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1. Abstract
We develop nonsmooth optimization techniques to solve H1 synthesis problems under additional struc-
tural constraints on the controller. Our approach avoids the use of Lyapunov variables and therefore leads
to moderate size optimization programs even for very large systems. The proposed framework is very
versatile and can accommodate a number of challenging design problems including static, fixed-order,
fixed-structure, decentralized control, design of PID controllers and simultaneous design and stabilization
problems. Our algorithmic strategy uses generalized gradients and bundling techniques suited for the
H1-norm and other nonsmooth performance criteria. Convergence to a critical point from an arbitrary
starting point is proved (full version) and numerical tests are included to validate our methods.
2. Keywords: H1-synthesis, nonsmooth optimization, Clarke subdiÆerential, BMI.

3. Introduction
In this paper we consider H1-synthesis problems with additional structural constraints on the controller.
This includes static and reduced-order H1-output feedback control, structured, sparse or decentralized
synthesis, simultaneous stabilization problems, multiple performance channels, and much else. We pro-
pose to solve these problems with a nonsmooth optimization method exploiting the structure of the
H1-norm.

In nominal H1-synthesis, feedback controllers are computed via semidefinite programming (SDP)
[13, 1] or algebraic Riccati equations [10]. When structural constraints on the controller are added,
the H1-synthesis problem is no longer convex. Some of the problems above have even been recognized
as NP -hard [19] or as rationally undecidable [5]. These mathematical concepts indicate at least the
inherent di±culty of H1-synthesis under constraints on the controller.

Even with structural constraints, the bounded real lemma may still be brought into play. The diÆe-
rence with customary H1 synthesis is that it no longer produces LMIs, but bilinear matrix inequalities,
BMIs, which are genuinely non-convex. Optimization code for BMI problems is currently developed by
several groups, see e.g. [16, 3, 24, 18, 11], but it appears that the BMI approach runs into numerical
di±culties even for problems of moderate size. This is mainly due to the presence of Lyapunov variables,
whose number grows quadratically with the number of states.

Out present approach does not use the bounded real lemma and thereby avoids Lyapunov variables.
This leads to moderate size optimization programs even for very large systems. In exchange, the cost
functions are nonsmooth and require special optimization techniques. We evaluate the H1-norm via
the Hamiltonian bisection algorithm [7, 6, 12] and exploit it further to compute subgradients, which are
then used to compute descent steps.

This present paper is a contraction of a full version where additional algorithmic details, a con-
vergence proof and further examples can be found. The reader is also referred to [20] and [21] for a
comprehensive discussion on convergence and further technical details. In the sequel, we shall use noti-
ons from nonsmooth analysis covered by [9].

4. H1 synthesis
The general setting of the H1 synthesis problem is as follows. We consider a linear time-invariant plant
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described in standard form by the state-space equations:
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where x 2 Rn is the state vector, u 2 Rm2 the vector of control inputs, w 2 Rm1 a vector of exogenous
inputs, y 2 Rp2 the vector of measurements and z 2 Rp1 the controlled or performance vector. Without
loss of generality, it is assumed throughout that D22 = 0.

Let u = K(s)y be a dynamic output feedback control law for the open loop plant (1), and let
Tw!z(K) denote the closed-loop transfer function of the performance channel mapping w into z. Our
aim is to compute K(s) such that the following design requirements are met:

• Internal stability: For w = 0 the state vector of the closed-loop system (1) and (2) tends to zero
as time goes to infinity.

• Performance: The H1 norm kTw!z(K)k1 is minimized.

We assume that the controller K has the following frequency domain representation:

K(s) = CK(sI °AK)°1BK + DK , AK 2 Rk£k, (2)

where k is the order of the controller, and where the case k = 0 of a static controller K(s) = DK

is included. Often practical considerations dictate additional challenging structural constraints. For
instance it may be desired to design low-order controllers (0 ∑ k ø n) or controllers with prescribed-
pattern, sparse controllers, decentralized controllers, observed-based controllers, PID control structures,
synthesis on a finite set of transfer functions, and much else. Formally, the synthesis problem may then
be represented as

minimize kTw!z(K)k1
subject to K stabilizes (1)

K 2 K
(3)

where K 2 K represents a structural constraint on the controller (2) like one of the above.
Without the restriction K 2 K, and under standard stabilizability and detectability conditions, it

is customary to synthesize K(s) using Riccati equations or LMI techniques [14]. This scenario changes
dramatically as soon as constraints K 2 K are added. Then the problem may no longer be transformed
into an LMI or any other convex program, and alternative algorithmic strategies are required.

Also, it is important to pay attention to the fact that even genuine stabilization problems can be
cast as H1 synthesis problems. Indeed, under standard assumptions, a system is stable if and only if a
well chosen closed-loop transfer function has finite H1 norm (see full paper). Therefore, the proposed
techniques also cover stabilization problems as a special case.

5. H1-norm subdiÆerentials
In this section, we start characterizing the subdiÆerential of the H1-norm, and derive expressions for the
Clarke subdiÆerential of several nonconvex composite functions f(x) = kG(x)k1, where G is a smooth
operator defined on some Rn with values in the space of stable matrix transfer functions H1.

Consider the H1-norm of a nonzero transfer matrix function G(s):

kGk1 = sup
!2R

æ (G(j!)) ,

where G is stable and æ(X) is the maximum singular value of X. Suppose kGk1 = æ (G(j!)) is
attained at some frequency !, where the case ! = 1 is allowed. Let G(j!) = UßV H be a singular value
decomposition. Pick u the first column of U , v the first column of V , that is, u = G(j!)v/kGk1. Then
the linear functional ¡ = ¡u,v,! defined as

¡(H) = kGk°1
1 ReTrG(j!)HuuHH(j!)
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is continuous on the space H1 of stable transfer functions and is a subgradient of k · k1 at G [8]. More
generally, assume that the columns of Qu form an orthonormal basis of the eigenspace of G(j!)G(j!)H

associated with the largest eigenvalue ∏1

°
G(j!)G(j!)H

¢
= æ(G(j!))2. Then for all complex Hermitian

matrices Yv ∫ 0, Yu ∫ 0 with Tr (Yv) = 1 and Tr (Yu) = 1,

¡(H) = kGk°1
1 ReTrG(j!)HQuYuQH

u H(j!) (4)

is a subgradient of k · k1 at G. Finally, with G(s) rational and assuming that there exist finitely many
frequencies !1, . . . ,!p where the supremum kGk1 = æ(G(j!∫)) is attained, all subgradients of k · k1 at
G are precisely of the form

¡(H) = kGk°1
1 Re

pX

∫=1

TrG(j!∫)HQ∫Y∫QH
∫ H(j!∫),

where the columns of Q∫ form an orthonormal basis of the eigenspace of G(j!∫)G(j!∫)H associated
with the leading eigenvalue kGk21, and where Y∫ ∫ 0,

Pp
∫=1 Tr(Y∫) = 1. See [9, Prop. 2.3.12 and Thm.

2.8.2] and [2] for this.
Suppose now we have a smooth operator G, mapping Rn onto the space H1 of stable transfer

functions G. Then the composite function f(x) = kG(x)k1 is Clarke subdiÆerentiable at x with

@f(x) = G0(x)?[@k · k1 (G(x))], (5)

where @k · k1 is the subdiÆerential of the H1-norm obtained above, and where G0(x)? is the adjoint of
G0(x), mapping the dual of H1 into Rn. In the sequel, we will compute this adjoint G0(x)? for special
classes of closed-loop transfer functions. Suitable chain rules covering this case are for instance given in
[9, section 2.3].

6. Clarke subdiÆerentials in closed-loop
Given a stabilizing controller K(s) and a plant with the usual partition

P (s) :=
∑

P11(s) P12(s)
P21(s) P22(s)

∏
,

the closed-loop transfer function is obtained as

Tw!z(K) := P11 + P12K(I ° P22K)°1P21 ,

where the state-space data of P11, P12, P21 and P22 are given in (1) and the dependence on s is omitted
for brevity. Our aim is to compute the subdiÆerential @f(K) of f := k · k1 ±Tw!z at K. We first notice
that the derivative T 0w!z(K) of Tw!z at K is

T 0w!z(K)±K := P12(I °KP22)°1±K(I ° P22K)°1P21,

where ±K is an element of the same matrix space as K.
Now let ¡ = ¡Y be a subgradient of k ·k1 at Tw!z(K) of the form (4), specified by Y ∫ 0, Tr(Y ) = 1

and with kTw!z(K)k1 attained at frequency !. According to the chain rule, the subgradients ©Y of f
at K are of the form ©Y := T 0w!z(K)?¡Y 2 Mm2,p2 , where the adjoint T 0w!z(K)? acts on ¡Y through
hT 0w!z(K)?¡Y , ±Ki = hT 0w!z(K)±K,¡Y i =

kTw!z(K)k°1
1 Re Tr

°
(I ° P22(j!)K(j!))°1P21(j!)

Tw!z(K, j!)HQY QH P12(j!)
(I °K(j!)P22(j!))°1±K(j!) ) .

(6)

In consequence, for a static K, the Clarke subdiÆerential of f(K) := kTw!z(K)k1 at K consists of all
subgradients ©Y of the form

kTw!z(K)k°1
1 Re

°
(I ° P22(j!)K)°1P21(j!)

Tw!z(K, j!)H QY QH P12(j!)(I °KP22(j!))°1 )T ,
(7)
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where Y ∫ 0 and Tr (Y ) = 1. Recall that ©Y is now an element of the same matrix space as K and acts
on test vectors ±K through h©Y , ±Ki = Tr(©T

Y ±K).
This formula is easily adapted if the H1-norm is attained at a finite number of frequencies !1, . . . , !q.

In this more general situation, subgradients ©Y of f at K are of the form

kTw!z(K)k°1
1

Pq
∫=1 Re

°
(I ° P22(j!∫)K)°1P21(j!∫)

Tw!z(K, j!∫)HQY∫QH P12(j!∫)
(I °KP22(j!∫))°1 )T ,

(8)

where Y 2 P with

P :=

(
(Y1, . . . , Yq), Y∫ ∫ 0,

qX

∫=1

Tr(Y∫) = 1

)
.

At this stage, it is important to stress that expressions (6), (7) and (8) are general and can accommo-
date any problem such as static, dynamic, PID, matrix fraction controllers and also multiple performance
channels.

7. Steepest descent method
Nonsmooth techniques have been used before in algorithms for controller synthesis. For instance, E.

Polak and co-workers have proposed a variety of techniques suited for eigenvalue or singular-value optimi-
zation and for extensions to the semi-infinite case, covering in particular the H1-norm (see [22], [23] and
the citations given there). Another reference is [8], where the authors exploit the Youla parameterization
via convex nondiÆerentiable analysis to derive the cutting plane and ellipsoid algorithms.

Let us consider the problem of minimizing f(x) = kG(x)k1, where x regroups the controller data,
referred to as K in the previous section, and where G maps Rn smoothly into a space H1 of stable
transfer functions. We write G(x, s) or G(x, j!) when the complex argument of G(x) 2 H1 needs to be
specified.

A necessary condition for optimality is 0 2 @f(x) = G0(x)?@k · k1 (G(x)). It is therefore reasonable
to consider the program

d = ° g

kgk , g = argmin{k¡Y k : Y 2 P} (9)

which either shows 0 2 @f(x), or produces the direction d of steepest descent at x if 0 62 @f(x), and
where the ¡Y are as in (8). If we vectorize y = vec(Y ), Y = (Y1, . . . , Yq), then we may represent ¡Y

by a matrix vector product, ¡Y = ©y, with a suitable matrix ©. Program (9) is then equivalent to the
following SDP:

minimize t

subject to
∑

t yT ©T

©y tI

∏
∫ 0

Yi ∫ 0, i = 1, . . . , q
eT y = 1

(10)

where eT y = 1 encodes the constraint
P

i Tr(Yi) = 1. The direction d of steepest descent at x is then
obtained as d = °© y/k© yk, where (t, y) is solution of (10) with y 6= 0. This suggests the following
algorithm:

1. If 0 2 @f(x) stop. Otherwise:

2. Solve (10) and compute the direction d of steepest descent at x.

3. Perform a line search and find a descent step x+ = x + t d.

4. Replace x by x+ and go back to step 1.
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The drawback of this approach is that it may fail to converge due to the nonsmoothness of f . We believe
that a descent method should at least give the weak convergence certificate that accumulation points of
the sequence of iterates are critical. This is not guaranteed by the above scheme. The reason is that the
steepest descent direction at x does not depend continuously on x. In the full version of this paper, we
discuss two variants of the basic descent algorithm and we establish convergence to a local minimum.
This is omitted due to space limitation.

8. Numerical experiments
In this section we test our nonsmooth algorithms on a variety of synthesis problems from the COMPleib
collection by F. Leibfritz [17]. Computations were performed on a (low-level) SUN-Blade Sparc with
256 RAM and a 650 MHz sparcv9 processor. LMI-related computations for search directions used the
LMI Control Toolbox [15] or our home made SDP code [3].

Our algorithm is a first-order method. Not surprisingly, it may be slow in the neighborhood of a local
solution. We have implemented various stopping criteria to ensure that an adequate approximation of
a solution has been found and to avoid unwarranted computational eÆorts as is often the case with a
first-order algorithm. The first of these termination criteria is an absolute stopping test, which provides
a criticality assessment

inf{kgk : g 2 @f(x)} < "1, (11)

which is readily performed using (10).
This is reasonable, as 0 2 @f(x) indicates a critical point. It is also mandatory to use relative

stopping criteria to reduce the dependence on the problem scaling. The test

kTw!z(K)k1 ° kTw!z(K+)k1 < "2(1 + kTw!z(K)k1) , (12)

compares the progress achieved relatively to the current H1 performance, while

kK+ °Kk < "3(1 + kKk) (13)

compares the step-length to the controller gains. The tolerances

"1 = 1e°5, "2 = 1e°3, "3 = 1e°3

have been used in our numerical testing. For stopping we required that either the first two tests or the
third one are satisfied.

The synthesis procedure is based on the scheme (3) and must be initialized with a stabilizing con-
troller. This initial phase I is described in the full paper and in [2].

We compare the results of our nonsmooth algorithm variant II in columns ’nonsmooth H1’ to older
results obtained with the specialized augmented Lagrangian (AL) algorithm described in [4], displayed
in columns ’H1 AL’ (see Table). In column ’H1 full’ we also display the gain obtained with a full-order
feedback controller, synthesized by LMI-methods or via the algebraic Riccati equation solver. This is a
lower bound for the gain in column ’nonsmooth H1’. The results obtained with our present technique
are close to those obtained in [4], except for problems with large state dimension as ‘AC10’ (55 states),
‘BDT2’ (82 states) and ‘HF1’ (130 states) where the augmented Lagrangian method fails, while the
present nonsmooth method is still functional. In the same vein, we have observed that even customary
Riccati or LMI solvers encounter serious di±culties or even break down when solving the full-order
(hence convex) problem for ‘AC10’, ‘BDT2’ and ‘HF1’.

9. Conclusion
We have proposed several new algorithms to minimize the H1-norm subject to structural constraints
on the controller dynamics. The proposed method uses nonsmooth techniques suited for H1 synthe-
sis and for semi-infinite eigenvalue or singular value optimization programs. Variant I and variant II
of our algorithm are supported by global convergence theory, a crucial parameter for the reliability of
an algorithm in practice. Variant II has been shown to perform satisfactorily on a number of di±cult
examples. In particular, three examples with large state dimension (n = 55 n = 82 and n = 130)
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Table 1: H1 synthesis with nonsmooth algorithm algorithmic variant II - "! = 0.05.

problem (n,m, p) order iter cpu (sec.) nonsmooth H1 H1 AL H1 full
AC8 (9, 1, 5) 0 20 45 2.005 2.02 1.62
HE1 (4, 2, 1) 0 4 7 0.154 0.157 0.073

REA2 (4, 2, 2) 0 31 51 1.192 1.155 1.141
AC10 (55, 2, 2) 0 15 294 13.11 intractable 3.23
AC10 (55, 2, 2) 1 46 408 10.21 intractable 3.23
BDT2 (82, 4, 4) 0 44 1501 0.8364 intractable 0.2340
HF1 (130, 1, 2) 0 11 1112 0.447 intractable 0.447

have been solved. More importantly, our present techniques and tools pave the way for investigating an
even larger scope of synthesis problems, characterized through frequency domain inequalities of the form
∏1(H(x,!)) ∑ 0, ! ∏ 0, where H(x,!) is Hermitian-valued and x stands for controller parameters and
possibly multiplier variables, as is the case when IQC formulations are used. This is a strong incentive
for further developments.
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