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Abstract

This paper discusses analysis and synthesis techniques for robust pole placement in LMI
regions, a class of convex regions of the complex plane that embraces most practically useful
stability regions. The focus is on linear systems with static uncertainty on the state matrix.
For this class of uncertain systems, the notion of quadratic stability and the related robustness
analysis tests are generalized to arbitrary LMI regions. The resulting tests for robust pole clus-
tering are all numerically tractable since they involve solving linear matrix inequalities (LMIs),
and cover both unstructured and parameter uncertainty.

These analysis results are then applied to the synthesis of dynamic output-feedback con-
trollers that robustly assign the closed-loop poles in a prescribed LMI region. With some
conservatism, this problem is again tractable via LMI optimization. In addition, robust pole
placement can be combined with other control objectives such as Hy or Hy, performance to
capture realistic sets of design specifications. Physically-motivated examples demonstrate the
effectiveness of this robust pole clustering technique.

1 Introduction

Stability is a minimum requirement for control systems. However, in most practical situations, a
good controller should also deliver sufficiently fast and well-damped time responses. A customary
way to guarantee satisfactory transients is to place the closed-loop poles in a suitable region of the
complex plane. We refer to this technique as regional pole placement, by contrast with pointwise
pole placement where the poles are assigned to specific locations in the complex plane. For example,
fast decay, good damping, and reasonable controller dynamics can be imposed by confining the poles
in the intersection of a shifted half-plane, a sector, and a disk [18, 1, 4, 5|. Regional pole assignment
has also been considered in conjunction with other design objectives such as Hy, or Ho performance
[20, 8, 28, 9, 32].

Because real systems always involve some amount of uncertainty, it is natural to worry about
the robustness of pole clustering, i.e., whether the poles remain in the prescribed region when the
nominal model is perturbed. Such robustness issues have been thoroughly studied in the context of
pointwise pole placement [23, 22, 25|. In comparison, few results are available on robust regional
pole clustering. These include a Lyapunov approach to compute explicit robustness bounds for pole
clustering in a disk [10], and extensions of the notion of quadratic stability to robust pole placement
in a disk or a sector [3, 16, 15].

The present paper extends these results to more general clustering regions and to structured
uncertainty. The regions considered here are the LMI regions introduced in [9]. This class of
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regions covers a large variety of useful clustering regions including half-planes, disks, sectors, verti-
cal/horizontal strips, and any intersection thereof. The following analysis and synthesis problems
are addressed:

e Robustness of pole clustering within a given LMI region in the face of unstructured or param-
eter uncertainty in the state matrix

e Synthesis of output-feedback controllers that robustly assign the closed-loop poles in some
arbitrary LMI region (assuming static and unstructured uncertainty on the plant matrices).

With some conservatism, these problems are reduced to solving linear matrix inequalities (LMIs).
Since LMIs can be solved numerically using efficient optimization algorithms such as those described
in [29, 30, 6, 35] or implemented in [14, 2], our approach yields practical analysis and synthesis tools
for robust regional pole placement. See [7] for an overview of the applications of LMI techniques in
control theory.

The paper is organized as follows. Section 2 recalls the definition of LMI regions and key
results on pole clustering in LMI regions. Section 3 contains the main result, a generalization of
the Bounded Real Lemma to arbitrary LMI regions. This result gives a sufficient condition in
terms of LMIs for robust pole clustering within a given LMI region. Section 4 shows how some
standard robustness analysis tests for parameter uncertainty can be generalized to LMI regions,
and illustrates the performance of the resulting robust pole clustering tests on a realistic example.
Section 5 applies the results in Section 3 to the synthesis of output-feedback controllers that robustly
assign the closed-loop poles in a given LMI region. This section also shows how to combine robust
pole clustering with other synthesis objectives using the multi-objective design framework developed
in [26, 33, 32]. Finally, Section 6 demonstrates the effectiveness of this approach on a physically
motivated design example.

2 Background

This section recalls the basics on LMI regions and some useful properties of Kronecker products.

2.1 Notation

R and C denote the sets of real and complex numbers, respectively. The notation C~ stands for
the open left-half plane.
For a complex matrix M, M denotes the Hermitian transpose of M and Herm(M) is defined
as
Herm(M) := M + MH .
For Hermitian matrices, M > N means that M — N is positive definite and M > N means that
M — N is positive semi-definite. In symmetric block matrices, we use x as an ellipsis for terms that

are induced by symmetry, e.g.,
S M|_| S M
x Q| |[MT Q|-

Finally, we use the shorthand

X; 0 - 0
N
diag X; := 0 X

0 0 Xy



2.2 Kronecker products

The Kronecker product is an important tool for the subsequent analysis. Recall that the Kronecker
product of two matrices A and B is a block matrix C with generic block entry C;j; = A;; B, that is,

The following properties of the Kronecker product are easily established [17]:

1®A = A
(A+B)®C = A®RC+B®C
(A® B)(C®D) = AC®BD
(A® B)T = AT@BT
(A® B)™! = Al@B!

The eigenvalues of A® B are the pairwise products A;(A)A;(B) of the eigenvalues of A and B. As a
result, the Kronecker product of two positive definite matrices is a positive definite matrix. Finally,

the singular values of A ® B consist of all pairwise products o;(A)c;(B) of singular values of A and
B.

2.3 LMI Regions
An LMI region is any subset D of the complex plane that can be defined as
D={z€C: L+zM+zM" <0} (1)
where L and M are real matrices such that L' = L. The matrix-valued function
fo(2) =L+ 2zM +zM"
is called the characteristic function of D. Below are a few examples of LMI regions:
e half-plane Re(z) < —a: fp(2) =2+2Z+2a<0

e disk centered at (—g,0) with radius r:

fo(z) = [q;rz quz] <0

e conic sector with apex at the origin and inner angle 26:

sinf (z+z) cosf(z— %)

-h“*:Lwea—z)sm9@+a]<°'

Key facts about LMI regions include [9]:
e Intersections of LMI regions are LMI regions.

e Any convex region that is symmetric with respect to the real axis can be approximated by an
LMI region to any desired accuracy.



e A real matrix A is D-stable, i.e., has all its eigenvalues in the LMI region D, if and only if
there exists a symmetric matrix X such that

Mp(A,X) = LX+ M@ (XA)+ M@ ATX)<0, X>0. (2)

This result can be seen as a generalization of the Lyapunov theorem since for the usual stability
region fp(z) = z+ z <0, (2) reduces to

19 (XA) +1@ (ATX)=ATX +XA<0, X>0.

Pole clustering in LMI regions can be formulated as an LMI optimization problem, a conver semi-
definite program that is easily tractable with recently available interior-point techniques. Moreover,
it is possible to combine such pole clustering specifications with other design objectives while pre-
serving tractability [9, 32]

3 Robustness of Pole Clustering in LMI Regions

The notions of robust and quadratic stability are useful tools to analyze the stability of uncertain
state-space models [7, 24]. These notions are now generalized to pole clustering in arbitrary LMI
regions, and a counterpart of the Bounded Real Lemma is derived for LMI regions. While our
analysis is restricted to static (real or complex) uncertainty, its implications for more general classes
of uncertainty (dynamic or time-varying) are briefly discussed at the end of the section.

3.1 Robust and quadratic D-stability

Consider the uncertain linear system
z = A(A)z, A(A):= A+ B(I - AD) 'AC, AecR™" (3)
where the state matrix A(A) depends fractionally on the norm-bounded uncertainty matrix
A€E™M, ope (A) <y (4)

with E = R, C. The value A = 0 corresponds to the nominal state matrix A and the parameter
v defines the level of uncertainty. While the uncertain model (3) is physically meaningful only
for real uncertainty A, we also consider the complex case because of its connection with dynamic
uncertainty (see Subsection 3.4 below).
Let
D={z€C: fp(r)=L+zM+zZM" <0} (5)

be any LMI region and suppose that the nominal state matrix A is D-stable, i.e., has all its eigen-
values in D. The question of interest here is:

Given some uncertainty level 7, do the poles of A(A) remain in D for all A satisfying
Omaz (A) < 7_1?

Definition 3.1 (Robust D-Stability) The uncertain system (3)-(4) is robustly D-stable if the
eigenvalues of A(A) lie in D for all admissible uncertainties A.



Similar definitions can be found in [7, 24] for the usual stability region and in [4] for uncertain
polynomials. Non conservative assessment of robust D-stability is difficult except in very special
cases, e.g., complex unstructured A for the open left-half plane. While conservative, the following
notion of quadratic D-stability proves more practical for analysis and synthesis purposes.

Definition 3.2 (Quadratic D-Stability) Given any LMI region D defined by (5), the uncertain
system (8)—(4) is said to be quadratically D-stable if there exists a real symmetric matric X > 0
such that

Mp(A(A),X) :=L®X +Herm (M ® {X(A+B(I - AD)"'AC)}) <0 (6)

for all complex matrices A such that ||A]| < L.

Recall from Subsection 2.3 that A is D-stable if and only if there exists X > 0 such that Mp(A4, X) <
0. Hence quadratic D-stability implies robust D-stability, but the converse is generally false since
quadratic D-stability requires that a single X satisfy Mp(A(A), X) < 0 for all admissible A’s. Note
that the assumption “X real” incurs no loss of generality and is motivated by the tractability of the
synthesis problem discussed in Section 5.

When D is the open left half-plane, it is well known that robust stability for complex A is
equivalent to quadratic stability for real or complex A [24], which in turn is completely characterized
by the Bounded Real Lemma:

The uncertain system (3)—(4) is quadratically stable (D = C~) if and only if there exists

X > 0 such that
ATX + XA XB CT

BTX —I DT | <o0. (7)
C D I

Using a bilinear shift [8], it can be shown that this remains true for vertical half-planes and disks
centered on the real axis. Next we show that the Bounded Real Lemma condition for quadratic
stability can actually be generalized to arbitrary LMI regions.

3.2 Main result

Given an LMI region D with characteristic function
fo(z)=L+zM+zZMT <0, L,MeRP*P, (8)

factorize the matrix M as
M = M{ M, (9)

where M7, M5 have full column rank (such a factorization is easily obtained from the SVD of M).
If M has rank k, both My and My are k X p matrices.

We are now ready to state the main result, a sufficient LMI-based condition for quadratic D-
stability.

Theorem 3.3 The system (3) with uncertainty

A e Ccmm, Omaz (A) <71



is quadratically D-stable if there exist matrices X € R™" and P € RF** such that

Mp(A,X) MT{®(XB) (MfP)®CT

Bp(X,P):= | M\;®(BTX) —P®I P® DT < 0 (10)
(PMs)®C P®D —yPI
P>0 X >0 (11)

with the notation
Mp(A,X) =L X +M® (XA)+ M (ATX).

Proof: See Appendix A.

The inequalities (10)—(11) are LMIs with unknown matrices X and P. Hence testing this
sufficient condition numerically can be tackled efficiently with LMI solvers. The matrix X plays
the role of Lyapunov matrix while P can be viewed as a scaling matrix that accounts for the block-
diagonal structure of Iy ® A in the relation p = (I ® A)q (see proof in Appendix A). The variable
P also accounts for the non uniqueness of the factorization M = M{ Ms. Specifically, replacing
M, My by Q=T M;,QM, is equivalent to replacing P by Q=7 PQ~'. Note that the size of P is
typically small since for most useful LMI regions, the matrix M in (8) has rank less than three.

It is insightful to explicitate the LMI (10) for well-known regions such as the left half-plane and
the disk:

e The open left-half plane corresponds to L = 0 and M =1 (i.e., 2+ zZ < 0). Taking My =
M, =1, (10) reduces to
ATX + XA XB pCT
BTX —yp pDT | <0
pC pD  —p
which coincides with the Bounded Real Lemma inequality (7) up to dividing by the scalar
p > 0 and redefining X as X/p.

e The disk D(q,r) with center (—g,0) and radius r corresponds to

S EAR R
—~—

M
T
M

Since M has rank one, P is again scalar and we can take P = 1 without loss of generality.
The LMI constraint (10) then reads

—rX gX+XA| XB| 0
gX + ATX —rX 0 ct
BXT 0 —~I| DT
0 C D | —4I

<0.

By a Schur complement with respect to the block (1,1), this is equivalent to

ATXA - X ATX B cT Atal 1 1
B'XA  —4I+B"XB DT | <0, A= Tq . B:=r"2B, C:=r2C.
cc D —~I



which is simply the discrete-time version of the Bounded Real Lemma applied to the system
(A, B,C, D). This stems from the fact that A(A) has all its eigenvalues in D(qg, ) if and only
if (A(A) + gI)/r is stable in the discrete-time sense, i.e., has all its eigenvalues in the unit
disk.

3.3 Intersections of LMI regions

In practical applications, LMI regions are often specified as the intersection of elementary regions
such as conic sectors, disks, or vertical half-planes. Given LMI regions Dy, ..., Dy, the intersection

D=DiN...NDyn

has characteristic function N
fo(z) = dialg foi(2) .

i=
If quadratic D-stability is of interest, then Theorem 3.3 should be applied to the overall characteristic
function fp(z). However, when robust D-stability is the primary concern, it is more efficient and
less conservative to test quadratic stability for each elementary region D; independently. Indeed,
this guarantees robust stability with respect to each region D;, which in turn establishes robust
D-stability.

More specifically, if D is the intersection of N elementary LMI regions with characteristic func-
tions

fpl(z) =L;+zM; + EMiT, M; = M%;MQZ' ,

a sufficient condition for robust D-stability against norm-bounded uncertainty
A€ C™™  gras (A) <yt
is the existence, for each region D;, of a pair of matrices (X;, P;) such that

Mp,(A,X;) Mj;® (X;B) (My;P)®C"
My ® (BTX;)) —yPol PeDT | <0, P,>0, X;>0. (12)
(P;M2) ® C P;®D P I

Note that the LMI feasibility problems (12) (: = 1,..., N) should be solved independently for each
region D; since there is no coupling between the constraints for each region. By contrast, applying
Theorem 3.3 directly to fp(z) amounts to jointly solving all the LMIs (12) with X = X; =... = Xy
and P;,¢=1,..., N as variables. This is clearly more costly, and also more conservative due to the
requirement that a single X satisfy (12) for all regions D;

3.4 Comments on quadratic D-stability

Theorem 3.3 gives a sufficient condition for quadratic D-stability in the face of complex and un-
structured uncertainty. As mentioned earlier, the uncertainty A must be real for the uncertain
model

i=A(A)z, A(A):=A+B(I-AD)'AC (13)

to be physically meaningful. When D is the open left-half plane and robust stability is of interest,
the quadratic stability test is known to be conservative for real uncertainty A. It is therefore
legitimate to question the value of Theorem 3.3 as a tool for assessing robust D-stability.



While acknowledging conservatism for this particular uncertainty model, we now briefly review
other benefits of quadratic D-stability that strengthen its practical appeal. Rewrite (13) as

z = Az + Bwa
zn = Cz+ Dwa (14)
wa = Aza

and let G(s) := D + C(sI — A)"'B. Then A(A) is simply the closed-loop matrix for the feedback
loop of Figure 1, and robust D-stability is therefore equivalent to requiring that the closed-loop
poles remain in D for all A satisfying omaz(A) < y7L.

A

Figure 1: Robustness analysis interconnection

When D is the open left-half plane, there is equivalence between [24]:

e quadratic stability

-1

robust stability against complex A with gy, (A) <7

1G()lloo <y where [|Gl|oo := sUP,, Omaz (G(jw))

1

robust stability against stable dynamic uncertainty A(s) satisfying ||A(S)||co < ¥~

feasibility of the Bounded Real Lemma LMI (7)

Similar connections between quadratic D-stability, robust D-stability against dynamic uncertainty,
and Theorem 3.3 can be established for general LMI regions. Specifically, for G(s) analytic in C\D
(i.e., D-stable), define the Hy norm with respect to D as

||G||Z>)o = SUP Omae (G(8)) = Sup omaz (G(5)) -
s¢D seEOD

Straightforward adaptations of the small gain and generalized Nyquist theorems [25] lead to the
following results.
Theorem 3.4 The following properties are equivalent:

o A(A) is robustly D-stable for static complex uncertainty A satisfying omaez(A) < y71

o IG()IZ <

o The closed-loop system Ga(s) = (I — G(s)A)"1G(s) is robustly D-stable against dynamic
uncertainties A(s) that are D-stable and satisfy |A(s)||2, <y~ ¢



e If A(s) has no poles on the boundary of D and sup,csp Omaz (A(s)) < y7L, then the nominal
poles of G(s) remain in D. More precisely, the number of poles of Ga(s) in D is always equal
to the number of nominal poles (all in D) plus the number of poles of A(s) in D.

These results indicate that quadratic D-stability (and the related test in Theorem 3.3) also provides
some robustness against dynamic uncertainty, which is desirable in practice. It is also worth noticing
that for general D regions, D-stability is difficult to handle numerically as it requires an exhaustive
sweep of 0D, the boundary of D. In this respect, quadratic D-stability provides tractable, though
possibly conservative, means for checking robust D-stability.

3.5 Time-varying uncertainties
The proof of Theorem 3.3 remains valid when the uncertainty is time-varying, i.e.,
A(t) = A(A®®) :== A+ B(I — DA®) 'A®)C,  Omaz (A()) < 1.

While the notion of “pole” disappears for linear time-varying systems, the generalized Bounded Real
Lemma of Theorem 3.3 still provides the following guarantees:

e D-stability of the matrix A(A(t)) at all time ¢

e Exponential decay of the transients whenever D is contained in some stable half-plane z+ 2z <
—2a with a > 0.

The second property is a consequence of the following lemma.

Lemma 3.5 Consider an LMI region D with characteristic function fp(z) = L+ zM + zZMT and
suppose the dynamical system

T =A(t)x
1s quadratically D-stable, i.e., there exists X > 0 such that
Mp(A(t),X)=L®X + M XA{t)+ MT @ A(t)' X <0 (15)
for all time t. Then the quadratic function V(z(t)) = z(t)T Xz(t) satisfies, for all z(t) #0,
1V ()
= D .
V(@ TR

Proof

Multiplying (15) left and right by I ® 27 and I ® z, respectively, we get for all z # 0,
Lez'Xe4+ Moz XAtz + MT @ 2" At)" Xz < 0.

Recalling that 1/2 V (z) = 2T X A(t)z = 2T A(t)T Xz, and dividing by V(z), this leads to

1V 1V
L®1+M®—V(m) +MT®—V($)

2V () 2V () <

which, by definition of D, ensures that %“jgg €D. n

This lemma shows that for quadratic D-stable time-varying systems, stability and decay rate
are essentially determined by time-invariant considerations, i.e., whether D C C~. However, it says
little more about transient behaviors. Can we also expect well-damped responses by choosing an
adequate conic sector? Does a disk prevent fast dynamics? Such extensions to the time-varying
case remain open for future research.



4 Parameter Uncertainty

This section discusses refinements of the previous robustness analysis results when the uncertainty
is structured. The main motivation is the assessment of robust D-stability in the face of parameter
uncertainties. As is usual when dealing with structured uncertainty, the resulting tests are only
sufficient conditions for robust pole clustering in a given LMI region D. Our analysis technique relies
on the use of a parameter-dependent matrix X (§) similar to the parameter-dependent Lyapunov
functions used in [19, 13, 11] for regular robust stability analysis. Such approaches have proved to
be significantly less conservative than quadratic stability for time-invariant parameter uncertainty.
The analysis below deals with the same basic uncertain model (3) but now assumes that A is
real and structured, i.e.,
A = A@S) := diag§il,,, 6 €R, |6 <1 (16)
i=1
where the §;’s denote the (normalized) uncertain parameters. We denote by H C R the hypercube
in which § = (é1,...,d,4) ranges according to (16), and by V the set of vertices of this hypercube,
that is,
V={(1,--.,0¢) ¢ 6 ==%1}.

To stress the dependence on the parameter vector J, the uncertain state matrix is written as
A(6) = A+ B(I — A(0)D)TA()C . (17)

The relevant dimensionality parameters are defined by
q
AeRV", LeR™, k:=rank(M), r:=> r, s:=kr+qnl. (18)
i=1

For such parameter uncertainty, robust pole clustering in the LMI region
D={ze€C: L+zM+zM"' <0} (19)
is equivalent to the existence of symmetric matrices X (§) > 0 parametrized by ¢ such that
LX)+ MeX(6)AW) + MT @ A(6)"X(5) <0, VéeH. (20)

To enforce tractability of (20), we restrict the search of functions X (4) to matrices with affine
dependence on d:

q
X(8) =Xo+ Y _6iXi=Xo+ JTA()X,
i=1
where . .
J=n..., )T, AQ) =diagdil,, X =diagX; .
n n ( ) . lg idn . 1g i
g times
Two robust D-stability tests are derived next using such affine X (§)’s. The first test applies

to general linear-fractional dependence of A(d) on § whereas the second test is restricted to affine
dependence (D = 0). These results are strongly related to the general Integral Quadratic Constraint
framework developed by Megretski and Rantzer in [27] (see pp. 825-826). For simplicity, our results
are stated for a single Lyapunov matrix X (J) regardless of the complexity of the LMI region. For
LMI regions that are intersections of N elementary LMI regions D;, sharper tests can be obtained
by using independent Lyapunov matrices X;(d) for each D; as indicated in Section 3.3.
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4.1 General parameter dependence

Theorem 4.1 Given the parameter uncertainty ¢ specified by (16), the LMI region D in (19), a
full-rank factorization M = M{ My of M, and the notation (18), the uncertain matriz A(0) in (17)
1s robustly D-stable if there exist
N q
e symmetric matrices Xo > 0 and X = diag X; (with X; € R"*"),
i=1

e scaling matrices S = ST, R <0, and Q (all in R%*%)

such that
[L®X0+M®X0A+MT®ATX0 M ® XoB *
M, ® BT X, 0 x| +
[ LXJ+MeXJA MI'®@ XJB 0
My®C I,eD 0 1% My®C I,D 0
LeJ 0 0 S |Q LeJ 0 0
21
0 T 0 [QT\R] 0 ., o | <° (21)
0 0 anl 0 0 anl

and, for all vertices § of the uncertainty hypercube H,

[IS, diag (Ik ® A(6), I ®£(5)>] [;T ?{] [diag (Ik 2 Af(%),Il 2 3(5))] >0. (22)

Proof
See Appendix B. m

This theorem provides a test for robust D-stability that involves solving a finite set of LMIs and
is therefore tractable. Applications to some aeronautics systems suggest that it can be quite sharp.
In its most general form, this test can be computationally demanding for high-order systems with
multiple uncertainties. With additional conservatism, the computational cost can be reduced by

e Using symmetric and skew-symmetric scalings in place of the general and unconstrained scal-
ings S, @ and R. Specifically, impose S = —R > 0 and Q = —Q” and make the structure of
R, Q) consistent with the uncertainty structure

[Ik?A Iléoaﬁ] ’ (23)
That is, require SE = S and Q= = ZQ for all E matrices of the form (23).
e Setting some of the matrices X; to zero.
4.2 Affine parameter dependence
When D =0 in (17), the uncertain state matrix depends affinely on the parameters d;:
q
A(d) = Ao+ ) 6iAi . (24)

=1

11



For such uncertain systems, the following robust D-stability test is easily derived using the multi-
convexity technique developed in [13]. Recall that a function f(z1,...,z,) is multi-convex when it
is convex with respect to each of its variables separately. For differentiable functions this property
is equivalent to requiring that the Hessian of f has non-negative diagonal entries.

Theorem 4.2 Given the parameter uncertainty § specified by (16), the uncertain system with state
matriz (24) is robustly D-stable if there exist symmetric matrices Xo,X1,...,X, and scalars m;,
1=1,...,q such that

L®X(0)+M® X(8)A(S) + M™ @ A(5) +Z(52mz <0 (25)
M@ (X;A) +MT ® (AZ-TXz-) +mid > 0 (26)
Xo > 0, m; > (27)
hold at all vertices § of H and fori=1,...,q, with
q
X(8) :=Xo+ Y _ &iX;.
i=1
Proof
Condition (26) ensures that for any 7, the quadratic function of §
T<L®X(5)+MT®X(6)A(5)+MT®A +Zam,)

is multi-convex in the ¢;’s. Using the same argument as in [13], it follows that (25) holds over the
entire hypercube if it holds at the vertices. ]

4.3 Robust analysis application

The analysis techniques developed in this section are applied to a realistic missile example (see [34]
for additional details and insights). The purpose is to determine admissible uncertainty levels for
which stability and adequate damping are preserved.

The dynamics of the controlled missile roll axis are described by

T = Axz+ 61412+ Bu+ 62Bou
Y Cz
u = Ky

where
z=1[0, 0p 1T My p]T, u=[0rc Opc),

and the meaning of the different variables is given in table 1.

12



Symbols | Meaning

O yaw control surface deflection
0p roll control surface deflection
T yaw rate

Ny yaw acceleration

P roll rate

Ore yaw control command

Ope roll control command

01, 09 uncertainties

Table 1: Variable description

The output-feedback gain matrix K is given and has been designed using eigenspace techniques.
The parameters §; and Jo represent uncertainties whose effects on the missile dynamics are reflected
in the matrices A; and Bs. Numerical values for these matrices can be found in Appendix C.

The objective is to estimate, in the parameter space (41, d2),

e the largest square |0;| < p where closed-loop stability is maintained,

e the largest square where closed-loop damping is adequate, that is, { > 0.6 for the missile roll
axis.

Note that the uncertain parameters d; and d2 enter affinely in the state-space matrices, so the
techniques of Theorems 4.1 and 4.2 are both applicable. The closed-loop pole locations for parameter
values in the set

(61, d2) € {-1, —0.5, 0, 0.5, 1} x {-1, —0.5, 0, 0.5, 1}

are plotted in Figure 2. Clearly, both stability and damping constraints (¢ > 0.6) are violated for
some (d1, d2) pairs in this uncertainty set.

The shaded area in Figure 3 shows the region in the parameter space (d1,d2) where closed-loop
stability is maintained. This area has been computed using an exhaustive search over a fine grid
in the parameter space. Based on the results of Theorem 4.1, we estimate the largest stability
square using either fixed or parameter-dependent X matrices. As expected, a fixed X leads to
a conservative answer (dashed square in Figure 3). In contrast, using a parameter-dependent X
provides a sharp estimate of the largest allowable uncertainty (solid square).

Similarly, Figure 4 shows the uncertainty region where adequate damping ¢ = 0.6 is maintained,
and the dashed and solid lines delimit the estimated safe regions using Theorem 4.2 with fixed or
parameter-dependent X matrices. Note that the damping constraint ¢ > 0.6 is captured by the

conic LMI region
cosf sinf

L=0, M = |:—sin0 cos 6

] , 0 =arcsin0.6.

Again the estimate based on parameter-dependent X matrices provides a sharp answer.
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location of poles at some parameter values
301 : :

201

101

-30 . !
-200 -150 -100

Figure 2: Closed-loop poles of A(d) + B(6)KC for some parameter values
(81, 62) € {1, —0.5, 0, 0.5, 1}

stability region

0
delta_1

Figure 3: Stability region estimates
with fixed (dotted) and parameter-dependent (solid) X matrices.

stability+damped region

-1 -0.5 0 0.5 1
delta_1

Figure 4: Adequate damping region estimates
with fixed (dotted) and parameter-dependent (solid) X matrices.
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5 Output-Feedback Synthesis

This last section shows how to use our main analysis result (Theorem 3.3) for synthesis purposes.
Specifically, we consider the problem of computing an output-feedback controller that robustly
assigns the closed-loop poles in a prescribed LMI region D. For tractability reasons, the discussion
is restricted to unstructured uncertainty.

The problem statement is as follows. Consider the uncertain state-space model

z = Az + Bawa + Byu

zn = Caz + Daprwa + Dayu (28)
y = Cyxz+ Dyawa + Dy u

waA = Aza

where A € R™ ™ and the static uncertainty A satisfies o745 (A) < 1. Given the LMI region
D={z€C: L+zM+zM"' <0}
we are interested in designing a full-order dynamic controller

Tk = Arxzx+Bky
K(s) {u = Ckzx+Dky (29)

that robustly assigns the closed-loop poles in D.
Without loss of generality, assume that Dy, = 0 since this amounts to a mere change of variable
in the controller matrices and considerably simplifies the formulae. The closed-loop matrix is

Acg(A) = Ag + Beg(I — ADg) AC
where

Ay = A+ BUDKCy BUCK:| . Byi= [BA + BuDKDyA

BkC, Ak BxDya
Ce :=[CA + DayDkCy , DayCk ]|, D¢ :=Daa + DayDrDyn .

From Theorem 3.3 with P = I, a sufficient condition for quadratic (hence robust) D-stability of
Ace(A) is the existence of X > 0 such that

Mp(Aq,X) MI®(XBy) MI®Ch
M, ® (BLX) —~I I®DL | <0 (30)
My ® Cy I1® Dy, —vI

where M{ My = M is a full-rank factorization of M. This matrix inequality is not jointly convex
in X and the controller matrices. However, it can be reduced to a convex LMI problem by using
the linearizing change of controller variables introduced in [26, 33, 9]. This leads to the following
synthesis result.

Theorem 5.1 There exists a full-order output-feedback controller K(s) and a matriz X > 0 such
that (30) holds if and only if there exist two n X n symmetric matrices R and S and matrices Ak,
Brk, Ck and D such that

R I

A(R,S) = [I g

] >0 (31)
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LIAR,S)+MR0s+M' 00y MI'®dsy MI® oL
M; ® % —~I I®dL | <o (32)
M ® @¢ I®®p —I

where

o AR+ B,Ck A+BUDKCy] [BA—i-BuDKDyA
A= , ®p=

Ak SA+BKCy SBA+BKDyA
o =[CAR+ DayCk , Ca + DAUDKCy] y @p=Daa + DauDgDyn -
If these LMIs are feasible, then a nth-order controller that robustly assigns the closed-loop poles in
D is
K(S) =Dk + CK(SI — AK)_IBK

where the matrices Ax, Bi,Ck are derived as follows:
o Compute any square matrices M and N such that MNT =1 — RS

e Solve the following linear equations for Bgx, Ck, and Ak:

NBg + SB,Dx
Ck = CxM" +DgC,R (33)
Ax = NAgM' + NBxCyR+ SB,CxkM" + S(A+ B,DkCy)R

o3
=
|

Proof
The proof involves the changes of variable introduced in [26, 33, 9] and is omitted for brevity. [

Inequalities (31)—(32) are LMIs in the variables R, S, A, Bk, Ck, Dk that can be solved
numerically using LMI optimization software [14]. Theorem 5.1 therefore provides a tractable (but
somewhat conservative) approach to robust pole assignment in LMI regions.

Remark 5.2 When D is the intersection of several elementary LMI regions D; as discussed in
Subsection 3.3, the synthesis LMIs (31)—(32) must be written for each region using the same R, S
variables, and the resulting set of LMIs must be solved jointly. Indeed, the synthesis problem is no
longer convex when a different X; is used for each D; (this prevents using the linearizing change of
variable). Note that the extra conservatism introduced by this additional restriction is modest in
most applications.

5.1 Mixed design specifications

From a practical viewpoint, enforcing quadratic D-stability is rarely sufficient since most design
problems are essentially multi-objective. For instance, realistic designs are likely to include Hy or
H, (loop shaping) objectives in addition to robust pole assignment for transient tuning. Fortu-
nately, LMI-based synthesis can accomodate a rich variety of closed-loop specifications within a
single LMI optimization problem as shown in [32]. This is achieved with some conservatism but
has proved effective in a number of applications. The basic requirement is that a single closed-loop
Lyapunov function V(z) = 25, Xz should account for all design specifications.

As an immediate extension of the results in [26, 33, 32|, it is easy to mix quadratic D-stability
with other objectives such as H, or Hs performance, passivity constraints, bounds on the impulse
response, etc. As an example, one can combine a quadratic D-stability objective as captured by
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Theorem 5.1 with an Ho,-norm bound on some input/output channels of the closed-loop system.
For instance, if the nominal plant is described by

T = Ax+ Byw+ Byu
z = Cyr+ Dy,w+ Dyu
y = Cyz+ Dyyw

the (nominal) closed-loop transfer function T'(s) from w to z can be further constrained to

IT(8)llco < B

by combining the LMI conditions (31)-(32) for robust pole assignment with the additional LMI
constraint

AR + RAT + B,Ck + (BuCk)T AL + (A+ B,DkCy) * *
Ak + (A+ B,DkCy)T ATS + SA+ BkCy + (BxCy)T * * 0
(Bw + BuDgDyw)t (SBy + Bx Dyw) ¥ _BI « | <Y
CZR+DzuCK Cz +DzuDKCy Dzw +DzuDKDyw _BI
(34)

6 Design Example

This section illustrates the benefits of robust pole placement in LMI regions through a missile
autopilot design example. The problem setup comes from [31, 21] where additional motivations and
details can be found. It has been slightly simplified to focus on aspects relevant to the technique
proposed in this paper.

The linearized longitudinal dynamics of the missile are described by

é 089 1] [a 0 ~0.119
(j] = | -1426 0] [q] * [178.25] wa [—130.8] Ofin
nz] _[-152 0] [a] B [0.203] 5
g | ~ 0 1]|q 0 |“fin
«a
ZA [-1 0] |:q-
wa = Aza,

where a, g, , and dg, denote the angle of attack, pitch rate, vertical accelerometer measurement,
and fin deflection, respectively. The variables wa and za are auxiliary signals used to model
variations of the aerodynamic coefficients for « ranging between 0 to 20 degrees. The parameter
uncertainty A has been normalized, that is, A € [—1,1].

We need to design a dynamic compensator K (s) that meets the following specifications:

e Settling time of 0.2 second with minimal overshoot and zero steady-state error for the vertical
acceleration 7, in response to a step command

e Adequate high-frequency roll-off for noise attenuation and to withstand neglected dynamics
and flexible modes

e Maximum deflection of 2 (in normalized units) imposed on the control signal g,

e Time-domain specifications must be met over the uncertainty range |A| < 1.
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To attack this problem, we use the feedback structure sketched in Figure 5 below. Here 7,
denotes the reference acceleration signal, and e, u denote the weighted tracking error and control
input, respectively. An integrator is introduced in the acceleration channel to enforce zero steady-
state error. The full compensator is therefore given by

K(s) = Ko(s) [165 (1)] .

To incorporate bounds on the size of unmodeled dynamics and penalize tracking error, we use the
weighting filters (see [31]):

0.001s® + 0.03s2 +0.3s + 1

W, = W, =0.8.
“ le-583 + 3e-252 + 30s + 10000’ ¢
A e u
A A
We W
WA ZA
Ne 1 -
—0) —= 5
- K G
’ Ofin n
o— L
missile
T g

Figure 5: Synthesis structure

First, we perform a standard Hs.-optimal design where we minimize the closed-loop Lo gain
between the inputs (wa,7.) and the outputs (za,e,u). This is meant to enforce high-frequency
roll-off as well as stability and performance for all admissible uncertainties A. The step responses
of the resulting (pure) Hy, controller are depicted in Figure 7 for A = 0 (nominal) and A = +£1
(perturbed). While this first design could be deemed acceptable, it suffers from up to 30% overshoot
in the perturbed transient responses.

To improve transient behavior, we add a robust pole clustering constraint to achieve better
damping across the uncertainty range. Specifically, we require robust pole clustering in the LMI
region represented in Figure 6. This region is defined as the intersection of

e the disk with center 0 and radius 1500 (to prevent fast dynamics)

e the shifted conic sector with apex at x = 8 = 1 and angle § = 30 degrees. Its characteristic

function is
10

—2BcosO + ze"? + ze7 < 0
and the corresponding L and M matrices are:
—28 cos 0 cosf sinf
L= 0 —2ﬂcos€]’ M= [—sinH 0059]
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This particular region is chosen in order to achieve differential damping at low and high frequency
(the damping constraint takes effect for w > 1.73). Because the Hy, constraint already enforces
closed-loop stability, it is inconsequential that this LMI region intersects the right half-plane.

Figure 6: LMI region

The resulting synthesis problem is multi-objective since it involves minimizing the closed-loop
H,, norm subject to robust pole clustering in the selected region. In the LMI framework, this
problem is attacked by minimizing the closed-loop gain -y subject to

e the LMI constraints of Theorem 5.1 for robust pole clustering
e the LMI constraint (34) for the constraint “closed-loop gain < +”

(see Section 5.1 for details).
This LMI optimization problem was solved with [14] and produced the compensator

K(s) = [Ku(s) Ky(s)]

with zero-pole-gain description in Table 2. The corresponding step responses are shown in Figure
8. The transients are smoother than those obtained with pure Hy, control for both nominal and
perturbed plants. More importantly, thanks to the disk constraint, this is achieved with signifi-
cantly slower controller dynamics. Indeed, the fastest mode in the pure Hy, controller is —7 x 103,
whereas it is only —1.3 x 10® in the multi-objective controller. Note that these improvements are
secured without tangible degradation of the H,, performance since both designs have nearly op-
timal performance v = 0.8. Finally, Figure 9 shows that the final controller has adequate roll-off
properties.
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| K, (s) Kq(s)
Gains 2.5676 —6.4909 x 103
—1.0143 x 10° 0
—9.9297 x 102 +1.3204 x 10'j —1.4824 x 10°
Zeros —9.1054 x 10? —1.0433 x 103
—6.7379 x 10? —1.0063 x 10% £1.7801 x 10!
—8.9000 x 10! —9.8382 x 10?
—2.0589 x 10!
0
—1.3050 x 103
Poles —7.9192 x 10?
—5.6938 x 102
—1.3172 x 102 £ 1.0787 x 102j
—2.2752
Table 2: Controller zero-pole-gain description
14 2
1.5
0 1r
% S 05
§ -0.5
al
045 02 04 s % 02 04 0.6
time (sec.) time (sec.)
Figure 7: Pure Ho, design - Nominal and perturbed (A = £1) step responses
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acceleration responses
fin deflection

0 0.2 0.4 0.6 0 0.2 0.4 0.6
time (sec.) time (sec.)

Figure 8: Final design - Nominal and perturbed (A = +1) step responses
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Figure 9: Roll-off in final design

7 Conclusion

Tractable analysis and synthesis techniques have been derived for robust pole placement in LMI
regions. For analysis with unstructured uncertainties, the Bounded Real Lemma characterization of
quadratic stability has been generalized to pole clustering in arbitrary LMI regions. For parameter
uncertainty, two robust D-stability tests have been derived that rely on scaling and multi-convexity
techniques. While both provide only sufficient conditions, they have proven quite sharp in a number
of applications. Finally, we have proposed a tractable LMI-based approach to the synthesis of
output-feedback controllers that robustly assign the closed-loop poles in a prescribed LMI region.
Combination of robust pole assignment with other closed-loop design specifications have also been
discussed.

Appendix A

Proof of Theorem 3.8 : Assume v = 1 without loss of generality. First observe that I — AD is
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always invertible since (10) implies that

[—I D

DT _I]®P<0,

which, from P > 0 and the properties of eigenvalues of Kronecker products, secures opmqz(D) < 1
and hence 0. (AD) < 1 for all admissible A.

By definition, quadratic D-stability holds if and only if there exists X > 0 such that, for all A
satisfying o (A) < 1,

0> Mp(A(A), X)

L®X +Herm{M ® (X(A+ B(I-AD)'AC))}
= Mp(A,X) +Herm {(M{ M) ® (XB(I — AD)"'AC)}
= Mp(A,X)+Herm {(M{ ® XB) (M, ® (I — AD) 'AC)} .
Equivalently, the inequality
v Mp(A, X)v+ 20" (M] ® XB) (M>® (I — AD)"'AC) v < 0 (35)

should hold for any nonzero vector v and admissible A.
For fixed v # 0, this amounts to requiring that

vEMp(A, X))+ 201 (MlT ® XB)p <0 whenever
p€ S, ={(My®(I—AD)'AC) v : Oz (A) <1} . (36)

Observing that p = (M ® (I — AD)~'AC)v is the unique solution of the equation p = (I, ® A)gp,,
where
gpy =T ®D)p+ (M2 C)v, k :=rank(M) , (37)

an equivalent and simpler characterization of .S, is:
Sy={p : p=Tk ® D), Omaz (A) <1} .
Now, p = (I ® A)q together with 0,4, (A) < 1 ensures that, for any k£ X k matrix P > 0,
" (PeI)g-p"(PeNp=q¢" (PRI -A"A)g>0.
Consequently, a sufficient condition for (36) to hold is that
vEMp(A, X)) + 201 (MlT ® XB)p <0 whenever
Gpu(P ® Dy =™ (PO I)p 20, (38)
or equivalently from the expression (37) for gp,,

[V]H[MD(A,X) M1T®(XB)H;]<O whenever

p] M ®(B"X) 0
[;r ([]V—;QT@@DQT] (PRI)[M;®C, I®D]+ [8 —PO®I]> m >0.

Using a standard S-procedure argument [36, 12], this condition is in turn equivalent (up to rescaling
X) to the single LMI constraint:
[ Mp(A,X) M{® (XB)] [MQT ®CT

M;® (BTX) -P®I I®DT ](P®I)[M2®C,I®D]<o. (39)

Finally, a Schur complement with respect to the block (3,3) of (10) shows the equivalence between
(39) and (10).

22



Remark A.1 Note that Theorem 3.3 is non conservative when M has rank one (k = 1). Indeed,
S, is then characterized by the relation p = A g, , and coincides with the set of vectors p such that
quPqp,,, — pHPp > 0 for some P > 0. Since the gap between these two sets is the only source of
conservatism in the proof, the LMI constraints (10)—(11) then become necessary and sufficient for
quadratic D-stability against complex unstructured uncertainty. Note that no scaling is needed in
this case, i.e., setting P = 1 incurs no conservatism.

Appendix B

Proof of Theorem 4.1 : Fisrt observe that for R < 0, the matrix-valued function
F(8) = S+ QD) + D(6)Q™ + D(§)RD(5), D(6) := diag (I ® A(),I® 3(6))

is concave in §. As a result, (22) holds for all § € # if it holds at the vertices § of .
To establish well-posedness, i.e, invertibility of I — DA(J) for all § € H, suppose that I — DA(J)
is singular for some ¢, and consider y # 0 such that y = DA(J)y. Then

e Pre- and post-multiplying (21) by the full-rank matrix [0,7 ® (A(6)y)T,0] and its transpose
shows that the matrix
T

I®y 510 I®y
T® A(d)y [ﬁ] I® A(d)y
0 0

is negative definite

e Pre- and post-multiplying (22) by [I ® y*,0] and its transpose shows that the same matrix is
positive definite, a contradiction.

The remainder of the proof parallels that of Theorem 3.3. D-stability for the uncertain system
(17) is guaranteed if X (§) = Xo + JY A(6) X J satisfies, for all n # 0 and 6 € H,

" (L®X(0)+MeX(5)A(S) + MT @ A(6)"X(6))n < 0 (40)
X(@) > 0. (41)

Using the expressions of A(6), X (6) and M = M{ Mj, direct calculations show that for fixed n # 0,
the d-dependent inequalities (40) are collectively equivalent to

1T [LeXo+Me XA+ MY @ATXy, MT®XoB *] [n
p JYI1®BTX0A 0 * p| <0 whenever
T LeXJ+MeXJA MI®XJB 0] |«
P _ [[M2® A(6)(I — DA(S)'C] |
[W]es,,._{[ & AG)] n:éeMy. (42

Now, it is easily shown that
] _[1®A®) 0 q]| .
S"'_{[w]_[ 0 IeA@)||p] P °H

My®C I,oD 0] |"
L®J 0 0]

with the notation

hS

HIZZE

P
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Using this simpler characterization, we can show that any [i ] € 5, satisfies

T

q q

v [5 Q] P

p Q| R p

™ Vis
17 [ M2®C 19D 0 g My®C 18D 07

I®J 0 0 5 1Q I®J 0 0

>
P 0 I 0 [QT\R] 0 I 0 i—o (43)
0 0 I 0 0 I

T

(Simply pre- and post-multiply (22) by [¢ p?'] and its transpose). Consequently,

Sy C Sy = {[ﬂ . (43) holds}

and a sufficient condition for (40) is (42) with S, replaced by S,, the latter being equivalent to (21)
by a standard S-procedure argument [36, 12].

To complete the proof, we need to show that (41) holds for all § € H. Suppose that X (6)w =0
for some § € H and nonzero w. Then the left-hand side in (40) evaluates to zero when setting
n = [1,...,1]7 ® w, a contradiction. Hence X (§) cannot be singular over #, which together with
X (0) = Xy > 0 guarantees (41).

Appendix C

—180 0 0 0 0 180 0
0 —180 0 0 0 0 180
A=|-21.23 0 —0.6888 —14.7 0 , B= 0 0
256.7 0 1226 —1.793 0 256.7 0
—52.33 304.7 0 36.7 —9.661 0 0

001 00

c=1000 10|, D=0
00 0 01

27 0 0 0 0 0

0 27 0 0 0 0.

A= (212 0 0.688 1496 0 |, Ba=| O 0
38.6 0 122.6 0 0 0

52.4 304.8 0 36.8 9.6 0

—0.12090 —0.06350  0.00000 |

K=1 006730 —0.10380 —0.03020
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