.E,A ;. K

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:4421-4442
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Algorithm 1 Nonconvex Spectral Optimization Algorithm for optimized k-order H, controllers

1: Initialize ¥ := 0 and solve SDP (32) to find its optimal solution (X (k) y ) )/(")). For k normal-
ized eigenvectors corresponding to k largest eigenvalues of X ®) — (Y ®)~1 stop the algorithm
if

k
H
(X © = (1)) = 3 ()" @ - ) ) <

i=1

and accept (X @, Y (© (0 a5 the optimal solution of the nonconvex program (23). Otherwise
set u = 0.5.

2: repeat

3: if

k
r(x© - (1 ®) ) =3 (5) 7 (x© - (r©) ) > 6, 9)

i=1

for k normalized eigenvectors corresponding to k largest eigenvalues of X ) — (Y )~ then
reset u — 21 and solve SDP (27) to find the optimal solution (X ® 1y (k+1) 1, (c+1)y,
4: else Solve SDP (27) with additional convex constraint

k
a(X - 2(Y®)™) + a(¥O) Y E®)TH -3 (x§“’)H X-Y ")) <e  (30)
i=1

end if

Setk :==«k + 1.
until y© — y &= < ¢
Accept (X®© Y@ ) a5 a found solution of (23) if tr(X® — (Y ©)~1) — f(X® —
(Y )™ < ey,

where the penalty parameter p is not needed. The pseudocode for solving (33) is provided by Algo-
rithm 2, which is terminated when the zero value (with some tolerance) of the objective in (33), is
found so the rank condition (11) is fulfilled leading to the construction of k-order control.

Again, an alternative formulation to (33)

min CFXY) i=tr(Y =X — firg(Y =X st (9) —(10), (34)
X,Y,R,H,Q,E,A g, . K

is preferred if tr(Y @ — X () — Skl (Y @ — x ©) js smaller than tr(X @ —y @) — Skl (X© _y©O),
where (X ©, Y(O)) is the optimal solution of the following full-order controller program

min orX+Y) st (9),(10). (35)
X,Y,R,H,Q,E,A g; K

Remarks on less reduced-order controllers. The computational difficulty degree in the for-
mulation in [12, 14] (for LTI systems) is proportional to the control order k. Particularly, less
reduced-order controllers may pose more computational challenges than highly reduced-order ones.
In contrast, we now show that using the rank constraints (11) helps us solve them at the same
computational efficiency.

Indeed, less order reduction means that n — k is small. Suppose A, (X —Y 1) is the sum of the
n — k smallest eigenvalues of X — Y™ !. Then, (11) holds true if and only if Ap, g (X — Y1) = 0.
Therefore, we propose the following alternative formulation for (23):

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:4421-4442
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Algorithm 2 Nonconvex Spectral Optimization Algorithm for feasible k-order Ho controllers

I: Initialize k := 0 and solve SDP (35) to find its optimal solution (X ®), ¥ ®))_ Stop the algorithm
if

k
H
r(X© - ©O)H =3 () -y ) < e

i=1

and accept (X @, Y(O)) as the solution of the nonconvex program (33).
2: repeat
3: Solve SDP

mintr(X —2(Y )™ + w((¥ )y (r )

k

-3 (59) Y ) a0

i=1 (36)
to find its optimal solution (X *«+1 y (c+1))
4: Setk :=x + 1.
5: until tr(X(")—(Y("))_l)—zle(xl,("))H(X(K) — (Y("))—l)xi('c)) <eor F(X® D y®=Dy_
F(X®W,y®) < ¢
6: Accept (X ®) y (")) as a found feasible solution of (23) under fixed y if tr(X (k) _ Y ("))_1) —
Jig(X© — (¥ @)™ < e

Using the following variational principle

n—k
Ap—iy(X =Y = min X =Y Yy
orthornomal X1 ,...,X;; —k =1
the following optimization is majorant optimization for (37)
n—k H
mn  y4py (x,.(”)) X-Y)® st (9) - (10), (38)
X,Y,7,RH,Q.EA g; K =

where xl.(K), i = 1,...,n — k are the orthonormal eigenvectors corresponding to (n — k) smallest

eigenvectors of X ®) — (Y ®))~1 Because each (xl.(K))HY_lxi(K)

convex optimization is majorant minimization for (38) and (37):

is convex in ¥ > 0, the following

n—k
H
min yt+u Z (xi(lc)) X — 2(y(l<))—1 + (Y(K))_lY(Y(K))_l)xi(K)
X,Y,y,RH,Q.EA g; K = (39)
s.t. (9 —(10),

which provides an alternative to «-th iteration (27). This iteration is more efficient than (27) for
larger n — k, that is, for lower order k of the controllers.

3. STATIC OUTPUT FEEDBACK LPV-LFT Ho, CONTROLLER

The static output feedback LPV-LFT controller corresponds to k = 0, that is, the control in (7) is in
the form

u(t) = (Dgi1 + Dxia(I — Ag(«(t)) Dran) ™" Ak (a(t) Dgar)y (1) (40)
leading to the following optimization formulation for its synthesis:
min y st (9)—(10), 41

X.Y,7.R.HQE,A g; K

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:4421-4442
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X=Y", (42)

for

K= Dk Dkia
Dka1 Dkaa

and setting Ax = 0, Bx; = 0, Bk, = 0, Cgq = 0, Cka = in (12). The controller (40) is recovered
by (13), (17), (18), and (21). To the author’s best knowledge, such simple structured controller (40)
has not been considered in literature so far.

The first attractive reformulation of nonlinear constraint (42) is given back in [33]

(10), Trace(XY) < n (43)

where the nonconvexity is concentrated at the last indefinite quadratic constraint in (Y, X).
Alternating optimization between X and Y is applied in handling (43).

Later, Nguyen et al. [14] also addressed the static output feedback controller problem for LTI
systems by developing the so-called convex-concave inequality approach for a solution of the cor-
responding BMI reformulation. All these results must start from a feasible point of a nonconvex
feasible set, which is not easily located.

Note that X > Y~! by LMI (10), which yields X — Y~ > 0. Hence, the nonlinear equality (42)
holds if and only if

tr(X) —tr(Y™!) = 0.
In other words, the nonnegative quantity tr(X) — tr(Y™') can be used to measure the degree of
satisfaction of the nonlinear equality (42). Instead of the formulation (24), we consider a simpler
nonconvex program
min Y 4+ u(trX) —tr (Y1) s.t.(9) — (10). (44)
X,Y,y,R,H,Q,E,A g; K
Using (26), at (X®, Y ®) feasible to LMIs (44)—(10), the following convex program is a
majorant minimization for the nonconvex program (44):

min y 4 pX) = 2u(Y ) £ (Y)Y (Y @)Th) st (9) — (10), (45)
X,Y,y,R.H,Q.E.A Ki K

The pseudocode using (45) in «th iteration is given by Algorithm 3.
Alternatively, Y > X~! by LMI (10), so whenever

(Y Q) — (X)) < (X Q) — (¥ @)™ (46)
for the initial point (X @, Y @), we use
min Y+ oY) —aXTh) st (9) = (10) 47)

X,Y,7,R,H,Q.E,A g; K

instead of the formulation (44), for which Algorithm 3 can be easily adjusted for solution.
Similarly to (33), we address the design of a static output feedback o controller to satisfy the
Hoo-gain condition (5) for given y by solving the following nonconvex program:

1)1(1’1‘1(1 r(X) —tr(Y™!)  st. (9) — (10). (50)

Its xth iteration is

min tr(X) — 2t (Y ©) + (Y )Y (¥ @)~ st (9) — (10), (51)

and Algorithm 4 is the pseudocode for the implementation.
Alternatively, whenever (46), we use

min tr(Y) —tr(X™ 1) st (9) —(10) (52)
instead of (50), for which Algorithm 4 can be easily adjusted for computation.
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Algorithm 3 Nonconvex Spectral Optimization Algorithm for static LPV-LFT H, controllers

1:

Initialize ¥ := 0 and solve SDP (41) to find its optimal solution (X ®) ¥ ®) y®)) Stop the
algorithm if

r(X® — (¥ ) <e, (48)

and accept (X @, Y (© () a5 the optimal solution of the nonconvex program (23). Otherwise
set w = 0.5.

2: repeat

if tr(X® — (Y ®)~1) > ¢, then reset 4 — 2 and solve SDP (45) to find the optimal
solution (X ¢+ y 1) ,(k+1))
else Solve SDP (45) with additional convex constraint

(X =2 )™ + (Y )" lY(Y ®) ) < e, (49)
to find the optimal solution (X ¢+ y (+1 1, (k+1))
end if
Setk :=x + 1.

until y© — &= < ¢
Accept (X )y @), y(")) as a found suboptimal solution of (41)- (42) if (48) is fulfilled.

Algorithm 4 Nonconvex Spectral Optimization Algorithm for feasible static output feedback LPV-
LFT H controllers

1:

AN AN

Initialize x := 0 and solve SDP (41) (for fixed y = 7 to find its optimal solution (X *), Y ®)),
Stop the algorithm if

r(X© — (¥ ®)H <e (53)

and accept (X @, Y @) as the optimal solution of the nonconvex program (23).
repeat
Solve SDP (51) to find the optimal solution (X *+1 y®&+1)),
Setk :=x + 1.
until tr(X @ — (Y ®©)™1) < e or tr(X®D — y &=y _ (X ®) — y @) < ¢;
Accept (X ®)| Y ®) as a found feasible solution of (41)- (42) under fixed y if (53) is fulfilled.

4. SIMULATION RESULTS

The hardware and software facilities for our computational implementation are as follows:

4.1.

Processor: Intel(R) Core(TM) i5-3470 CPU @3.20 GHz;

Software: Matlab version R2015b;

Matlab toolbox: Yalmip [34] with SeDumi 1.3 [35] solver for SDP;

Data: The data in Section 4.1 are from [24], while the state-space data in Sections 4.2, 4.3, and
4.4 are from [36];

Criterion: The stop and rank check criterion €; and €, are set as 1074,

Rotational-translational actuator control

Consider the nonlinear benchmark model [37] of rotational-translational actuator. The regulated
output is the tracking performance of the translational and angular positions and control

z = (0.1x1,0.1)C3,u)T

The system can be represented by LPV-LFT (1) and (2) [24, Appendix] with the numerical values
of the matrices in (1 and (2) recalled in Appendix A.
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x1
x2
——-x3
— — x4

0.8 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

t

Figure 2. Tracking performance of the first-order linear parameter varying-linear fractional transformational
controller in the absence of disturbance. [Colour figure can be viewed at wileyonlinelibrary.com]

By solving SDP (32) for step 1 of Algorithm 1, we found @ = 8.1909 with X° — (Y %)~ of rank-
four, which lead to full-order control (3) and (4) [24]. Implementing Algorithm 1 with u = 1 for
the first-order controller, y = 9.3785 was found and the following numerical data for control (3)
and (4) are obtained:

Ag = —4.2617, Bgy = [0.4767 —2.0207],Cg1 = —0.1327, Dgi1 = [ —0.0670 0.0284],
—0.0002 —0.3509 —1.4991

Bika = [0 —0.0030 —0.0132], Dgia = [0 0 0.0013], Dgan = 0  —0.0003 —0.0015
0  0.0002 0.0008

—30.6379 —11.5584 —2.5580
Cka = 4.2867 |,Dka1 = 0.1977 0.0127 |,
—1.6715 0.0034 —0.0107
—0.3118 4.8064 —25.2717 | [ —0.3125 3.5657 51.1251
Ag1 = 03425 48514 64.0377 |,Ax, = | 03434 6.5093 —-39.3112 |,
—0.0932 —27.9300 —84.1243 | | —0.0934 —28.3084 —59.9568
0.3118 —4.8064 25.2717 ] [ 0.3125 —3.5657 —51.1251
Ags = | —0.3425 —4.8514 —64.0377 |,Ags = | —0.3434 —6.5093 39.3112 |,
0.0932 27.9300 84.1243 | | 0.0934 28.3084 59.9568

Under the condition x(0) = (0.5,0,0,0)7, the simulation given by Figures 2—4 clearly shows
that our first-order LPV-LFT stabilizes the system well.

4.2. Reduced-order LPV-LFT controllers

We modify the LTI examples in [12, Section 10] by adding the gain-scheduling channel (wa, Za)
to have LPV-LFT system (1). The randomly generated matrix sets for the gain-scheduling channel
are provided in Appendix B.

The computational results by implementing Algorithm 1 are provided by Table I. The full order
of LPV-LFT control, which is equal to the system state dimension is given in the second row with
the initial y obtained by solving (32) (for full-order LPV-LFT control) given in the third row. The
fourth column indicates the value of initial x used. The fifth column is the found value of y for the
controller of order indicated in the sixth column.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:4421-4442
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Figure 3. Tracking performance of the first-order linear parameter varying-linear fractional transformational
controller with the disturbance w = 0.1 sin(57¢). [Colour figure can be viewed at wileyonlinelibrary.com]

Control performance of the RTAC system
T T T T T

0.1

-0.08 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

t

Figure 4. The behaviour of the first-order linear parameter varying-linear fractional transformational con-
troller in the absence of disturbance (dot) and with disturbance w = 0.1 sin(57¢)(solid). [Colour figure can
be viewed at wileyonlinelibrary.com]

Table I. Computational results for reduced-order linear parameter varying-linear
fractional transformational controllers by Algorithm 1.

Full order Lower bound by (32) 1% y Order k
VTOL helicopter 4 0.0871 0.05 0.2958 1
Chemical reactor 4 0.8653 0.05 0.8653 1
Transport airplane 10 1.7042 10 2.5302 1

4.3. Static output feedback LPV-LFT controller

We modify the LTI examples in [14, Tab. III] by adding the matrices relating to the gain-scheduling
channel (wa, za) as provided in Appendix C. The computational results by implementing Algo-
rithm 3 are provided in Table II, which is formatted similarly to Table I. Tables I and II reveal
that very low-order (first-order or static) controllers, which lead to very efficient online control
realization, work well in these examples.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:4421-4442
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Table II. Computational results for static linear parame-
ter varying-linear fractional transformational controllers by

Algorithm 3.
Full order Lower bound by (32) y
ACl 5 2.76E-08 0.1 6.68E-07
AC2 5 0.117675 1 2.113598
AC3 5 3.095253 1 4.891439
AC6 7 3.683339 5 4.948768
ACS8 9 8.727383 20 9.57084
AC9 10 1.000091 5 1.002586
AC15 4 16.30176 5 18.91505
AC17 4 6.686188 5 6.688397
HE4 8 28.81522 5 37.26205

Table III. Numerical results by Algorithms 1 and 3 compared with [12].

Case Lower bound Obj pu y Order #iter y in[12] Orderin [12]
VTOL helicopter 0.0737 (24) 1 0.118713 2 1 0.133 2
VTOL helicopter 0.0737 44) 0.7 0.1539 0 20 0.1542 0
Chemical reactor 0.8617 24) 1 0.8617 2 1 1.142 2
Chemical reactor 0.8617 44) 1 0.8937 0 28 1.183 0
Transport aircraft 0.0417 31) 10 0.349 1 42 2.86 1
Transport aircraft 0.0417 3 1 0.2167 2 6 failed 2
Piezoelectric actuator 3.11E-05 31 5 0.0048 2 3 0.03 2
Piezoelectric actuator 3.11E-05 47) 100 0.0213 0 3 0.0578 0
Coupled springs model 0.01996 (24) 1 0.01997 2 4 0.0235 4

Table IV. Distillation tower case with y fixed by Algorithm 4 compared with [12].

Case Fixedy Obj Order #iter Trace(X —Y~!) ypin[12] Orderin [12]
Distillation tower ~ 0.8000  (44) 0 64 2.24E-05 1.0722 0

4.4. LTI systems

In LTI systems, there are no gain-scheduling channel (wa, za) in system (1) and no gain-scheduling
channel (wg, zx) in controller (3). Accordingly,

- Ak Bii
K:=
|: Cx1 Dk }

in (8) and LMI (9) becomes

XA + Bx1Cy + (%) * * *

AL + 4+ BoDkiCa (AY + ByCxi) + (%) * *
T T pT T TnI pT <0 (54)

By X+ D3 B, Bi + Dy Dk By -yl *

Ci + D12Dkni G2 Ci1Y+ D12Ck1 D11 + Di12Dkun D21 —y1

with control recovered by (13)—(16) [38].

As mentioned in the Section 1, the Matlab command systune [18] is the most efficient tool for LTI
systems. Our purpose in this subsection is not to show any advantage of the Lyapunov matrix-rank-
constrained approach over the frequency approach by using the Matlab command systune [18]. We
consider numerical examples from [12, section 10] and [14, table III] for LTI systems to only show
the efficiency of our approach in handling the rank-reduced constraints.

4.4.1. Dynamic and static output feedback controllers in [12]. All cases in [12, section 10] were
tested. The computational results are summarized in Table III, where the first column is the case
name, the second column is the initial y obtained by solving (32), that is, it is the optimal H, by
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Table V. Numerical results of static output feedback controllers by Algorithm 3 compared with [14].

Case  Lowerbound Obj pu y # iter y in [14] #iter y by systune [18] # iter
ACl1 2.68E-06 (47) 0.1 3.42E-05 7 0.0177 93 6.97E-05 85
AC2 0.1115 47) 0.1 0.1115 1 0.1140 99 0.1115 53
AC3 2.9675 47) 0.15 3.4696 300 3.4859 210 3.4056 111
AC4 0.5573 44) 0.3 1.0064 300 69.9900 2 0.9355 45
AC6 3.4275 47) 0.1 4.1208 132 4.1954 167 4.114 59
AC7 0.0396 47) 0.1 0.0657 150 0.0548 300 0.0651 28
ACS8 1.6165 47 2 2.0508 16 3.052 247 2.005 37
AC9 1.0000 47 1 1.003 1 0.9237 (wrong) 300 1.0006 102
ACl11 2.8079 44) 10 2.9261 300 3.0104 68 2.818 95
ACI12 0.0225 (44) 1 0.4706 14 2.3025 300 0.0537 300
ACI15 14.8628 47) 0.2 15.1730 116 15.1995 105 15.1689 54
AC16 14.8556 44) 0.09 15.0012 24 14.9881 186 14.858 54
AC17 6.6124 47 1 6.6124 1 6.6373 129 6.6124 28
HE1 0.0737 44) 0.7 0.1539 20 0.1807 300 0.1538 43
HE2 2.4181 @7 10 4.4162 272 6.7846 177 3.8958 58
HE4 22.8382 47) 3 22.8431 203 22.8713 252 22.8382 69
REAI 0.8617 47) 0.2 0.8911 189 0.8815 96 0.8656 54
REA2 1.1341 (44) 1 1.1895 1 1.4188 300 1.149 45
REA3 74.2513 47 1 74.2513 4 74.5478 2 74.2513 24
DIS1 4.1593 (44) 5 4.5625 276 4.1943 93 4.1606 43
DIS3 1.0423 47) 0.1 1.0933 150 1.1382 285 1.0624 117
DIS4 0.7315 44) 0.1 0.7556 64 0.7498 126 0.7353 76
AGS 8.1732 47 1 8.1732 5 8.1732 24 8.1732 20
WEC2 3.5981 47) 100 5.9166 128 6.6082 300 4.2483 95
WEC3 3.7685 47) 100 6.2305 107 6.8402 300 4.4496 101
BDT1 0.2653 47) 0.1 0.331 195 0.8562 29 0.2662 30
MFP 4.1865 47) 300 31.5978 300 31.6079 171 31.5899 42
IH 1.26E-06 (47) 1 1.40E-05 1 1.1858 114 0.002 300
CSEl 0.02 (44) 1 0.02 1 0.022 3 0.02 34
PSM 0.9202 44) 0.1 0.9206 15 0.9227 87 0.9202 18
EB1 3.1041 44) 20 3.142 1 22076 (wrong) 300 3.1225 21
EB2 1.7676 (44) 1 2.0205 24 0.8148 (wrong) 84 2.0201 22
EB3 1.7976 (44) 1 2.058 26 0.8153 (wrong) 84 2.0575 22
NNI1 13.1299 47) 1 17.2732 4 18.4813 300 13.8474 45
NN2 1.7645 (44) 1 2.2217 27 2.2216 9 2.2216 20
NN8 2.3576 47) 047 3.074 312 2.9345 180 2.8854 47
NNO9 13.6461 @47) 40 30.0387 300 32.1222 300 28.6673 77
NN11 0.0181 47 50 0.1981 648 0.1566 9 0.0914 92
NNI15 0.0977 (44) 1 0.0993 2 0.1194 6 0.0981 38
NN17 2.6386 44) 15 11.2182 165 11.2381 117 11.2182 26

the full-order controller, the third column is the objective function, which is either (24) or (31) for
k-order controller and either (44) or (47) for static output feedback controller. The fourth column
is the value of initial . The fifth column is the found value of y. The sixth column provides the
controller order. The seventh column is the iterations by our method; the last two column are the
found y and corresponding order in [12], respectively.

Compared with [12], it can be seen that our optimal y are better than [12] in all cases provided.
For the transport aircraft example [12], failed to obtain two-order controller, although it was found
by our Algorithm after six iterations. The Piezoelectric actuator example poses the most difficulty
for [12], but it is easily solved by our algorithm with three iterations for both order 2 controllers and
statistic output feedback controller.

The last example in [12] for static output feedback for a plant with state dimension 82. The
computational results by implementing Algorithm 2 are summarized in Table IV, whose format is
similar to Table III, but the second column is the fixed value of y, which is better than the value
provided by [12] in the seventh column. The sixth column is the value of trace(X — Y ') at the
last iteration.
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Table VI. Numerical results of static output feedback controllers by Algorithm 4 compared with [14].

Case Lower bound Fixed y Obj # iter y in [14] # iter y by systune [18] # iter
HE3 0.7990 0.9200 (44) 257 0.9243 105 0.8052 70
DIS1 4.1593 4.1700 47) 10 4.1943 93 4.1606 43
TG1 3.4652 12.8000 (44) 264 12.9336 45 12.8462 36
NN4 1.2862 1.3600 (44) 283 1.3802 156 1.3598 79
NN11 0.0181 0.1000 (44) 178 0.1566 9 0.0914 92
NN16 0.9556 0.9600 (44) 53 0.9656 48 0.9558 65

4.4.2. Static output feedback controllers in [14]. There are 45 cases in [14, table III]. The computa-
tional results are summarized in Tables V and VI by Algorithms 3 and 4, respectively, whose format
is in similar style to Table III. Anyway, the best y obtained from systune [18], which is referred to
what is achievable, is also provided in the ninth column. In AC9, EB1, EB2, and EB3, the results
by [14] are obviously incorrect as its provided values of y in the seventh column is even smaller
than their lower bound in the second column. It should be mentioned that the value of p is increased
to regulate the convergence speed, but a larger u results in larger y as well. According to [14], the
iteration threshold to stop its solver is 300. The solver [14] is trapped by local minima in AC4 and
ACI12 as its found values are much bigger than that found by our Algorithm 3. The former is also
heading to a wrong minima in the case AC12 as the value found after 300 iterations is still very far
from that found by the latter. In AC1, AC2, AC8, ACI11, AC16, AC17, HE1, HE2, REA2, DIS3,
DIS4, WEC2, WEC3, IH, PSM, and NN, the later clearly outperforms the former in both compu-
tational performance and convergence. Note that the result for HE3, DIS1, TG1, NN4, NN11, and
NNI16 in Table VI was obtained by using Algorithm 4. Our simulation results are better than or
consistent with [14]. It should be realized that the results in these tables also depend on the setting
of stopping parameters in the algorithms, that is, the presented results are not necessarily the local
minima when the algorithms stop because of slow convergence.

5. CONCLUSIONS

We have proposed new algorithms for solving matrix-rank-constrained optimization arising in
reduced-order Hoo, LPV-LFT controller design. Unlike the previous developments, we formulate
the problem as minimization of nonconvex objective function over a convex feasibility set. The
global convergence of the proposed algorithms to a local minima follows immediately from their
path-following nature, while there is no difficulty for initial solutions, which are found from a
semi-definite program for full-order controller synthesis. The numerical results reported for the
benchmark collections have shown their merit. Their application to solutions of reduced-order gen-
eralized H, LPV-LFT controllers is obvious. Their extensions to multi-objective and structured
controller design are currently under development.

APPENDIX A: LPV-LFT DATA OF ROTATIONAL-TRANSLATIONAL ACTUATOR SYSTEM

-0 100 0 0 0 ) 0
—1.036500 0 —0.5 0.5 1.0365 1.0365 —0.1946
A= o oo1|'B=| o o o ['Br=| o [|'B=|
| 0.1946 000 0.5 0.5 —0.1946 | —0.1946 1.03654
15157000 1.2311 0 —1.5157]
Ca=1]07088000|,Dap = 0 —0.8419 —0.7088 |,
| 0 001 0 0 0
[ —1.5157 1.5157
Da; = | —0.7088 |, Dpap, = | —0.7088
|0 0
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[0.316220 0 0 1000 0
C = 0 00.3162 0 ,C2=|:0010:|,D12: 0
0 0O 0 O 1
[0.01224 0 0 0.01224 0 0
A = 0 0.01224 0 LAy = 0 0.01224 0
| 0 0 0.04794 0 0 —0.04794
[ —0.01224 0 0 —0.01224 0 0
Az = 0 —0.01224 0 LAy = 0 —0.01224 0
i 0 0 —0.04794 0 0 0.04794
1 1
a1(7) = (a2 —81(t))(as — 82(2)), a2(t) = (a2 —81(1)(as + 82(2))
4asas 4asas
1 1
as3(t) = (az +81(1))(as + 82(1)), aa(t) = (a2 + 81(0))(as — 82(1))
4asas dasas
where
cos0.5+ 1 1 —-cos0.5 .
alzeT azzeT,agzl—al,a4=1+a1,a5=60.551n0.5

81 = €cosx3 —ay,—dr <61 <dap,0y = exgsinxsz,—as <8, <as, € =0.2.

APPENDIX B

B.1 Modified VTOL helicopter system

0.5243 0.4413

0.3440 0.1393 Cr = 0.3031 0.5501 0.5605 0.0255
0.1109 0.5365 |2 = | 0.3292 0.2303 0.3367 0.1256 |°
0.2478 0.1764

Ba =

0.0217 0.0152 0.0097 0.0724|° 0.0371 0.0565("°

A, _[00740 0.06187  _[0.0305 0.0611
= o2 0.0474 0.0156| "

A = [0.0477 0.0562i| A4:[0.0506 0.0704]

B.2 Modified chemical reactor system

70.3992 0.2357 0.1968 0.2560 7] 7 0.1869 0.3511 0.2284 0.2440 7
Ba = 0.3125 0.0069 0.3433 0.0130 Cp = 0.3123 0.2240 0.0962 0.2576
0.2363 0.0491 0.0851 0.2498 |~ 0.0888 0.3294 0.2597 0.2844 |~
L 0.3772 0.3506 0.2244 0.1473 | L 0.1941 0.2879 0.0325 0.3472 |
0.0032 0.0133 0.0410 0.0322 7 0.0232 0.0099 0.0097 0.0067 7
Ay = 0.0316 0.0095 0.0182 0.0346 A, — 0.0403 0.0267 0.0448 0.0079
0.0124 0.0122 0.0348 0.0287 |2 0.0413 0.0303 0.0039 0.0294
L 0.0079 0.0028 0.0449 0.0080 | | 0.0128 0.0197 0.0050 0.0271 |
0.0019 0.0024 0.0319 0.0148 7 0.0144 0.0309 0.0408 0.0085 7
As = 0.0346 0.0320 0.0292 0.0050 A, = 0.0141 0.0012 0.0166 0.0316
0.0271 0.0347 0.0191 0.0011 |*—=* 0.0159 0.0402 0.0213 0.0158
L 0.0274 0.0366 0.0066 0.0349 | | 0.0223 0.0267 0.0026 0.0429 |

B.3 Modified transport airplane system

0.1454 0.0308 0.2485 0.2151 0.0160 0.0712 0.1049 0.1605 0.2354 0.1063
T 0.1822 0.2487 0.1115 0.1627 0.2309 0.2232 0.0366 0.0514 0.1590 0.1985
0.0632 0.0946 0.0874 0.1169 0.0438 0.1910 0.0251 0.2280 0.0210 0.2002
0.2174 0.1155 0.1550 0.0908 0.1944 0.1510 0.1566 0.2160 0.1170 0.2261
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0.1991 0.0018 0.2215 0.2496 0.1639 0.1131 0.0108 0.0643 0.2234 0.1669
0.0184 0.2225 0.1165 0.2177 0.1031 0.0067 0.1392 0.1817 0.1950 0.2448

Ca = 0.2484 0.2162 0.0930 0.0000 0.1192 0.1064 0.1530 0.1785 0.1238 0.0293 |~
0.1942 0.1746 0.0208 0.1702 0.0972 0.0265 0.1849 0.1261 0.1906 0.2175
0.0191 0.0212 0.0033 0.0055 7 0.0136 0.0429 0.0119 0.0158 7
A 0.0241 0.0303 0.0386 0.0324 A, = 0.0156 0.0105 0.0376 0.0239
171 0.0217 0.0173 0.0281 0.0281 |[* =2 ~ | 0.0289 0.0252 0.0393 0.0138
| 0.0279 0.0353 0.0216 0.0161 | [ 0.0342 0.0211 0.0192 0.0078 |
~0.0181 0.0437 0.0088 0.0238 7 0.0037 0.0241 0.0188 0.0333 7]
A 0.0130 0.0085 0.0322 0.0011 A, = 0.0234 0.0321 0.0223 0.0058
371 0.0111 0.0416 0.0298 0.0010 | =* ™ | 0.0263 0.0101 0.0321 0.0320
| 0.0294 0.0260 0.0152 0.0365 | L 0.0269 0.0338 0.0076 0.0325 |
APPENDIX C

C.1 Modified AC1 system

0.2972 0.1612
0.4326 0.0854

Ba = | 0.1907 0.2157 | ,Cp = [
0.4383 0.2318
0.5171 0.3084

0.2360 0.5001 0.1001 0.5307 0.0602
0.1685 0.2330 0.4901 0.2377 0.1398 |’

_ [ 0.1177 0.0499

_[0.1122 0.1052] '

A.—[ 01028 0.05317  _[0.0046 0.11427  _[0.0936 0.07427
1710.0173 0.1622 |* =27 0.1453 0.0764 |* =37 0.0384 0.1558 |* —*

C.2 Modified AC2 system
0.1860 0.1471 0.1931 0.1790 0.3075 7 [ 0.0063 0.2641 0.1275 0.2541 0.2679 7
0.3197 0.2706 0.0325 0.0686 0.2026 0.1064 0.1382 0.2599 0.3052 0.2471
Ba=] 0.2126 0.2984 0.0404 0.1789 0.3360 |,Ca=| 0.1364 0.2854 0.2427 0.1053 0.0538 |,
0.0559 0.2856 0.0493 0.0534 0.2518 0.0869 0.1257 0.1213 0.2158 0.2771
L 0.0722 0.1151 0.2453 0.0199 0.2107 | | 0.0633 0.2472 0.0694 0.1410 0.3182 _
[ 0.0464 0.0349 0.0130 0.0420 0.0356 7 [ 0.0630 0.0099 0.0452 0.0041 0.0120 T
0.0500 0.0563 0.0284 0.0334 0.0376 0.0476 0.0706 0.0516 0.0401 0.0155
A1=| 0.0563 0.0300 0.0513 0.0140 0.0415 |, A,=| 0.0760 0.0396 0.0026 0.0158 0.0035
0.0000 0.0273 0.0327 0.0379 0.0507 0.0475 0.0692 0.0503 0.0101 0.0520
| 0.0493 0.0456 0.0481 0.0048 0.0559 | 0.0014 0.0171 0.0297 0.0168 0.0231 _
0.0396 0.0091 0.0153 0.0697 0.0457 m0.0496 0.0578 0.0090 0.0224 0.0376 ]
0.0511 0.0361 0.0415 0.0060 0.0422 0.0043 0.0528 0.0021 0.0314 0.0574
Asz=]| 0.0367 0.0627 0.0471 0.0078 0.0038 |, Ag=| 0.0579 0.0345 0.0632 0.0436 0.0234
0.0394 0.0643 0.0307 0.0104 0.0685 0.0628 0.0119 0.0203 0.0017 0.0300
| 0.0327 0.0199 0.0151 0.0122 0.0536 _ | 0.0662 0.0268 0.0199 0.0566 0.0036 _|
C.3 Modified AC3 system
0.0421 0.1351 0.2372 0.3017 0.4218 0.2106 0.2908 0.1364 0.0399 0.2294
0.0606 0.0929 0.0787 0.2381 0.0728 0.3321 0.1855 0.3337 0.0034 0.0470
Ba=| 0.0718 0.1072 0.0905 0.1338 0.1101 |, Ca=]| 0.1710 0.1951 0.3008 0.1827 0.2729 |,
0.0838 0.3812 0.0330 0.0710 0.1694 0.1179 0.2634 0.0541 0.2831 0.0546
0.1355 0.3002 0.3901 0.2657 0.0316 0.0161 0.0257 0.0562 0.3122 0.0580
Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:4421-4442
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0.0495 0.0112 0.0254 0.0433 0.0260 7] 0.0086 0.0659 0.0523 0.0319 0.0113 7
0.0291 0.0276 0.0497 0.0243 0.0404 0.0017 0.0644 0.0510 0.0146 0.0459
A1=| 0.0712 0.0117 0.0213 0.0217 0.0538 |, A,=| 0.0200 0.0315 0.0512 0.0068 0.0616
0.0291 0.0549 0.0384 0.0328 0.0307 0.0219 0.0166 0.0073 0.0567 0.0356
| 0.0450 0.0631 0.0603 0.0306 0.0311 | | 0.0450 0.0526 0.0469 0.0121 0.0484 |
0.0107 0.0562 0.0380 0.0014 0.0640 7] 0.0471 0.0448 0.0199 0.0398 0.0395 7]
0.0663 0.0520 0.0277 0.0642 0.0552 0.0143 0.0402 0.0510 0.0595 0.0222
Az=]| 0.0376 0.0084 0.0289 0.0454 0.0401 |, A4=]| 0.0040 0.0262 0.0494 0.0278 0.0624
0.0472 0.0365 0.0126 0.0648 0.0306 0.0480 0.0245 0.0534 0.0038 0.0140
| 0.0025 0.0226 0.0178 0.0114 0.0179 | | 0.0420 0.0511 0.0317 0.0543 0.0409 |
C.4 Modified AC6 system

0.0327 0.0447 0.3191 0.3238 0.1948 0.0202 0.0795
0.1196 0.2781 0.0052 0.0146 0.0572 0.2198 0.2478

T _
Ba =1 02194 0.1527 0.1853 0.1004 0.2522 0.0640 0.2326
0.0622 0.1248 0.2119 0.2642 0.0275 0.3148 0.2627
0.3139 0.3081 0.1451 0.0664 0.3260 0.1220 0.2818
Cr = | 02094 0.2247 0.0274 0.0867 0.3412 0.3250 0.1408
A= 1 0.1986 0.1267 0.0866 0.1507 0.1773 0.1334 0.0873 |°
0.0523 0.1854 0.0445 0.0179 0.1767 0.0402 0.1459
~0.0394 0.0411 0.0521 0.0284 ~0.0677 0.0512 0.0246 0.0338
A 0.0352 0.0413 0.0306 0.0759 | , | 0.0638 0.0251 0.0186 0.1004
1= 1 0.0361 0.0661 0.0656 0.0708 |*~=2 — | 0.0226 0.0918 0.0248 0.0468 |°
| 0.0248 0.0643 0.0431 0.0445 | | 0.0328 0.0212 0.0474 0.0201 _
m0.0883 0.0252 0.0588 0.0290 ~0.0075 0.0820 0.0209 0.0460
Al — | 0:0956 0.0399 0.0694 0.0311 | | 0.0232 0.0645 0.0405 0.0204
371 0.0428 0.0581 0.0216 0.0414 |*=* = | 0.0707 0.0431 0.0850 0.0431
| 0.0108 0.0256 0.0115 0.0496 | | 0.0026 0.0511 0.0483 0.0551 _
C.5 Modified AC8 system

~ | 0.3424 0.3336 0.2293 0.1083 0.2802 0.0962 0.1879 0.1583 0.2217

BT |:0.0964 0.3048 0.2852 0.3392 0.3409 0.1208 0.1274 0.2153 0.1339:|
A=

Ch = 0.4599 0.0189 0.0804 0.3147 0.1684 0.2111 0.3167 0.0977 0.1679
A= 10.2118 0.3876 0.0747 0.1322 0.2087 0.2006 0.0867 0.0492 0.3997

0.0942 0.0293 0.0093 0.1091 0.1193 0.0495 0.1746 0.0708
B.6 Modified AC9 system
BT |:0.2911 0.3110 0.1462 0.2964 0.3551 0.0966 0.0516 0.0896 0.1393 0.1143}

A= [0.1237 0.1223:| ,A2=[0'0958 0.1372] ,A3=[0'1035 0.1122:| ,A4=[O'OOOI 0.0671:|

A 7 10.3691 0.0204 0.2359 0.0648 0.3337 0.0667 0.1999 0.3977 0.1414 0.0187

Cr = 0.1202 0.2758 0.2005 0.3071 0.3533 0.1315 0.1279 0.2939 0.0463 0.0093
A= 10.0354 0.2762 0.1248 0.2039 0.3294 0.2016 0.2298 0.2752 0.3034 0.1529

A, [007040.11007  _ [0.11940.1227
1=10.1312 0.0757 | =2 — | 0.0871 0.0558 |’

A, 01365008867 , _ [0.03150.1032
371 0.0008 0.1163 | =%~ | 0.1260 0.1117
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C.7 Modified AC15 system

0.0637 0.3367 0.0498 0.3052
0.2307 0.3636 0.3338 0.4218
0.4159 0.1560 0.3262 0.0923

BY =

[10.0031 0.0480 0.0618 |
0.0745 0.0905 0.0860
| 0.0500 0.0610 0.0806 |

Aq

[0.0726 0.0990 0.0757 |
0.0684 0.0062 0.0140
| 0.0087 0.0104 0.1187 |

A3

C.8 Modified AC17 system

0.1462 0.2304 0.3153 0.0251
0.3333 0.1848 0.2733 0.1295
0.1619 0.3464 0.2865 0.0017
0.0925 0.3603 0.3468 0.3192

Bp =

0.0563 0.0321 0.0455 0.0393 7
0.0406 0.0076 0.0137 0.0133
0.0252 0.0094 0.0492 0.0632
L 0.0594 0.0076 0.0998 0.0971 |

Aq

0.0572 0.0426 0.0399 0.0193 7
0.0247 0.0573 0.0750 0.0549
0.0538 0.0405 0.0312 0.0673

L 0.0523 0.0391 0.0094 0.0777 |

C.9 Modified HE4 system

Ca

0.0433 0.0570 0.0391 0.0547 7
0.0277 0.0428 0.0431 0.0079
0.0673 0.0387 0.0760 0.0099
[ 0.0842 0.0164 0.0632 0.0508 |

0.0838 0.0086 0.0144 0.0314 7
0.0495 0.0756 0.0556 0.0346
0.0502 0.0767 0.0155 0.0077

Ay

L 0.0817 0.0184 0.0100 0.0588 |

Copyright © 2017 John Wiley & Sons, Ltd.

,Ca

,CA =

J Ay

, Ay

0.1677 0.0014 0.0621 0.1371 0.1744 0.1203 0.2021 0.1830 7]
0.2395 0.0546 0.1572 0.1196 0.3053 0.2925 0.2790 0.1386
0.2348 0.2842 0.1166 0.0363 0.1641 0.1066 0.2654 0.0582

| 0.0652 0.1657 0.0263 0.0752 0.1983 0.0347 0.1898 0.2780 |

0.1227 0.2765 0.1709 0.1227 0.0710 0.0542 0.0562 0.1699 7
0.2542 0.1658 0.2155 0.1823 0.1005 0.0276 0.1711 0.2431
0.1595 0.1418 0.1693 0.0498 0.0855 0.1956 0.2001 0.1906
L 0.2060 0.1499 0.2037 0.2471 0.2728 0.0271 0.2510 0.2213 |

WAV

J Ay

Y. SHI, H. D. TUAN AND P. APKARIAN

0.3155 0.4589 0.4242 0.1216
0.1837 0.0175 0.3698 0.1558
0.1707 0.4112 0.0459 0.3157

[ 0.0672 0.1033 0.0196 ]
0.0213 0.0033 0.1141
| 0.0280 0.0571 0.0831 |

[ 0.0804 0.0649 0.0639 ]
0.0711 0.0510 0.0788
| 0.0147 0.0957 0.0447 |

0.0576 0.1217 0.3314 0.4104
0.0607 0.3968 0.1556 0.3572
0.3994 0.0267 0.1841 0.0318
0.2767 0.2101 0.2418 0.1279

0.0319 0.0677 0.0523 0.0801 7
0.0038 0.0418 0.0575 0.0428
0.0130 0.0611 0.0803 0.0129
| 0.0070 0.0640 0.0606 0.0062 |

0.0192 0.0456 0.0270 0.0693 7
0.0679 0.0443 0.0080 0.0160
0.0522 0.0582 0.0738 0.0098

| 0.0360 0.0665 0.0348 0.0809 |

0.0472 0.0643 0.0811 0.0197 7
0.0557 0.0492 0.0298 0.0826
0.0039 0.0164 0.0519 0.0068
| 0.0592 0.0771 0.0243 0.0200 _|

0.0444 0.0540 0.0086 0.0591 7
0.0801 0.0604 0.0718 0.0232
0.0173 0.0307 0.0362 0.0482

| 0.0746 0.0386 0.0543 0.0301 _|
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