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Abstract

We present a frequency domain based H∞-control strategy to solve boundary control problems for systems governed by parabolic
or hyperbolic partial differential equation, where controllers are constrained to be physically implementable and of simple structure
suited for practical applications. The efficiency of our technique is demonstrated by controlling a reaction-diffusion equation with
input delay, and a wave equation with boundary anti-damping.
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1. Introduction

A recurrent issue in system control is whether, or to what extent, frequency-domain based H∞-control strategies
originally developed for real-rational systems expand to infinite-dimensional processes. Success in rendering H∞-
optimization fit to provide practically implementable controllers for infinite-dimensional systems should substantially
foster the acceptance of PDE-modeling as a tool for control.

In response to this quest, we present a frequency domain based method to control infinite-dimensional LTI-
systems, which is in particular suited for H∞-boundary control of parabolic and hyperbolic partial differential equa-
tions. Our method leads to practically implementable structured output feedback controllers for PDEs in such a way
that the typical work-flow in control design is respected.

After briefly outlining our method, we will apply it in more detail to two infinite-dimensional H∞-control prob-
lems: boundary control of a reaction-diffusion system with input delay, as discussed in [1], and boundary control of
an anti-stable wave equation to control noise and disturbance effects on duct combustion dynamics in a drilling pipe
system [2, p.6], [3]. While the first study leads to a parabolic equation of retarded type, the second study leads to a
system of neutral type, which poses new challenges to our frequency approach.

The structure of the paper is as follows. In section 2 we give the principal steps of our method. Stability is
discussed in section 3, the role of the Nyquist test in optimization in section 3.1, its implementation in section 3.2.
Sampling for performance is addressed in section 4. Section 5 comments on the specific nonsmooth optimization
technique used to solve feedback design problems. In section 6, we discuss the application of our method to a
reaction-diffusion equation, and in section 7 to a wave equation.
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2. Outline of the method

We start out with an infinite-dimensional LTI-system represented by a transfer function G(s) with p inputs and
m outputs, assumed well-posed in the sense of Salamon-Weiss [4, 5, 6, 7]. As principal application, we consider the
case of a linearized parabolic or hyperbolic boundary control problem in state-space form

Γ :


ẋ = Ax

Px = u
y = Cx

(1)

with operators A ∈ L(X,H), P ∈ L(X,Rp),C ∈ L(X,Rm) on Hilbert spaces H, X and finite-dimensional input and
output spaces, where X is densely embedded in H. We have used the standard notation L(X,Y) to refer to the set of
linear operators between spaces X and Y .

Then under natural assumptions specified in [6, Sect. 2] the transfer function G(s) of (1) is well-posed and obtained
by applying the Laplace transform to (1), where every function evaluation G(s) requires solving an elliptic boundary
control problem

Γs :


sx(s) = Ax(s)
Px(s) = u(s)
y(s) = Cx(s)

(2)

Well-posedness means that G(s) is holomorphic on a half-plane Re(s) > σ, but it may be convenient to require a little
more, namely, that G(s) extends meromorphically over a domain containing C

+
= {s ∈ C : Re(s) ≥ 0}. This is satisfied

in all cases of practical interest, and guaranteed theoretically e.g. when G is exponentially input/output stabilizable,
see [8, Lemma 8.2.9 (i)(b), (ii)]. The meromorphic form of the transfer function is a necessary requirement for
applicability of the Nyquist stability test.

After embedding G(s) in a plant P(s) with one or several closed-loop performance and robustness channels
Twz(P,K), we set up the infinite-dimensional H∞-optimization problem

minimize ‖Twz(P,K)‖∞
subject to K stabilizes G in closed loop

K ∈ K
(3)

where K represents a suitably chosen class of structured controllers with m inputs and p outputs. For examples of
real-rational controller structures we refer to [9]. In this work we understand the term structured in the even wider
sense that controllers K(x, s) depend differentiably on a vector x ∈ Rn of tunable parameters, and have well-posed
transfer functions Ki j(x, s), typically with quasi-polynomial numerators and denominators. Such control laws combine
real-rational elements with input and output delays, and can therefore be physically implemented. In particular, the
parametrization covers controllers with internal delays. In the optimization procedure it will also be necessary to
know the finite number of right-half plane (rhp) poles of K(x) for every x.

Since (3) as a rule cannot be solved exactly, we use an inexact bundle trust-region method as in [10, 11, 12],
which guarantees stability of the closed loop, and approximates H∞-performance up to a user specified precision. The
following scheme presents our method in a more formal way.

Several steps of this scheme require further explanations, which we provide in the following sections.

3. Stability test

Let us recall that with the definitions

F(s) =

[
I G(s)

−K(s) I

]
, f (s) = det F(s) (4)

the inverse T (s) = F(s)−1 is given as

T =

[
(I + KG)−1 −K (I + GK)−1

(I + GK)−1 G (I + GK)−1

]
, (5)
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Algorithm 1. H∞-control of infinite-dimensional systems

Parameters: ϑ > 0.
. Step 1 (Prepare). Linearize system at steady-state and pre-compute open-loop transfer function G(s).
. Step 2 (Initialize). Choose controller structure K(x), and find initial closed-loop stabilizing controller K(x0)

of that structure. Let G0 = feedback(G,K(x0)).
. Step 3 (Plant). Embed G0 into plant P representing desired closed-loop performance specifications.
. Step 4 (Non-smooth optimization). Run inexact bundle trust-region method [10] with starting point x0,

discretizing (3) at each iterate x j so that Nyquist test guarantees stability of the loop, and H∞-performance up
to tolerance ϑ.

and we call the closed-loop system (G,K) stable in the H∞-sense, or simply stable, if the transfer function T belongs
to the Hardy space H∞(C+,C(m+p)×(m+p)). As is well-known, H∞-stability is equivalent to the absence of unstable
poles in tandem with boundedness of T (s) on jR. We are interested in situations, where absence of unstable poles of
T (s) can be verified by the Nyquist stability test.

Systems arising from parabolic equations are of retarded type and typically satisfy the spectrum decomposition
assumption, which means that they have only a finite number of unstable poles. The Nyquist stability test may
therefore be applied directly, to the effect that in order to guarantee absence of unstable poles in the loop f ( jω) =

det(I + G( jω)K(x, jω)) has to wind np times around the origin in the clockwise sense, where np is the number of rhp
poles of G and K(x) together.

In order to address the case where f has a finite number of poles on jR, we consider the following construction,
which avoids the usual ε-indentations Dε into the rhp of the standard Nyquist contour D; (see e.g. [13, Fig. 8-51] for
a plot of a typical Dε at s = 0). We choose a holomorphic function h on a domain containing C

+
such that h(s) , 0

on C+, lims→∞ h(s) = 1 on C
+
, and such that h has a zero of order p at ± jω precisely when F has a pole of order p

at ± jω. Let f̃ = f h, D a Nyquist D-contour into the rhp with [− jω, jω] ⊂ D containing in its interior all rhp poles of
F. Then the modified Nyquist curve f̃ ◦ D has the same winding number as the original Nyquist curve f ◦ Dε with
sufficiently small ε-indentations.

From the moment onward a controller K(x) has been identified closed-loop stabilizing using the Nyquist test,
the nonsmooth optimization method, when considering a trial step K(x + dx) away from the current iterate x, will
re-compute the winding number to check stability of the the loop with K(x + dx). In those cases where the number of
poles of K(x) is independent of x, this means we simply have to assure that the winding number np does not change
as we go from x to x + dx, which requires preventing the Nyquist curve from crossing the origin. Stability in the
H∞-sense for the new K(x + dx) will then follow under the proviso that the closed-loop transfer function T (x + dx)
remains bounded on jR, which is the case when G,K(x) are bounded on jR, and occurs in particular if these transfer
functions are proper. With these preparations the situation for parabolic systems is covered by the following:

Theorem 1. With the notations (4) and (5), suppose process G(s) and controller K(s) are well-posed, extend mero-
morphically into a domain containing C

+
, and satisfy the following conditions:

i. F has no zeros on jR and only a finite number Np of poles in C
+
, np of which are in C+.

ii. There are no pole/zero cancellations on jR.
iii. There exist a frequency ω > 0 and α > 0 such that Re f ( jω) > α for all ω ∈ [ω,∞).
iv. G,K are bounded on jR \ [− jω, jω].
v. G,K have strongly (exponentially) stabilizable and detectable state-space realizations.

Suppose the modified Nyquist curve f̃ ◦D winds np times around the origin in the clockwise sense. Then the closed-loop
T (s) is strongly (exponentially) stable. �

The theorem was proved in [14] under the more standard assumptions that G,K are proper and lims→∞ f (s) , 0
on C

+
exists, but since our present statement concerns only a finite Nyquist contour, f̃ ◦ D, the proof can be adapted

with minor changes. Recall that an infinite dimensional transfer function G(s) is well-posed if σ(G(s)) is uniformly
3
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bounded on some rhp {s ∈ C : Re s > α} for some real α, and it is proper if σ(G(s)) ≤ M for all s ∈ {s ∈ C+ : |s| ≥ ρ}
for certain M > 0, ρ > 0, where as usual σ denotes the maximum singular value. Condition iv. is in particular satisfied
if G,K are proper.

The full force of Theorem 1 is needed when it comes to dealing with hyperbolic systems. Here the situation is
complicated because in open loop neutral systems may have infinitely many rhp poles in a strip 0 ≤ Re(s) < α,
so condition (iii) may fail, even though G may still be well-posed. When this is the case, it is impossible to use
the Nyquist test directly even if an initial stabilizing controller K(x0) is given, because the Nyquist curve f (s) =

det(I + G(s)K(x0, s)) winds infinitely often around the origin. In this event the method explained in the following
section is helpful.

3.1. Enabling the Nyquist test
Assuming that is has been verified by some other means that the closed-loop system G0 = G(I + K(x0)G)−1 =:

feedback(G,K(x0)) is indeed stable. Then a small gain argument tells us that feedback(G0,K) remains stable
for stable controllers K satisfying ‖K‖∞ < 1/‖G0‖∞. Since feedback(G0,K) = feedback(feedback(G,K(x0)),K)
= feedback(G,K(x0) + K), we see by letting K the difference K(x) − K(x0) that feedback(G,K(x)) is stable for
‖K(x) − K(x0)‖∞ < 1/‖G0‖∞, and this can now be verified by applying the Nyquist test to f0(s) = det(I + G0(s)K(s)),
where K = K(x) − K(x0).

Here Theorem 1 applies indeed to G0, K, because G0 has no poles on C
+
, so that i.-iv. are satisfied for G0,K

provided iii. was from start satisfied for G,K(x0). We have, however, to recall that despite stability of the loop, f0
will typically not have a limit as s → ∞ on C

+
, so we will rely on condition iii., which assures that outside the band

[−ω,ω] the Nyquist curve is in no danger of turning around 0.
From here on, we can proceed just as in the previous case for retarded systems, where now Np = np is the known

number of rhp poles of K = K(x) − K(x0).
The question remains in what sense a state-space representation of T given by (5) will be stable. This is decided

by the following

Theorem 2. Suppose G,K are well-posed transfer functions which admit strongly (exponentially) stabilizable and
detectable state-space realizations. Suppose the closed loop transfer function (5) satisfies T ∈ H∞. Then the generator
of the state-space representation of the closed loop is strongly (exponentially) stable.

Proof. For exponential stability, according to Morris [15, Theorem 5.2] it suffices to show that the closed loop is
exponentially stabilizable and exponentially detectable. By Staffans [8, Lemma 8.2.7] this follows as soon as each of
the components G,K is individually exponentially stabilizable and detectable, but the latter is true by hypothesis.

For the statement concerning strong stability we use [8, Lemma 8.2.7] again, which now guarantees that the closed
loop T (G,K) is strongly stabilizable and detectable. Since it is H∞-stable, we can invoke [8, Theorem 8.2.11 (ii)] to
infer that the closed loop is also strongly stable.

3.2. Sampling for the Nyquist test
During optimization, the Nyquist test is applied at every candidate controller K(x) to check stability of the loop

feedback(G,K(x)), respectively for neutral systems, of the preliminary stabilized system feedback(G0,K(x) −
K(x0)). For that we have to sample the modified Nyquist curve f̃ = f h at frequencies 0 = ω0 < · · · < ωN = ω
such that the winding number of f̃ ◦ D, based on a typical D-contour extending into the rhp, coincides with the wind-
ing number of the closed polygon P f̃ obtained as f̃ ( jω0), . . . , f̃ ( jωN), f̃ (− jωN), f̃ (− jωN−1), . . . , f̃ (− jω0). The latter
can then be computed conveniently using the ray crossing algorithm (see Fig. 1)

To begin with, we need a cutoff frequency ω > 0 such that every Nyquist contour D containing the segment
[− jω, jω] contains all np unstable poles of G,K in its interior. We then sample on the segment [0, ω], and replace the
curved part of the D-contour f̃ ◦

C

by the segment [ f̃ (− jω), f̃ ( jω)]. For the latter to be authorized, the closed curve γ
concatenated by this segment and f̃ ◦

C

has to satisfy ind(γ, 0) = 0 and should not contain any of the np poles of F in
its interior. This is for instance the case if we choose ω as in condition iv. of Theorem 1. Then we sample f̃ on [0, ω]
such that none of the curves γi obtained by concatenating the segment [ f̃ ( jωi+1), f̃ ( jωi)] with the piece f̃ ([ jωi, jωi+1])
of the modified Nyquist curve encircles 0. This can be assured by the method in [14]. Call a mapping L[·, ·] : R2 → R
a first-order bound of f̃ if | f̃ ′( jω)| ≤ L[ω−, ω+] for all ω ∈ [ω−, ω+]. Then we have the following
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⋆ +

⋆ = 0, + = 1

Figure 1. Winding number of Nyquist curve (black) and polygon (blue) agree if change of argument of segment [ f̃ ( jων), f̃ ( jων+1)] equals change
of argument of corresponding piece of Nyquist curve f̃ ([ων, ων+1]), as guaranteed by condition (6). Winding number of polygon P f̃ is computed
by counting signed crossings of the ray drawn in red. This could be any ray emanating from 0 not passing through any of the finitely many nodes
of the polygon.

Lemma 1. Suppose that for fixed K the cutoff frequency ω > 0 is as above, and the sampling nodes satisfy the
condition

L[ωi, ωi+1](ωi+1 − ωi) < | f̃ ( jωi)| + | f̃ ( jωi+1)|. (6)

Then the winding numbers of the modified Nyquist curve f̃ ◦D and the approximating closed polygon P f̃ are the same.

For the proof see [14, Sect 3.]. �

4. Sampling for performance

Sampling for H∞-performance was also analyzed in [14] and can again be based on a first-order bound L[·, ·], now
for the function φ(ω) = σ (Twz(P( jω),K( jω))). We recall the following

Lemma 2. Let γ∗ = max{φ(ωi) : i = 1, . . . ,N} for a given controller K and a corresponding sampling ωi. Let ϑ > 0
be a user-specified tolerance. If the nodes ωi satisfy

L[ωi, ωi+1](ωi+1 − ωi) < 2γ∗ + 2ϑ − φ(ωi) − φ(ωi+1), (7)

then the true H∞ norm is within tolerance ϑ of its estimated value, that is, γ∗ ≤ ‖Twz(P,K)‖∞ ≤ γ∗ + ϑ. �

For the proof see [14, sect. 5]. In that work we have compared sampling for stability via (6) and sampling for
H∞-performance based on (7) on a large test bench including finite and infinite dimensional systems. The results
fairly consistently show that H∞-performance requires at least 10 times more nodes ωi than sampling to assure that
the Nyquist stability test is correct. This leads to the following significative meta-theorem: H∞-performance is 10
times more costly than mere stability.

In those cases where a channel T = Twz(P,K) for H2-optimization is available, we need a sampling ωi now for
the function ψ(ω) := trace

(
T ( jω)HT ( jω)

)
. Assume that a first-order bound L[ω−, ω+] for ψ is available, and let Pψ

be the piecewise linear function corresponding to the polygon with nodes (ωi, ψ(ωi)), 0 = ω0 < · · · < ωN = ω with
Pψ(ω) = 0 for ω > ω. Then we wish to approximate the integral of ψ by an integral over Pψ, as this gives the desired
approximation of ‖Twz(P,K)‖22. This leads to:

Lemma 3. Let ϑ > 0 be a user specified tolerance and suppose the cutoff frequency ω > 0 is such that

e1 =

∫ ∞

ω

ψ(ω)dω ≤ ϑ/2.

Suppose the interval [0, ω] is sampled with nodes ωi such that

ω
4 (ωi+1 − ωi)L[ωi, ωi+1] ≤ ϑ/2, (8)

5
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then the error satisfies

e =

∣∣∣∣∣∫ ∞

0
ψ(ω)dω −

∫ ∞

0
Pψ(ω)dω

∣∣∣∣∣ < ϑ.
Proof. Let e1 be the error of the high frequency contribution satisfying e1 < ϑ/2. Now the error of the low frequency
part is e1 =

∣∣∣∣∫ ω

0 ψ(ω)dω −
∫ ω

0 Pψ(ω)dω
∣∣∣∣ ≤ ∑N−1

i=0
1
4 (ωi+1 − ωi)2L[ωi, ωi+1] ≤

∑N−1
i=0 (ωi+1 − ωi)ϑ/2ω = ϑ/2. Hence

altogether e = e1 + e2 < ϑ.

Remark 1. It is clear that (8) is much more binding than (7), because sampling to assure the exactness of the maximum
value within a tolerance ϑ > 0 has only to be precise at frequencies close to the maximum, whereas approximating
the integral occurring in the H2-norm requires good approximation on the whole [0, ω]. This suggests avoiding H2-
optimization if possible. Since robustness requirements further press to avoid H2-optimization, we presently seek for
workarounds.

5. Optimization

With a computable test for stability and a method to approximate the objective function ‖Twz‖∞ available, we run
our nonsmooth optimization method based on [14, 11], with the interpretation of inexact function and subgradient
evaluations as in [10]. For this we have to recall subgradient evaluation as discussed in [9]. Suppose ωi is one of the
sample frequencies where the maximum γ∗ = φ(ωi) of the approximation is attained with error γ∗ ≤ ‖Twz(x)‖∞ ≤
γ∗ + ϑ. Then an approximate subgradient is generated by computing one or several maximum eigenvectors Φi of
Twz(x, ωi)HTwz(x, ωi) and using formulas (12) or (13) of [9, Sect. IV]. Inspecting those shows that for the nearby
frequency ω where ‖Twz(x)‖∞ is in reality attained, the mismatch between the estimated eigenvector Φi and one of
the true maximum eigenvectors Φ of the H∞-norm at ω is proportional to the error in the function values, but with
proportionality constant depending on the reciprocal of the eigenvalue gap at Twz(x, ω). Since only finitely many
frequencies are active, the eigenvalue gap cannot become arbitrarily small. From the same reason it remains bounded
in the neighborhood of any of the accumulation points of the sequence of serious iterates generated by the bundle or
the bundle trust-region method. That suggests indeed an interpretation of our method as an instance of the inexact
bundle trust-region method [10].

For a recent thorough convergence analysis of the bundle method with inexact function and subgradient evaluations
in an infinite-dimensional setting we refer to Hertlein and Ulbrich [16].

Starting the algorithm as presented in [14, 11] at the closed-loop stabilizing K(x0), the Nyquist test is used at every
new iterate K(x+) to check whether the loop feedback(G,K(x+)), respectively feedback(G0,K(x+) − K(x)) for the
case of neutral systems, is stable. If this is not the case, a backtracking step xα = x + α(x+ − x) for 0 < α < 1 is made
such that K(xα) is still stabilizing, and a repelling cutting plane is included in the bundle, using e.g. the closed-loop
sensitivity function S (x) = ‖(I + GK(x))−1‖∞ as a stability barrier function. See [14, sect. 4] for details.

Remark 2. A special situation occurs if G,K are stable, or if G0 instead of G is used as described in section 3.1.
Here the Nyquist curve f ( jω) does not at all wind around the origin, and as a rule stays outside a conical or parabolic
region Rα,r = {s ∈ C : Im(s)2 < α(r − Re(s))} for certain α, r > 0. The constraint Im( f (x, jω))2 ≥ α(r − Re( f (x, jω)))
can be easily included in the constrained program (3). This is more reliable than just preventing f (x, jω) from
crossing the origin. Note that even when the Nyquist test can be applied directly to G,K(x), e.g. for parabolic or
first-order hyperbolic systems, it may for numerical reasons be interesting to apply it in just the same way to G0,K,
K = K(x) − K(x0).

A more conservative but robust way to address the same problem is to add a disk-margin constraint of the form
‖S ‖∞ ≤ 1/α.

6
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6. Output-feedback control of a reaction-diffusion equation with input delay

In this section we discuss a one-dimensional reaction diffusion equation with delayed Dirichlet boundary control

xt(ξ, t) = xξξ(ξ, t) + c(ξ)x(ξ, t), t ≥ 0, ξ ∈ [0, L],
x(0, t) = 0, (9)
x(L, t) = u(t − D)

where x(·, t) denotes the state of the system, u(t) the control, D the delay, and where we assume that a finite number
of measured outputs y1(t) = x(ξ1, t), . . . , ym(t) = x(ξm, t) at sensor positions ξi ∈ [0, L] are available for control.
A similar control scenario is discussed in Prieur and Trélat [1] under the assumption of full state measurement.
Related work is for instance Sano [17], where H∞-control of a heat exchanger is discussed, or [11], where a reaction-
convection-diffusion equation with simultaneous boundary and distributed control and a Van de Vusse reactor of a
coupled system of reaction convection-diffusion equations again with combined boundary and distributed control are
discussed without input delay, but with a single point measurement as output.

In the present study, we strive to control the system with a finite-dimensional output feedback controller K(x) of
simple structure, which could conveniently be implemented, and yet gives satisfactory performances in closed loop.

Performance specifications of the reaction-diffusion PDE are chosen so that responses to non-zero initial condi-
tions show reasonable behavior in terms of damping and settling time. This could be addressed by an H2-performance
specification, but as we show may also be successfully controlled by way of suitably chosen H∞-specification. The
latter is advantageous as soon as additional robustness aspects of the design are called for.

Working incrementally, and starting with the case of a single measurement at the mid-point ξ = L/2, our analysis
indicates that 5 equidistant measurements are enough to achieve good responses against initial conditions, while mere
stability could be assured even on the basis of a single measurement e.g. at ξ = 0.

In our numerical testing we adopt the choices L = 2π, D = 1 and c(x) = 1
2 from [1], where the open-loop F(s) has

one unstable pole at s = 1
2 , and an infinity of stable double poles at sk = 1

2 −
k2π2

L2 following a retarded pattern. This
is understood, as the semi-group of the equation is sectorial [8, p. 150]. As indicated in previous chapters, this allows
direct application of the Nyquist test to check H∞-stability of the closed loop.

Remark 3. Well-posedness of the system (9) in the sense of Salamon-Weiss can be deduced from the functional
analytic setting in [1], or from the general approach in [6].

The transfer function of (9) can be computed analytically as

G(s, ξ) =
x(ξ, s)
u(s)

= e−s e
√

s− 1
2 ξ − e−

√
s− 1

2 ξ

e
√

s− 1
2 L − e−

√
s− 1

2 L
,

and for L = 2π the system has one unstable pole.

Proposition 1. Suppose a finite-dimensional structured controller K(x) with m inputs and p = 1 output is found which
stabilizes system (9) internally in the H∞-sense. Then the closed loop is even exponentially stable.

Proof. By theorem 2 this follows as soon as each of the components G,K is individually exponentially stabilizable
and detectable. Since K is finite-dimensional it has clearly an exponentially stabilizable and detectable state-space
model. For G exponential stabilizability may be deduced from [1], because the infinite-dimensional state-feedback
controller the authors construct has the same control input as (9). Exponential detectability on the other hand follows
from the fact that the differential operator in (9) is self adjoint, and that in the adjoint system the five outputs are turned
into 5 inputs, one of which is the same as the single input in (9), but now without the delay. Exponential detectability
therefore follows from the fact that (9) is exponentially stabilizable without the delay.

This still leaves the problem of finding a preliminary stabilizing controller K(x0) of the pre-defined structure. As
we indicated in previous sections, the latter as a rule requires heuristic methods even for very simple structures. The
advantage we have in the case of the present parabolic study (9) is that we can check via the Nyquist test whether a
given controller is stabilizing.

7
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6.1. Model matching approach

Model matching is a sophisticated control scenario, where specifications are pursued indirectly. It is covered
by algorithm 1, and we believe it is particularly suited for PDE-control, where models of different grid scales arise
naturally. Here we use model matching to address the reaction of the system to a non-zero initial value. The method
consists in two steps (a) and (b).

Non-vanishing initial values may be regarded as disturbances d acting on the system state as in Fig. 2. We now
assume that we have to regulate against functions x0(ξ) , 0 of a given bandwidth. In a first step (a) we therefore
compute a reduced state-space model Gred(s) of G(s), in which the resolution of the state xr(ξ) reflects the resolution
of the potential x0(ξ) accurately. In the present study we regulate against initial conditions with resolution comparable
to that considered in [1], which leads us to a finite-difference discretization of (9) with 50 spatial steps or states,
complemented by a 3rd-order Padé approximation of the input delay adding 3 more states. This coarse grid model Gred
is embedded into a plant Pred expressing control requirements in terms of damping and settling time in responses to
initial conditions. Here this consists in optimizing the root mean-square energy value of the output signal zr = (z1, z2)
in response to the white noise disturbance d on the state xr:

Pred(s) :


ẋr = Ar xr + d + B2ur

zr = Wxxr + Wuur

yr = C2xr + D21d

where xr ∈ R54 is the reduced state, d is the exogenous input, understood to represent the impulse caused by the
non-zero initial value, and zr = (Wxxr,Wuur) is regulated similar to what is used in LQG-control, with filters Wx = I
and Wu(s) = s

1+s/a , a = 100, the latter adding another state to xr. The reduced output yr ∈ R5 of Gred represents
the 5 distributed measurements (see Fig. 5) in the coarse finite-difference discretization. Our testing shows that five
equidistant measurements along [0, L] are sufficient to achieve well behaved responses to initial conditions.

Br (sI−Ar)
−1 Cr

d

K(x)

−

Wu

z1
z2

yrur

0

Figure 2. Model matching part (a). Preliminary stabilization via structured H2-synthesis using Pred with channel d → zr = (z1, z2) = (Wuur , xr).

We then solve the structured H2-optimization problem for the channel d → zr of Pred in Fig. 2, using systune [18]
based on [19, 9, 20]. Trial and error reveals the interesting fact that fairly low-order controllers K ∈ K2 of order 2 are
adequate, leading to x ∈ R21 for K:

minimize ‖Td→zr (Pred,K)‖2
subject to K(x) stabilizes Gred internally

K(x) ∈ K2

(10)

where the closed-loop transfer Td→zr (Pred,K) is the lower linear fractional transformation Fl(Pred,K). The solution of
(10) is K0 in Figure 3 right. The difference with traditional H2-control is that K does not have observer structure, but

8
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the structure K ∈ K2 we imposed. The resulting controller K0 ∈ K2 is obtained as

K11
0 =

0.001653s2 + 0.822s + 5.557
s2 + 4.315s + 18.3

K12
0 =

0.01467s2 + 3.125s + 20.69
s2 + 4.315s + 18.3

K13
0 =

0.0221s2 + 4.784s + 31.2
s2 + 4.315s + 18.3

(11)

K14
0 =

0.01733s2 + 3.715s + 24.34
s2 + 4.315s + 18.3

K15
0 =

0.00231s2 + 0.9017s + 6.596
s2 + 4.315s + 18.3

A simulation for initial condition x0(ξ) = ξ(L − ξ) is shown in Fig. 5 (left). While this produces the expected good
results for Gred, we now have to check whether K0 also stabilizes the infinite-dimensional system G(s). It turns out
that this is the case, as the Nyquist test reveals, see Fig. 4, so that we now proceed to the second part (b) of the model
matching method, where the controller is further optimized with regard to the full model.

As a result of step (a) of the model matching procedure we have so far obtained a reference model, namely,
feedback(Gred,K(x0)), and a controller K(x0) of the desired structure which stabilizes Gred. Application of the
Nyquist test, in tandem with boundedness of the closed loop transfer function on jR, show that K(x0) also stabilizes
the infinite dimensional system G(s). Fig. 4 (left) shows one clockwise encirclement, computed by the ray-crossing
algorithm, which due to the known single unstable pole in G, and absence of unstable poles in K0, confirms the absence
of unstable closed-loop poles. Taking into account that G,K(x0) are proper shows that the closed loop transfer function
is bounded on jR, hence the loop is H∞-stable, and by Proposition 1, is exponentially stable.

Remark 4. The fact that K(x0) stabilizes not only Gred, but even G, could be called accidental. However, recall that
within most structures K(x), practical methods leading to a stable closed loop are necessarily heuristics, so remain
equally accidental. What can be said in favor of our method to obtain K(x0) is that it is the result of a local optimization
procedure.

G K(x) K(x0) Gred

r

y yr

y yr

u ur

z

−+

−

+

−

+

Figure 3. Model matching part (b). H∞-optimization of channel r → y − yr in (12) over K = K(x), starting at initial guess K0 = K(x0), leads to an
overall optimal K(x∗) and is a special case of (3). In the reference model on the right K0, obtained in step (a), remains now fixed.

In a second step (b) of the model matching procedure, corresponding to step 3 of algorithm 1, the preliminary
stabilizing controller K0 = K(x0) is refined through an H∞ model matching problem shown in Fig. 3, which takes
the true infinite-dimensional dynamics in G(s) accurately into account. In this step, we have to solve an infinite-
dimensional structured H∞-control problem covered by the general form (3),

minimize ‖(I + GredK0)−1GredK0 − (I + GK)−1GK‖∞
subject to K stabilizes G internally

K ∈ K2

(12)

9
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for which we use the bundle algorithm of [11, 10, 14], initialized at K(x0) = K0. As a result of optimization the H∞-
norm of the mismatch channel r → z = y − yr is reduced from 1.81 at K0 to 0.84 at K∗. Choosing the channel from
the set-point input r to the output y, respectively yr, corresponds to a typical tracking objective, and as a consequence
of this choice, matching (12) is here applied to the complementary sensitivity functions.

The optimized structured controller K∗ obtained is

K∗11 =
0.1343s2 + 0.4535s + 11.34

s2 + 10.66s + 38.39

K∗12 =
0.52s2 + 1.755s + 45.23

s2 + 10.66s + 38.39

K∗13 =
0.7443s2 + 2.621s + 65.23

s2 + 10.66s + 38.39
(13)

K∗14 =
0.5976s2 + 2.036s + 52.82

s2 + 10.66s + 38.39

K∗15 =
0.3446s2 + 2.621s + 20.47

s2 + 10.66s + 38.39

its simulation is shown in Figs. 5 (right) and the corresponding Nyquist plot in Fig. 4 (right). The results resemble
those obtained by studies based on full-state information, see [1].

Figure 4. Model matching. Nyquist curve 1 + GK0 (left) with initial controller (11) and 1 + GK∗ (right), where K0 = K(x0) and K∗ = K(x∗). Since
F(s) has one unstable pole, one counterclockwise encirclement confirms absence of unstable poles in the loop.

Figure 5. Model matching. Simulation of optimized reduced-order system (left) with K0 based on (10) and infinite-dimensional system (right)
with H∞-optimal controller K∗ based on (13). The intermediate result on the left leads to the final result on the right. The stars ’*’ indicate sensor
positions.

10
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6.2. Mixed sensitivity approach
A classical approach to improve system performance is via minimization of the sensitivity function S := (I +

GK)−1. Using appropriate weighting filters We(s), one can achieve better transient and steady-state responses for all
references signals of finite energy. Introducing a penalization of the control effort as before leads to a mixed-sensitivity
design problem:

minimize

∥∥∥∥∥∥
[

We(s)(I + G(s)K(s))−1

Wu(s)K(s)(I + G(s)K(s))−1

]∥∥∥∥∥∥
∞

subject to K stabilizes G internally
K ∈ K2

(14)

which is a particular case of (3).
Actuation takes place at the edge ξ = L, and its effect propagates with a unit delay e−s along the spatial dimension.

The settling time is essentially determined by the slow dynamics that correspond to the states farthest away from the
actuation point. On the other end, states closer to ξ = L settle faster, but in turn are affected by much more turbulent
transients, as for instance seen in Fig. 6. This suggests shaping response surfaces using weights which take the
distance to ξ = L into account. This leads us to We = diag(c1, c2, c3, c4, c5) with individually adapted ci, where for
simplicity static weights are sought. Note that c1 corresponds to the edge ξ = 0, while c5 is associated with ξ = L. As
before, penalization of the control effort uses a high-pass filter Wu(s) = (s/10)/(1 + s/103).

Figure 6. Mixed sensitivity. Simulation with K∗ ∈ K2 obtained with weight W(1)
e (left). States near ξ = L show undesirable transient oscillations.

Simulation with K∗∗ obtained with W(2)
e (right) proves satisfactory.

Fig. 6 (left) shows the simulation of G in closed loop with a first optimal controller K∗ ∈ K2 given in (15) obtained
via nonsmooth optimization (14) started at K0 from (11) and using W (1)

e = diag(3, 0, 0, 0, 0). States close to the edge
ξ = 0 have excellent settling times, but transient wobbles manifest themselves at the opposite end ξ = L = 2π (see
Fig. 6 left).

K∗11 =
0.0002403s2 + 0.3159s + 2.629

s2 + 2.291s + 19.85

K∗12 =
0.0125s2 + 7.134s + 37.54

s2 + 2.291s + 19.85

K∗13 =
−0.02098s2 + 6.46s + 73.02

s2 + 2.291s + 19.85
(15)

K∗14 =
−0.01589s2 + 6.447s + 49.82

s2 + 2.291s + 19.85

K∗15 =
0.007613s2 + 1.283s + 11.02

s2 + 2.291s + 19.85

Increasing the cost at ξ = L via W (2)
e = diag(1, 0, 0, 0, 0.2), and starting optimization at K∗, now leads to the optimal

controller K∗∗ given in (16), which removes this undesirable effect, Fig. 6 (right). The control signal with K∗∗ is
11
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shown in Fig. 7 (left) together with responses of the slices ξ = L and ξ = 0. The Nyquist plot in 7 (right). The optimal
controller is obtained as

K∗∗11 =
0.00336s2 + 0.4678s + 2.196

s2 + 3.731s + 21.2

K∗∗12 =
−0.002542s2 + 6.097s + 21.47

s2 + 3.731s + 21.2

K∗∗13 =
0.08966s2 + 3.947s + 33.65

s2 + 3.731s + 21.2
(16)

K∗∗14 =
−0.01911s2 + 5.889s + 27.07

s2 + 3.731s + 21.2

K∗∗15 =
−0.006395s2 + 0.7398s + 5.143

s2 + 3.731s + 21.2

Finally, note that it is possible to obtain even faster responses by accepting more aggressive control signals and there-
fore obtaining a more academic than practical solution. By proposition 1 all controllers obtained are exponentially
stabilizing.

Figure 7. Mixed sensitivity. Left. Simulations with controller K∗∗: top x(L, t), middle x(0, t) and bottom control signal u(t). Right. Nyquist curve
of final K∗∗.

Altogether this study shows that by way of program (3) it is possible to conveniently control the reaction-diffusion
equation (9) with a single input with delay and 5 distributed measurements by synthesizing a finite-dimensional low-
order controller such that the result matches the result obtained in [1] using full state feedback.

7. Control of an anti-stable wave equation

In this second study, we discuss the following boundary control system

xtt(ξ, t) = xξξ(ξ, t), t ≥ 0, ξ ∈ [0, 1]
xξ(0, t) = −qxt(0, t) (17)
xξ(1, t) = u(t),

where q > 0, q , 1. The state of the system is x(·, t), xt(·, t), the control applied at the boundary ξ = 1 is u(t), and we
assume that the measured outputs are

y1(t) = x(0, t), y2(t) = x(1, t) and y3(t) = xt(1, t).

The system has been discussed previously in [2], and [21, 3], where potential applications are mentioned. Its well-
posedness can be seen from the functional analytic set-up in [21, 3], and from the general approach to well-posedness
of 1D hyperbolic systems in [22].

12
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The transfer function of (17) is obtained from the elliptic boundary value problems

s2x(ξ, s) = xξξ(ξ, s), s ∈ C, ξ ∈ [0, 1]
xξ(0, s) = −qsx(0, s) (18)
xξ(1, s) = u(s),

which in this particular situation can be solved analytically:

G(ξ, s) =
x(ξ, s)
u(s)

=
1
s
·

(1 − q)esξ + (1 + q)e−sξ

(1 − q)es − (1 + q)e−s .

From this general formula the transfer function of (18) is obtained as

G(s) = [G(0, s); G(1, s); sG(1, s)] =: [G1(s); G2(s); G3(s)] .

The main challenge in the hyperbolic system (18) is that along with the unstable pole at s = 0 it exhibits an infinite
number of unstable poles on a line Re(s) = σ > 0. This means that the Nyquist test is not directly applicable.

7.1. Preliminary stabilization
Following our scheme in algorithm 1, the first step is to provide a preliminary stabilizing controller K(x0) of a

simple pre-defined structure. We have to stabilize the system

G(s) =


2e−s/(1−q)
s(1−Qe−2s)

1+Qe−2s

s(1−Qe−2s)

1+Qe−2s

1−Qe−2s

 =


G1(s)

G2(s)

G3(s)


where Q = (1 + q)/(1 − q).

A first question is whether G can be stabilized by a finite-dimensional controller. Ignoring the input y2, which for
stabilization is not required, we choose the structure K(x) = [n1(s)/d(s), 0, n3(s)/d(s)], with x gathering the unknown
coefficients of the polynomials ni(s), d(s) with deg(ni) ≤ deg(d). Stability of the closed loop T (s) = G(s)/(1 +

G1(s)K1(s) + G3(s)K3(s) leads to testing whether the quasi-polynomial

(1 − q)s(d(s) + n3(s)) + (1 − q)sQe−2s(n3(s) − d(s)) + 2n1(s)e−s

arising in the denominator of T (s) is stable, i.e., has its roots in C−. While there exist general methods to check
stability of quasi-polynomials, cf. [23], an ad hoc solution is here to choose n3 = d, whence the quasi-polynomial
simplifies to

sd(s) + c(s)e−s,

where c(s) = n1(s)/(1 − q) and deg(n1) = deg(c) ≤ deg(d). If we choose d(s) = s + x1 and c(s) = x2s + x3, then
stability of the loop is equivalent to stability of the quasi-polynomial

P(s) = A(s) + B(s)e−s, A(s) = s2 + x1s, B(s) = x2s + x3,

which is covered by the discussion in [24]. In their terminology we have a0 = 0, a1 = x1, b2 = 0, b1 = 1, b0 = 1. We
are then necessarily in the case m = 1, µ0 = 0 of [24], so the quasi-polynomial P(s) can only be stable if x1 > −1.
Moreover the family Ph(s) = A(s) + B(s)e−hs is stable for all 0 ≤ h < hσ,0, where hσ,0 > 0 is determined as follows.
Let ωσ be the positive real solution of

4ω3
σ − 2ωσ(1 − x2

1) = 1
2

√
5 − 2x2

1 + x4
1

and let hσ,0 be the smallest positive solution h of

ωσh = arg
(
−

B( jωσ)
A( jωσ)

)
+ 2kπ, k ∈ N,

13
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where arg(·) ∈ [0, 2π). If we let x1 = 1 > −1, then 4ω3
σ = 1, ωσ = 4−3, and we get

hσ,0 = 43 arg
(
−

x2 j4−3 + x3

4−6 + 4−3

)
,

and since our delay is h = 1, this must now be solved for x2, x3 so that hσ,0 > 1. For instance x2 = −1 and x3 = −4−3

gives argument π/4 in the formula, so that hσ,0 = 16π > 1. The leads to the finite-dimensional stabilizing controller
K(x0) for G:

K(x0) =

[
(1 − q)(s + 4−3)

s + 1
0 1

]
. (19)

A second way to seek preliminary stabilization of (17) is to stick to the form K =
[

n(s)
d(s) 0 1

]
, but allow n(s), d(s) to

be quasi-polynomials, trying to simplify the denominator quasi-polynomial P as much as possible. A very straightfor-
ward way is to let d(s) = a(s) + e−sb(s) with a(s), b(s) polynomials, then the denominator quasi-polynomial simplifies
to e−s

2(1−q) (sa(s) + (sb(s) + c(s))e−s), where c(s) = n1(s)/(1− q). If we now let c(s) = −sb(s), then K will be stabilizing
in the H∞-sense as soon as a(s) is stable, because the factor s cancels with the factor s in the numerator. If we choose
a(s) = s + c0, b(s) = −c0 for some constant c0 > 0, then we obtain the controller

K =

[
c0(1 − q)s

s + c0(1 − e−s)
0 1

]
, (20)

which in [3] was obtained using the back-stepping technique. Since only input and output delays along with real-
rational terms arise, such controllers are implementable, so we are still in line with our general purpose of computing
practically useful controllers.

7.2. Performance optimization

Let us now discuss a more systematic way which not only leads to preliminary stabilizing K(x0), but also allows
performance optimization. In order to compare with [3], we optimize again against the effect of non-zero initial
values, using the output y ∈ R3, and aiming as before at a convenient implementable controller structure.

We start by putting the system G in feedback with the controller K0 = [0 0 1], which leads to Ĝ = G/(1 + G3),
where

G(s) =


2e−s/(1−q)
s(1−Qe−2s)

1+Qe−2s

s(1−Qe−2s)

1+Qe−2s

1−Qe−2s

 , Ĝ(s) =


1

s(1−q)

1+Q
2s

1
2

 +


− 1−e−s

s(1−q)

−
Q(1−e−2s)

2s
Q
2 e−2s

 ,
with Q = (1 + q)/(1 − q) as before. Re-write this as Ĝ = G̃ + Φ, where G̃ is now real-rational and still unstable,
while Φ gathers the infinite dimensional part, but is stable. Then we use that stability of the closed loop (G̃ + Φ,K) is
equivalent to stability of the loop (G̃, feedback(K,Φ)), as explained in Fig. 8:

G̃

Φ

K

-
e

u y

ỹ
G̃

Φ

K

e

u

y

ỹ

-

-

Figure 8. Stability of the closed-loop (G̃ + Φ,K) is equivalent to stability of the closed-loop (G̃, feedback(K,Φ)). See also [25].

Then we construct a finite-dimensional structured controller K̃ = K̃(x) which stabilizes G̃. The controller K is then
recovered from K̃ through the equation K̃ = feedback(K,Φ), which when inverted gives K = feedback(K̃,−Φ).
The overall structured controller is then K∗ = K0 + K.
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Construction of K̃ uses systune where we use pole placement via TuningGoal.Poles imposing that closed-
loop poles have a minimum decay of 0.9, minimum damping of 0.9, and a maximum frequency of 4.0. The controller
structure is chosen as static, so that x ∈ R3. A simulation with K∗ is shown in Fig. 9 (right) and some acceleration
over the simulation for backstepping controller (left) from the same nonzero initial value is observed.

Figure 9. Wave equation. Simulations with nonzero initial condition for K obtained by backstepping control (left) and K∗ = K0 + K obtained by
optimizing feedback(G̃, K̃) via systune (right). Both controllers are infinite-dimensional, but implementable.

We recall that the controllers obtained in this section stabilize the system exponentially, as follows from the
scheme on the right of Fig. 8, where G̃, K̃ are finite-dimensional and Φ is stable. This shows that G is exponentially
stabilizable and detectable, so that every H∞-stabilizing controller is also exponentially stabilizing. In particular, this
applies retro-actively also to the controllers (19) and (20).

In more detail, we have to relate the trajectories of the system on the right of Fig. 8 to the trajectories on the left.
Here we can follow [25], using their formulas (13), (14), to the extent that exponential decay of trajectories on the
right of Fig. 8 as assured by the finite-dimensional stabilization achieved via systune leads to exponential decay of
trajectories on the left of Fig. 8, which uses of course exponential stability of the infinite-dimensional part Φ. While
in [25] the authors work with strictly proper G,K, it suffices for our present argument to suppose that all loops are
well-posed. This is for instance guaranteed for proper K, K̃, since Φ is strictly proper.

7.3. Performance with finite-dimensional control
In this section, we show that the anti-stable wave equation (17) may be regulated satisfactorily with a simple 3rd-

order finite-dimensional controller. We initialize our procedure with the controller in (19), denoted K0, obtained via the
quasipolynomial test. Then we write the desired structure K(x) as K(x) = K0 +K1(x), where K1(x) = [n1/d n2/d n3/d]
and deg(ni) ≤ 2, deg(d) = 2, which requires 11 variables. This is a subclass of the class of 3rd-order controllers.

According to section 3.1, we consider the pre-stabilized system G0 = G(I + K0 G)−1, build the closed loop
feedback(G0,K1(x)), and find an initial x0 ∈ R11 such that K1(x0) is stable and ‖K1(x0)‖∞ < 1/‖G0‖∞, so that
by the Small Gain Theorem the loop T (G0,K1(x0)) is stable. This is achieved e.g. by K1(x0) = n0/d0[1 1 1] with
n0(s) = 0.3218s + 0.0643, d0(s) = s2 + 100.1s + 10. Since G0 has no unstable poles, i.e., np = 0, and since K1(x)
is not allowed unstable poles, the Nyquist curve f = 1 + G0K1(x) turns now zero times around the origin, and this is
maintained during optimization.

We now use the mixed sensitivity approach of section 6.2 again, but under the form

minimize

∥∥∥∥∥∥
[

We(I + G0K1(x))−1

WuK1(x)(I + G0K1(x))−1

]∥∥∥∥∥∥
∞

subject to K1(x) stabilizes G0
x ∈ R11

(21)

where we still have to choose the filters. The 3 × 3 filter We is chosen diagonal

We(s) = diag
[
0.01s + 0.5002

s + 0.01429
.99s + 0.0007147

s + 0.07941
0.01

]
,
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where the first entry is a typical low-pass, which corresponds to the output e1. The transfer G2 is non-minimum phase
with unstable zeros at the positions − log(1/2)/2 + jkπ, k ∈ Z, which makes the choice of the second filter diagonal
element challenging. The above choice turns out to be a good solution, as it forces tight control in the high-frequency
range beyond the first unstable zero at − log(1/2)/2 = 0.346. As third weight we choose a simple static gain 0.01.
The static filter Wu = 0.01 serves to avoid unrealistic control signals.

Figure 10. Wave equation. Finite-dimensional controllers obtained by mixed sensitivity in (21). Top left initial K0. Bottom left optimal K] =

K0 + K1(x]). Top right, Nyquist plot 1 + (K(x0) − K0)G0 does not encircle the origin, as does the bottom right Nyquist plot 1 + (K(x]) − K0)G0.

The final controller based on (21) obtained is

K1 =
−2.992s3 − 303.5s2 − 104.7s − 0.488

s3 + 102.2s2 + 101.7s + 0.522

K2 =
−0.04494s2 − 4.047s + 0.001097

s2 + 101.2s + 0.522
(22)

K3 =
1.207s2 + 122.7s + 0.5271

s2 + 101.2s + 0.522
The final H∞-norm in (21) was 1.99, with approximately 1000 frequencies for both stability and performance. In (21),
we have also constrained the controller to have a minimum decay rate of 1e− 3 and minimum damping of 0.1 to keep
control on the frequency inter-sample behavior [14]. Furthermore the constraint |(1 + K1(x)G0)−1| ≤ 1/0.5 stands for
a disk margin of 0.5 hence prohibiting any change in the winding number.

Simulations are shown in Fig. 10. Top left shows simulation with K0 + K1(x0), bottom left shows the optimized
controller K0 + K1(x]), achieving faster convergence and a much smaller steady-state error beyond 4 time units.
Simulations of the slices ξ = 0, ξ = 1 and the control signal are displayed in Fig. 11 from top to bottom and confirm
the previous analysis. Note that the final controller for G is [0 0 1] + K0 + K(x]).

7.4. Gain-scheduling control
Our last study concerns the case where the parameter q ≥ 0 is uncertain or allowed to vary in time with sufficiently

slow variations as discussed in [26]. We assume that a nominal value q0 > 0 and an uncertain interval [q, q] with
16
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Figure 11. Wave equation. Simulations of slices ξ = 0, ξ = 1 and control signal from top to bottom. K]: solid blue, K0: dotted black, K0 + K1(x0):
dashed black. Simulations of K0 and K0 + K1(x0) are nearly indistinguishable due to small gain restriction on K1(x0).

q0 ∈ (q, q) are given. The authors of [3] schedule their controller (20) using an adaptive control scheme, where the
scheduling function uses a nonlinear dynamic estimate q̂(t) ∈ [q, q] of the anti-damping parameter.

Based on the approach in section 7.2 the following scheduling scenarios are possible. (a) Computing a nom-
inal controller K̃ at q0 as before, and scheduling through Φ(q), which depends explicitly on q, so that K(1)(q) =

feedback(K̃,−Φ(q)). (b) Computing a K̃(q) which depends already on q, and using K(2)(q) = feedback(K̃(q),−Φ(q)).
(c) Computing a robust controller Krob for the entire interval.

While (a) is directly based on (3) in its finite-dimensional version based on [9, 20], see also [27], as available in
systune, leading to K(1)(q), we show that one can also apply our approach to case (b). We use the reduction of section
7.2, see Fig. 8, to work in the finite-dimensional system (G̃(q), K̃(q)), where we now have in addition dependency on
q, addressed by a parameter-varying design.

For that we have to decide on a parametric form of the controller K̃(q), which we chose here as

K̃(q, x) = K̃(q0) + (q − q0)K̃1(x) + (q − q0)2K̃2(x),

and where we adopted the simple static form K̃1(x) = [x1 x2 x3], K̃2 = [x4 x5 x6], featuring a total of 6 tunable
parameters. The nominal K̃(q0) is obtained via the synthesis technique in section 7.2. For q0 = 3 this leads to
K̃(q0) = [−1.049 − 1.049 − 0.05402], obtained via systune as in section 7.2.

With the parametric form K̃(q, x) fixed, we now use again the feedback system (G̃(q), K̃(q)) in Fig. 8 and design
a parametric robust controller using the method of [28], which is implemented in the systune package and used
by default if an uncertain closed-loop is entered. The tuning goals are chosen as constraints on closed-loo poles
including minimum decay of 0.7, minimum damping of 0.9, with maximum frequency 2. The controller obtained is
(with q0 = 3)

K̃(q, x∗) = K̃(q0) + (q − q0)K̃1(x∗) + (q − q0)2K̃2(x∗),

with numerical values K̃1 = [−0.1102,−0.1102,−0.1053], K̃2 = [0.03901, 0.03901, 0.02855], and we retrieve the final
parameter varying controller for the system G(q) as

K(2)(q) = K0 + feedback(K̃(q, x∗),−Φ(q)), K0 := [0 0 1] .

The methods are compared in simulation in Figs. 12, 13, 14. Comparison of the simulations in Figs. 12, 13, and 14
indicates that the last controller K3(q) achieves the best performance for frozen-in-time values q ∈ [2, 4].

In conclusion, the study of the hyperbolic system (17) shows that optimization based on the infinite-dimensional
program (3) is required to synthesize finite-dimensional controllers for (17), while its finite-dimensional counterpart
based on [9] and implemented in systune is sufficient to synthesize infinite-dimensional controllers of the structure
covered by Fig. 8. The major difference with parabolic systems or first-order hyperbolic systems (see e.g. [11]) is that
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Figure 12. Synthesis at nominal q0 = 3. Simulations of nominal K = K0 + feedback(K̃,Φ(3)) for q = 2, 3, 4. Nominal controller is robustly stable
over [q, q].

Figure 13. Method 1. K̃ obtained for nominal q = 3, but scheduled K(q) = K0 + feedback(K̃,Φ(q)). Simulations for q = 2 left, q = 3 middle,
q = 4 right

Figure 14. Method 2. K̃(q) = K̃nom + (q − 3)K̃1 + (q − 3)2K̃2 and K(q) = K0 + feedback(K̃(q),Φ(q). Simulations for q = 2, 3, 4

preliminary structured stabilization, based on a suitable heuristic, cannot be verified using the Nyquist test. A very
first stabilizing controller has to be found by way of some other means, but once this is achieved, the Nyquist test can
be brought back to serve to control stability of the loop during optimization.
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