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Abstract

This paper discusses nonlinear optimization techniques in robust control syn-
thesis, with special emphasis on design problems which may be cast as minimizing
a linear objective function under Linear Matrix Inequality (LMI) in tandem with
nonlinear matrix equality constraints. The latter type of constraints renders the
design numerically and algorithmically difficult. We solve the optimization problem
via Sequential Semidefinite Programming (SSDP), a technique which expands on Se-
quential Quadratic Programming (SQP) known in nonlinear optimization. Global
and fast local convergence properties of SSDP are similar to those of SQP, and
SSDP is conveniently implemented with available semidefinite programming (SDP)
solvers. Using two test examples, we compare SSDP to the augmented Lagrangian
method, another classical scheme in nonlinear optimization, and to an approach
using concave optimization.

Key words: Nonlinear programming, sequential semi-definite programming, robust gain-
scheduling control design, linear matrix inequalities, nonlinear matrix equalities.

1 INTRODUCTION

A variety of problems in robust control design can be cast as minimizing a linear objective
subject to linear matrix inequality (LMI) constraints and additional nonlinear matrix
equality constraints:

minimize d’z
(D) subject to A(z) <0,
B(z) =0,
where d is a given vector, x denotes the vector of decision variables, A(x) is an affine
symmetric matrix function, < 0 means negative semidefinite, and B(z) a nonlinear matrix-
valued function, which in many cases is bilinear in z. In the present paper we are primarily
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interested in robust gain-scheduling control design, but a variety of other design problems
may be cast in the form (D). Without aiming at completeness, let us just mention
examples like fixed or reduced-order Hs and H,, synthesis, robust control synthesis with
different classes of scalings, robust control design with parameter-dependent Lyapunov
functions, robust control of nonlinear systems with IQC-defined components, and more
generally, minimization or feasibility problems with Bilinear Matrix Inequality (BMI)
constraints. We discuss some of these applications of (D) at more detail.

Example 1. Observe that the reduced order H, synthesis problem may be cast as

minimize dTx
(Hy) subject to A(z) <0
rank Q(z) <r

where A(z) and Q(z) are symmetric affine. One way to transform (H,,) into the form
(D) is to introduce a slack matrix variable W of size ¢ X r, ¢ the dimension of Q(z), let
Z = (x, W) the new decision vector, and introduce the quadratic equality constraint

B(z) = Q(z) —WTW =o.
In special situations there may be better suited ways to obtain the form (D). O

Example 2. The BMI-feasibility problem is a near at hand application of our method.
If the BMI appears in standard form

1<i<j<n

for an affine symmetric matrix valued function A and symmetric matrices B;;, we are
readily led to introduce a slack variable z;; = z;z;, and replace the BMI with a new
LMI in tandem with the nonlinear constraints z;; — z;z; = 0. In practice, we are more
likely to encounter bilinear or even multilinear matrix inequalities, featuring terms of
the form X;AX,; with X;, X; parts of the decision vector. In this event, introducing an
auxiliary decision matrix variable Z;; = X;AX; will have the same effect and transform
the constraint set into the form of LMIs plus algebraic equalities. O

Example 3. As a special case of a BMI problem, consider static output feedback control
design, where we have to find a Lyapunov matrix variable X > 0 and a controller K such
that for given matrices A, B, C' the BMI

(A+ BKC)X + X(A+BKC)" <0

is satisfied. Introducing a new variable W = K(C X, we could readily transform this into
a LMI plus a nonlinear matrix equality, KCX — W = 0, to obtain the program (D).

An alternative way to obtain the form (D) is to open the BMI via the projection
lemma [18]. This leads to two LMIs

NE(AX + XAT)Nr < 0,  NE(YA+ATYING < 0,



in tandem with X = Y~!. Here Ngr, N are bases for the null spaces of BT, C. With
the nonlinear equality constraint rearranged as XY — I = 0, we obtain a second version
of (D).

It seems appealing to include the LMI

X I
(7v)z

among the above, as with Y > 0, and via Schur complement, it is equivalent to X —Y % >
0. While becoming redundant near the optimum, the new LMI will help to stabilize
the problem. Notice, however, that this idea, which has even been used to relax the
static output feedback problem into a LMI problem, is no longer applicable in the more
complicated robust design problem we shall present in more detail in Section 2. O

Example 4. Yet another important case is robust control design via generalized Popov
multipliers (cf. [34, 28]), also known as k- or u-synthesis. Here we encounter a BMI of
the form

(P+UKV)'ST + S(P+UKV) <0

to be solved for S and K for given P,U,V. By introducing a slack matrix variable
G =SUKV + (SUKV)T, the design problem may be cast in the form (D) as

minimize d'z, = (S,C,Q)
subject to PTST +SP+G <0
SUKV + (SUKV)T —G =0

A similar situation occurs in mixed Hy/Ho-control design, where a BMI of the more
general form

U+ (P+UKV)'57® + ®S(P+UKV) < 0

with fixed ¥, &, P,U,V, to be solved for S, K, arises. This could now be handled using
G = ®SUKV + (®SUKV)T. O

Example 5. For many robust control problems, Linear Fractional Transformations (LFT)
are used to model plants with uncertain components, or to represent nonlinear systems as
uncertain linear systems. The corresponding LFTs are often highly complex and difficult
to handle numerically, and techniques to reducing the order of LFT representations are
required. One way to compute a reduced-order LFT approximation of the nominal LFT
is by minimizing the worst-case energy discrepancy between outputs of the nominal and
the reduced plant in response to arbitrary finite-energy input signals (see Figure 1). This
approach admits a formulation of the form (D). See e.g. [21] for more details. O

The nonlinear constraint B(z) = 0 renders problem (D) highly complex and difficult to
solve in practice (cf. [13]). Nonetheless, due to its importance, various heuristics and ad
hoc methods have been developed over recent years to obtain suboptimal solutions to (D).
Methods currently employed are usually coordinate descent schemes, which alternatively
and iteratively fix parts of the coordinates of the decision vector, x, trying to optimize
the remaining indices. The D-K iteration procedure is an example of this type, [6, 38|,



Figure 1: Designing Reduced LF'T Model

whose popularity may be attributed to the fact that it is conceptually simple and easily
implemented as long as the intermediate steps are convex LMI programs. The latter may
often be guaranteed through an appropriate choice of the decision variables held fixed at
each step. However, a major drawback of coordinate descent schemes is that they almost
always fail to converge, even for starting points close to a local solution (see [22]). As a
result, controllers obtained via such methods are highly questionable and bear the risk of
unnecessary conservatism.

A new optimization approach to robust control design was initiated in [5], where the
authors showed that reduced-order Ho, control could be cast as a concave minimization
problem. It was observed, however, that in a number of cases local concave minimization,
which is known to be numerically difficult, produced unsatisfactory results. This occurs
in particular when iterations get stalled, which is probably due to the lack of second order
information.

In [16], we therefore proposed a different approach to (D), again based on nonlinear
optimization techniques. The augmented Lagrangian method from nonlinear optimization
was successfully extended to program (D). The difficult nonlinear constraints were in-
corporated into an augmented Lagrangian function, while the LMI constraints, due to
their linear structure, were kept explicitly during optimization. A Newton type method
including a line search, or alternatively a trust-region strategy, were shown to work if
the penalty parameters were appropriately increased at each step, and if the so-called
first-order update rule for the Lagrange multiplier estimates (cf.[9]) was used.

The disadvantage of the augmented Lagrangian method is that its convergence is at
best linear if the penalty parameter c is held fixed. Superlinear convergence is guaranteed
if ¢ — oo, but the use of large ¢, due to the inevitable ill-conditioning, is prohibitive
in practice. The present investigation therefore aims at adapting methods with better
convergence properties, like sequential quadratic programming (SQP), to the case of LMI
constrained problems. Minimizing at each step the second order Taylor expansion of
the Lagrangian of (D) about the current iterate, defines the tangent subproblem, (T),
whose solution will provide the next iterate. Due to the constraints A(z) < 0, (7) is
not a quadratic program, as in the case of SQP, but requires minimizing a quadratic
objective function under LMI constraints. After convexification of the objective, (T')
may be turned into a semi-definite program (SDP), conveniently solved with current LMI



tools (cf. for instance [20, 37]). We refer to this approach as Sequential Semi-Definite
Programming (SSDP). It will be discussed in Section 4, and a local convergence analysis
will be presented in Section 5. Although more complex than most coordinate descent
schemes, the advantages of the new approach are at hand:

e The entire vector = of decision variables is updated at each step, so for instance we
do not have to separate Lyapunov and scaling variables from controller variables.

e Like SQP, SSDP is guaranteed to converge globally, which means, for an arbitrary
and possibly remote initial guess, if an appropriate line search or trust region strat-
egy is applied.

e Being of second order type, the rate of convergence of SSDP is superlinear in a
neighborhood of attraction of a local optimum.

The present paper discusses and compares three nonlinear optimization techniques
suited for the design problem (D), with special emphasis on SSDP since it performed
best. The reader might be missing an approach via interior-point techniques — perhaps
more in the spirit of the age. In fact, in a different context, Jarre [24] proposes such a
method based on the log-barrier function known from the interior-point approach to the
SDP-problem, but does not present any numerical evidence as to the practicality of the
approach. Theoretical and practical results are presented by Leibfritz et al. [25, 26], who
consider static output feedback control and mixed Hs/Hoo-control. Our own numerical
experiments [3] with interior-point methods for robust control design seem to indicate
that those are generally less robust, and that the different parameters may be difficult
to tune. We emphasize that the method proposed for robust control design is modulable
in the sense that the optimization procedure featuring SSDP may be replaced by any
other tool based on the user’s favorite optimizer. Future investigations will show which
methods work best in a given situation, and the present contribution does not claim to
present the ultimate tool.

The paper is organized as follows. Section 2 presents and develops the setting of
the robust gain-scheduling control, a particularly important application of (D). Even
though the full robust gain-scheduling case has never been presented, let alone attacked
algorithmically, we keep this part rather cursory, as the individual steps of the method
are essentially known. We rely on a recent excellent exposition of the material by Scherer
[36] and related texts [29, 1, 21]. We have chosen this problem as our main motivating
case study, as it seems to be among the most difficult and numerically demanding cases
of the scheme (D).

Section 3 aims at practical aspects. We offer more specific choices of parameter un-
certainties and scaling variables which help to reduce the algorithmic complexity of the
problem and, as far as our own experiments go, work well in practice.

Section 4 gives a description of the SSDP method as it naturally emerges from the
classical SQP method. Local superlinear and quadratic convergence of SSDP is shown
in Section 5. While several convergence proofs for the SQP method are known in the
literature, (cf. [11, 12]), they all seem to depend heavily on the polyhedrality of the
classical order cone, and no extension addressing the semi-definite cone seems available.



The proof we present here is fairly general and includes nonlinear programming with more
general order cones.

Numerical aspects of the SSDP method are discussed in Section 7. Using two typi-
cal test examples, we compare it to the augmented Lagrangian method and to concave
programming. While apparently of moderate size, these examples represent cases where
classical approaches like the D-K iteration perform poorly, or are even at complete loss.

2 ROBUST GAIN-SCHEDULING CONTROL DESIGN

We wish to design a robust gain-scheduling controller for a plant which depends rationally
on the uncertain and scheduled parameters. Consider an LFT plant in standard form
described by the state-space equations:

T A ‘ Bg Bl B2 xz
zg | _ | Co| Doy Do1 Do wp | wp = Oz, (1)
z Cy | Dy D1y Dy w
Yy Cy | Dy Dy O U

where O(t) is a time-varying matrix-valued parameter assumed to have a two-block diag-

onal structure
Om
o= (o) e

Here ©,,(t) represents the scheduled parameters, measured on-line, ©,(t) the time varying
parametric uncertainties, which we allow to vary in a known compact set K of matrices.
We call parameters © of this form admissible, and the set of admissible (scheduled and
bounded uncertain) parameters is denoted ©.

We recall that the limiting case: no O, (all parameters measured), is called the LPV
or gain-scheduling control problem, while the case: no ©,, (all parameters uncertain) is
referred to as the robust control problem.

The state-space entries of the plant (1) with inputs w, v and outputs z, y are rational
functions of the parameters ©,, and ©,. The meaning of the signals is as follows: u is the
control input, y is the measurement signal, w stands for the vector of exogenous signals,
while z stands for regulated variables.

The robust gain-scheduling control design requires finding a linear controller K of the

i Ak ‘ Brs Bk T
Zg | = | Cko|Droo Drn Wy |, Wo=¢(Om)Z (3)
Uu Ck2 | Dr2g Dga Yy

where ¢ is called the scheduling function, to be determined as part of the design, such
that (3) fulfills the following requirements:

e The closed-loop system, obtained by substituting (3) into (1), is internally stable.
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Figure 2: Gain-scheduling robust control

e The Ly-gain of the closed-loop operator mapping w to z is bounded by 7.

e The above specifications hold for all admissible parameter trajectories © € ©.

In order to continue our analysis, we apply a convenient procedure first used in [30, 1].
We gather all parameter-dependent components into a single block which leads to an
augmented plant P(s) described in the frequency domain as:

2o - PJ(i) <[ Wy

2 RUNUNERN
z |=10|P(s)|0 w (4)
y I o o u

Wy 20

It is easy to verify picturally that the original scheme shown on the left hand side of
Figure 2 is equivalent to the one shown on the right hand side using the augmented
system P(s). After closing the loop, i.e., substituting (3) into (1), respectively (4), the
closed-loop systems mapping exogenous inputs w to regulated outputs z are the same on
both sides.

By inspecting the left hand diagram in Figure 2, we see that the original robust gain-
scheduling control problem can now be viewed as a standard robust control problem for
the time-invariant plant P facing the augmented uncertain parameter matrix O, where

- (5 o= ()

Based on this reformulation, sufficient conditions for the existence of a robust gain-
scheduling L'TT controller (3) are consequently obtained by a suitable extension of the usual
procedure in robust control design: Apply the Bounded Real Lemma and the generalized



S-procedure with a suitable choice of scalings to obtain sufficient conditions for robust
stability of the closed-loop system (Lemma 1). Then use the Projection Theorem [18, 36|
to eliminate the state-space variables of the controller K. The sufficient conditions for
solvability are now again formulated in terms of the state space entries (1) in conjunction
with the Lyapunov and scaling variables (Theorem 2). They form, as we shall see, a mix
of LMIs and nonlinear algebraic equalities. Now at the core of the procedure, calculate
the optimal gain using the proposed optimization techniques. As a final step, extract the
robust controller K from the decision parameters used during optimization using e.g. the
method in [1].

We proceed to present the details of this scheme for the robust gain-scheduling control
case. At the present stage, we aim at a fairly general approach, but the next section will
focus on the practical aspects, where some of the theoretically possible steps will have to
be reconsidered regarding their numerical performance. This concerns in particular the
choice of the Lyapunov test matrix used in the Bounded Real Lemma, the S-procedure,
and the choice of the scalings (structured or general).

In this section we allow for a fairly general class of scalings Q of the form

_( 2n o 0
Q‘( Qu>’Qm‘(Q§Qm) (5)

compatible with the block structure of ©. Later on we shall, at the cost of some conser-
vatism, consider more special classes of scalings in order to reduce the numerical burden
in the design.

Remark. Let us address the question of choosing the Lyapunov test function. Although
parameter-dependent Lyapunov functions can be used, see [7, 17| for discussions, in the
present paper, we shall restrict our attention to the more traditional single quadratic
Lyapunov approach based on a parameter-independent Lyapunov matrix Py. This choice
is at the cost of some conservatism but keeps the theoretical descriptions simple and
practically useful. O

For the notation, observe that we use script matrix symbols A, By, By etc. for the state-
space data of the closed loop-system obtained by substituting (3) into (4), see Figure 2.
We have the following

Lemma 1. Suppose there exists a Lyapunov matriz Py > 0 and scalings Q, R and S, of
the above form (5) such that the nonlinear matriz inequality

0 I Py, O 0
I 0 A By B
QO S 0 I 0
* ST R Co Dy Do | =V (6)
—y 0 0 0 I
0 % C]. D]ﬂ Dll

15 satisfied. Suppose further that the scalings satisfy the condition:

(7) ($7)(7)> g



for each admissible ©. Then the closed-loop system is robustly stable over the uncertain
set ©. Moreover, for every admissible © € ©, the operator mapping the exogenous signal
w nto the requlated variables z has Hoo-norm bounded above by .

Proof. The result is essentially the same as Theorem 10.4 in [36]. It consists in applying
the Bounded Real Lemma in tandem with the full block S-procedure. O

Remark. The derived sufficient conditions for robust gain-scheduling control are not
suited for practice as they stand. This is mainly due to the infinite constraint (7), which
involves an infinity of test matrices ©. In the following section, we shall indicate in which
way (7) may, at the cost of some conservatism, be turned into a finite condition.

A second aspect of the derived criteria is that (6) is not jointly convex in the decision
variables Py, @, R,S and K. As a consequence, using these variables in the design is a
difficult problem not suited for the usual convexity techniques in control. O

As we shall see in our next step, the non-convexity of the design problem may to
some extent be reduced through the Projection Lemma [18]. As a result, the solvability
conditions are stated back in terms of the original state-space entries in tandem with the
Lyapunov and scaling variables, whereas the controller variable K has been eliminated.
The mild inconvenience of this is that the actual controller has to be obtained in an extra
step using the decision variables in Theorem 2 below. This step may itself be numerically
demanding if the scheduling function ¢ has some undesirable properties.

Theorem 2. Consider the LFT plant (1) with scheduled and uncertain parameters © €
© as in (2). Let Nx and Ny be bases of the null spaces of (Ca, Dgs, D12,0,0) and
(B3, D,,D,,0,0), respectively. Suppose there exist scalings Q, R, S,Q, R, S of the form

a=(% g, ) m=(" 5 ) e ®

compatible with the block structure of © in (2), and a pair of symmetric matrices (X,Y)
satisfying the matriz completion conditions:

()1( }I,)>0, ()

such that the linear matriz inequalities (10) - (12):

(ATX +XA  XBy+Cfs™ XB, CFrR CT
BfX +SCy Q-+ SDyy+ Dy,ST SDyy Dj,R Di,

Ny BTX DF ST —yI DIR DI [Nx<0  (10)
RCy RDyy RDyy —R 0
\ C1 Dy Dy 0 —nI

AY +YAT  YCT+BS  YC' ByQ B
CyY + STB]  DggS + S™Dgg—R S™DT, DypyQ Dy

NE CY DypS —~vI D@ D [Ny <0  (11)
QBj QDjy @D, Q@ 0

\ BY Dy, Df} 0 -
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o\ [Q s\[(e
(I) (ST R>(I)20forevery®€® (12)
in tandem with the nonlinear algebraic equality
Qu Su - _ Qu Su
(SJ;,” rR,) ~“\&r & (13)

are satisfied. Then there exists an n-th order gain-scheduling controller K, (n the order of
the plant (1)), and a choice of the scheduling function ¢ such that the closed-loop system
1s internally and robustly stable, and the operator mapping w into z has Ly gain bounded
by v for all admissible parameter trajectories © € ©.

Proof. The argument is based on a solvability test for quadratic inequalities developed
in [35, 1, 2]. The most recent reference is Lemma 10.2 in [36]. This result is used to
eliminate the controller variable K from the solvability conditions (6) in Lemma 1.
When applying the solvability test, due to the special structure of P(s), the solvability
conditions obtained simplify to (9) — (12), (13). The question which remains is how the
scheduled part of the coupling condition (13) is avoided. Following Theorem 10.11 of
[36], one may show that the variables @1, @2, R1, R, S1, S in the scheduled part of the
multipliers are not called for by the matrix inequalities (9) — (12), and are therefore free
to be chosen to satisfy the scheduled part of (13). This also requires a special choice of
the scheduling function ¢ given in [36]. O

As already mentioned, condition (12) needs to be worked on in order to become nu-
merically tractable. This aspect is treated in the next section.

3 CHOICES SUITED FOR PRACTICE

In this section we address the practical aspects of the control design part and indicate
that, at the cost of some conservatism, the difficulty of the design may be greatly reduced
by accepting some restrictions in the general outline.

To begin with, let us assume that the uncertain matrix function ©,(¢) varies in a
polyhedral convex and compact set K of matrices, i.e., ©4(t) € K = co{Ou1,-..,Oun}
at all times t. We refer to the ©,; as the vertices of the value set. Let us examine the
consequence of this choice. Observe that due to the block structure of ©, the infinite di-
mensional scaling condition (12) already decouples into a scheduled part and an uncertain
part. Concerning the uncertain part, we have the following

Lemma 3. Suppose the value set of ©,(t) is polyhedral and the scaling satisfies Q, < 0.
Then the uncertain part of condition (12) is equivalent to the finite condition

( 7 ) (gg Ru>( 7 >20 for every 1 =1,..., N. (14)

|



11

The proof is in fact a straightforward convexity argument based on ), < 0 and may be
found e.g. in [19, 36]. This settles the question of finiteness for the uncertain part of (12)
at the slight cost of conservatism introduced by assuming @, < 0.

Remark. We mention that in practice it is sufficient to let ©, have a block diagonal
structure of the form

O©,(t) = diag(0u1(t)Lp,, - -, 0ur-(t) 1) (15)
where we may without loss assume |0,;| < 1, so the set K will be a cube with the 27
vertices 0,;(t) = £1. O

The conservatism introduced to obtain the finite condition (14) is minor and acceptable
in practice. Notice that the number N may become inconveniently large if the number of
parameters 6,; grows. We therefore mention another strategy to avoid the infinite scaling
condition. Assuming that the uncertain parameters have the block diagonal structure (15)
above, we consider what we call structured scalings satisfying the following conditions: (i)
Q. and S, commute with ©,(t); (i) R, = —Q, and R, > 0, and (4i) ST = —S,. We
check that the scheduled part of condition (7) is satisfied. Developing the term gives

02Q, +0,S, +Sfe,+ R, =(I-0>)R, >0

as required. This choice of the scaling appears rather special and therefore bears the
risk of unnecessary conservatism, but its merit is that it greatly reduces the number of
decision variables and LMI constraints.

Let us now consider the corresponding questions for the scheduled part of (12). We
start with the following technical Lemma, which was already used in the proof of Theorem
2, cf. [36]:

Lemma 4. Suppose the scalings Qm, Sm and R, have been found such that

T
(Gfm) (g? §m><®lm) >0 for every © € ©. (16)

Then there is a choice of the scheduling function ¢ along with appropriate choices of
Q1, Q2, R, Ry and Sy, Sy such that the scheduled part of (7) is satisfied, i.e.,

~ T ~
(5) (5 &)(5)20 memoce oo

Proof. As shown in [36], if ®,, := [Q, Sm; SL R.,] satisfies (16), it is always possible
to adjust the extended scalings Q,, = [Q1 Q2; QY Qm], R = [R1 Ro; RY Ry, Sy =
[S1 S2; ST S,,] in such a way that, with an appropriate choice of the scheduling function
¢, the scheduled part (17) of condition (12) holds true. An explicit formula for ¢ is given
in [36]. O

This means that we are left to define a class of scalings @, Ry, Sm, which allows
reducing the infinite set of LMIs (16) to a finite set. If ©,, has a block diagonal structure,

@m = diag(@mlfgl, ceey HmsIKS); (18)
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and if prior bounds [0,,;(t)| < 1 like for the uncertain parameters are available, this may
be done in exactly the same way as for the uncertain part.

Assuming block diagonal structures (15), (18) for both types of parameters, we find it
useful in practice to pursue different strategies for the two types of parameters. We use
the vertex idea to render the uncertain part of (7) finite, and we use structured scalings
for the scheduled parameters. This avoids numerical difficulties which may arise when
constructing K if a complicated scheduling function ¢ is required. The use of structured
scalings allows the choice ¢(x) = z. Notice that for the scheduled parameters, due
to condition (i) above, choosing structured scalings implies that each of the sub-blocks
@1, Q2, Qm of Q,, has the block diagonal structure with diagonal blocks of sizes ¢, ..., ¢
in (18). This option finally turned out a good compromise in our numerical tests, and we
recommend its use for the type of problem under investigation.

4  SEQUENTIAL SEMI-DEFINITE PROGRAMMING

In this section we cast the robust gain-scheduling control design problem as an optimiza-
tion problem and present an algorithmic approach to its solution.

Recall from Theorem 2 that the complete vector of decision variables for design is
z = (v,Q,R,S, Q,R,S, X, Y). We find it notationally useful to point to parts of the
vector z by introducing the notation

Qu Su ¥ Qu Su
v-(G ) (% %)
involving the uncertain blocks of the scaling variables. Similarly, ®,,, ®,, regroup the
scheduled parts of Q, R, S, Q, R, S.

Let A(x) < 0 represent the LMI constraints (9) - (12), where (12), using one of the
techniques from the previous section, has been replaced with a finite set of LMIs, along
with @ < 0 and Q < 0 required for these procedures. Finally, let B(z) = ¢, P, —I=0
represent the nonlinear algebraic constraint (13). Then the robust gain-scheduling control

problem may be cast in the form (D). More generally, we consider an augmented version
(D,) of (D) for a penalty parameter ¢ > 0:

minimize  f.(z) = v+ £[|®,®, — I||?
(D.) subject to A(z) <0
B(z) =®,2,—1=0

Remark. Notice that problems (D) and (D,.) are equivalent, since the penalty term
¢||®, P, — I||* added in (D,) will vanish at the optimal z. Using (D,) instead of (D) may,
as we shall see, add some numerical stability. O

Remark. We observe that the variables Qum, R, Smy Qm, R, Sm and X,V only occur
in the LMI constraint, which strongly indicates that we expect redundancies in the de-
cision parameters. In fact, our experiments indicate that this is a strong point for using
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structured scalings in the ©,, block, as this tends to limit these redundancies. In general,

we propose to put bounds || - ||c < M on the free variables in order to avoid degeneracy
or failure of the successive LMI subproblems. As these additional constraints may be
included among the LMIs, A(z) < 0, we do not change the notation here. O

Remark. Notice that the trick used in Examples 1 and 2 of the introductory section
does not apply in the robust synthesis case, as the matrices ®,, ®, are indefinite. This
shows that the problem is as a rule numerically harder than e.g. static output feedback
design, or reduced order design. O

Let us now extend the idea of SQP to the augmented program (D.). As we aim at
a primal-dual method, this requires maintaining estimates for the decision and Lagrange
multiplier variables. Consider the Lagrangian associated with (D,):

Lo(x; A, ) = fo(x) + trace(A - A(z)) + AT vec(®,®, — I), (19)

where A > 0 is a positive semi-definite dual matrix variable, A a traditional Lagrange
multiplier variable whose dimension is m?2, m the size of the matrices ®,,®,. Given the
current iterate x and the current Lagrange multiplier estimates A, A > 0, we define the
tangent problem

minimize  Vf.(2)TAz + 1 AzTV2Lo(2; A, A) Az
(T) subject to Az +Az) <0 i
®,o,+ 9, AP, + AP, P, — =0

which consists in minimizing the second order Taylor polynomial of L.(z + Az; A, )
about the current x for possible steps Ax, subject to the LMI constraints, A < 0, and the
equality constraint B = 0 linearized about the current ®,,®,. Notice that the equality
constraint above is given in matrix notation. The equivalent expression in long vector
notation using the Kronecker product ® is:

(B, ® I) vec(AD) + (I @ B,) vec(AD,) — vec(I — &,D,) = 0. (20)

Here <i>u ® I is invertible as soon as <i>u has maximal rank, while I ® ®, is invertible as
soon as ®, has maximal rank.

Remark. If either ®, or ®, is positive definite, we may symmetrize the equality con-
straint, as considered e.g. in [15]. As mentioned before, this is typically not possible in
the robust synthesis case, but may help in different cases. a

The choice of (T') is understood by inspecting the necessary optimality conditions,
which show that the solution Az of (T') may be considered as the Newton step from the
current point z to the new iterate z+ = z + Az. The Lagrange multipliers AT > 0 and At
belonging to the linear constraints in (7') are the updates for A and A. Notice that AT > 0
as a consequence of the Kuhn-Tucker conditions for (7'). Notice further that despite the
notation, A does not explicitly appear in the Hessian V2L.(x; A, \) of the Lagrangian, a
fact which is due to the linearity of A < 0. On the other hand, due to nonlinearity of the
equality constraint, \ appears explicitly in the Hessian of the Lagrangian. Updating A is
then still mandatory to obtain the update \*.

Remark. At this stage, we observe that due to the linearity of the LMI constraints, the
iterates produced by the SSDP scheme will always satisfy the LMIs, while the nonlinear
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equality constraint will of course be only approximately satisfied. The fact that we iterate
on decision variables satisfying the LMIs is an advantage of our method, since it may
render even suboptimal solutions of the optimization problem (D.) useful for the design
(cf. the termination phase in the robust control design algorithm presented at the end of
this section). O

The special structure and the moderate size of the variable (®,,®,) occurring in
the equality constraint B = 0 suggest using a reduced Hessian technique. For fixed x
respectively ®,,d,, we can eliminate either A®, or A®, from the linearized equality
constraint in (7'), as long as we maintain iterates = with full rank ®,, ®,. In that event,
the matrix B = [®, ® I I ® ®,] has full row rank m?, m the size of the matrix ®,, and
eliminating the equality constraint therefore reduces the problem size by m?.

Following the standard notation in SQP, let Z be a matrix whose columns form a
basis (preferably orthogonal) of the null space of the matrix B belonging to (20), and let
the columns of Y form a basis for the range of BT. Then we may write the displacement
Az as Az = ZAZ + Ywy = ZAF + py for the fixed vector pp = Y (BY) 'vec(I — ®,D,),
where Az is now the reduced decision vector.

With this notation, the reduced tangent problem is

() minimize (Vf(2)'Z + pf V2L Z)AZ + Az ZTV2 L Z AT
subject to A, o Z(AZ) < —A(z + po)

where A, is the linear part of .A. Notice that in general (1) is not yet an SDP, since the
reduced Hessian Z7V2L.Z may be indefinite. In order to obtain a convex program, we
have to convexify the reduced Hessian, which may be done in several ways. We comment
on these at the end of the section.

The correction done, the subproblem is convex and may easily be transformed into
a semi-definite programming problem. Ideally, the solution Az gives rise to a step Ax
in the original tangent problem, and the new iterate z* is obtained as z + Az, but in
practice a line search using an appropriate merit function is required. For appropriate
choices avoiding the Maratos effect we refer to the vast literature on the subject (see e.g.
[10], [12]).

In order to obtain the Lagrange multiplier updates, we have to inspect the necessary
optimality conditions for (T). Let At > 0 be the Lagrange multiplier matrix variable
in (T) associated with the constraint A < 0, and let AZ be the optimal solution of (T).
Then the optimal Az is readily obtained via (20), A* is chosen as AT, while A™ is found
through

YV f(2) + Y V2L (ZAZ 4+ po) + YIAIAT + Y B"AT =0 (21)

which determines AT uniquely if B has full rank. Conceptually, the SSDP algorithm
proposed to solve (D) may be described as follows:

SSDP - ALGORITHM

1. Find an initial point 2°, such that A(z°) < 0 and such that ®%, ®° are full rank.
Select Lagrange multiplier estimates A’ and A® > 0 using formula (21).



15

2. Given the iterate z* with ® and ®* nonsingular, and multiplier estimates A¥ > 0,
M. form the reduced tangent problem (T}) about the current data. Render the
reduced Hessian positive definite if required. Obtain the reduced step Az* as a
solution to the SDP, and let Az* = Z,Az* + pt. Obtain Lagrange multipliers
A* >0 and M from (T}) using (21).

3. Do a line search in direction Az* using an appropriate merit function and determine
the new iterate z*™" = 2% + o Aaz*. Set AR = AF 4 oy (A* — A¥) and N1 =
A* + g (M — A*). Choose oy, so that ®*¥*! and ®**! are nonsingular.

4. Check the stopping criteria. Either halt, or replace k£ by k£ + 1 and go back to step
2.

In order to compute the Hessian V2L(z; A, \) of the Lagrangian in step 2, only second-
order derivatives with respect to ®, and ®, are required, as fe(z) is linear in y and does
not depend on the other decision variables. Using the Kronecker product ®, we have the
following formulae (cf. also [16]):

Lemma 5.
Vi Le=c(@, 0D (@, &1), V
V2 L. = (I ®@mat(\)" + c((®y®y — I

Dy Py

Le=c(I®®,) (I®®,),
+(I©3,) (@, ®1),

2
B b,
n"e

|

Remark. Let us comment on the convexification of the reduced tangent problem (7T,
required to obtain an SDP. Recent trends in optimization indicate that one should dis-
pense with this procedure. It is considered important to take the directions of negative
curvature of the (reduced) Hessian into account, e.g. by using a trust region strategy, or
by doing sophisticated line searches which combine the Newton direction and the dom-
inant direction of negative curvature. While the second idea could be at least partially
realized, a trust region approach is not feasible as yet in the presence of LMI constraints,
as optimizing a non-convex quadratic function subject to LMIs is presently too difficult
numerically to become a functional scheme. We therefore have to use the well-known
convexification methods used in nonlinear optimization over many years, and we refer to
[9, 23] for several such strategies.

In our numerical experiments, we tested Powell’s idea of doing a Cholesky factoriza-
tion, and adding correction terms as soon as negative square roots appear, and a direct
method which used the QR-factorization to correct negative eigenvalues of the reduced
Hessian. A third method adapted to the structure of the problem which we found even
more efficient consisted in a Gauss-Newton type idea. We neglect the term ®,$, — I in
the Hessian matrix (22), performing the modified Cholesky factorization on the remaining
term. This is motivated by the fact that dropping this term leaves a positive semi-definite
matrix, which is still close to the correct Hessian as long as the neglected term ®,®, —1 is
small. This is the case when the nonlinear constraint (13) is approximately satisfied, and
the matrix is therefore asymptotically close to the correct (reduced) Hessian. As a con-
sequence, and in contrast with the true Gauss-Newton method, this procedure therefore
does not destroy the superlinear quadratic convergence of the scheme.
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Observe that in all these procedures, the augmented form (D.) of the program helps.
In fact, the penalty term renders the Hessian more convex than in the original form (D), so
the corrections are often very mild in practice, and according to the theory in polyhedral
programming are not even required asymptotically (cf. [8, 10, 12]). This observation is
corroborated in our experiments with LMI-constraints. O

We summarize the results of this section by presenting the following algorithmic ap-
proach to the robust gain-scheduling design problem:

ALGORITHM FOR ROBUST GAIN-SCHEDULING CONTROL DESIGN

Step 1. Initialization. Locate a strictly feasible decision vector z° for the LMI
constraints: For fixed large enough v = 7, render the LMIs (9) - (12) maximally
negative by solving the SDP:

min{t : LMIs (9) - (12) <t1}.

Then, determine Xg, Yy, ®° and ®° so that ®2®° — I is as close as possible to zero.
Then initialize the Lagrange multiplier estimates Ay and Ay > 0.

Step2. Optimization. Solve the optimization problem (D.) via SSDP, using
(2%, A% \%) as primal-dual starting point. The primal solution is .

Step 3. Terminating phase. Due to non-linearity, the algebraic constraints (13)
is never exactly satisfied at the solution z. It is, however, possible to terminate
the program without strict satisfaction of the nonlinear constraints by a simple
perturbation technique [5], which is applicable as long as the LMIs (9) - (12) are
strictly satisfied. One can then replace ®, with 5; ! and check whether the LMI
constraints (9) - (12) hold, possibly with new X and Y. In this case a controller is
readily obtained. Dually, we can replace ®, with ®,' and check the LMI constraints
(9) - (11), with (7) respectively (17) suitably replaced with its dual form

T
<_ér) &)u<_ér)<0 Vi=1,--+,N.

If the test fails, the numerical solution to (D,) is unsatisfactory and has to be im-
proved, e.g. by changing the stopping criteria, or by increasing the penalty constant
c and re-running step 2.

Remark. Notice that strict feasibility < 0 is a priori not guaranteed by SSDP, but
may easily be forced if we replace < 0 in the corresponding LMIs by the stronger < —erl
for a small € > 0. Moreover, if the SDP subproblem is solved by the notorious interior
point techniques, the LMIs are automatically strictly satisfied, and the above perturbation
argument is applicable. O
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5 FasT LLocAL CONVERGENCE OF SSDP

In this section we prove local superlinear and quadratic convergence of the SSDP method
under mild regularity hypotheses. It is interesting to recall the history of the SQP method,
which became already popular during the late 1970ties, even though the first proof of
superlinear and quadratic convergence under realistic assumptions was published as late
as 1994 by Bonnans [11]. A more compact version of that proof is published in [12]. Both
versions are based on techniques introduced by Robinson in the 1980ties.

The time interval is the more remarkable, as the equality constrained case was settled
much earlier, apparently first by Boggs and Tolle [10] around 1982. Early proofs of the
general case existed but always reduced the situation to the equality constrained case
under the (unrealistic) assumption of strict complementarity at the optimal pair.

Inspecting the convergence proofs for Newton’s method in [11, 12] shows that they
heavily depend on the polyhedrality of the order cone in classical nonlinear programming,
so a natural extension to the present case of SSDP does not seem near at hand. Our
present approach is nevertheless inspired by Bonnans’s paper [11]. It turns out that our
method of proof applies even to more general situations, and we present the method in a
fairly general context.

We consider the nonlinear programming problem of the form

minimize  f(z)
(P) subject to gg(z) =0
gr(z) € K°

where f: R* - R, gg : R* — R™ and g; : R* — RP are C2-functions, K is a cone in R?,
and K is its polar cone defined as

K'={yeR :(x,y) <0foreachz € K}.

In the classical nonlinear programming case K = R}, K = R” | the constraint g;(z) €
K° becomes g;(z);eq0 componentwise, while in the semi-definite case R? = S", (with
p = r(r +1)/2), the space of symmetric 7 x r-matrices, K = S’,, (with K° = S"), the
cone of positive semi-definite matrices, the constraint g;(z) € K° means that the matrix
gi() is negative semidefinite. We use the notation (-, -) for the scalar product employed,
since this may include the classical case (z,y) = >, z;y;, as well as (z, y) = trace(z-y) in
the semi-definite case. The adjoint of an operator A with respect to this scalar product
is denoted A*, derivatives with respect to (-, -) in the z-variable are indicated by primes.
Notice also that g;(x) was an affine matrix valued function in our applications, but we
prefer to include the general nonlinear case, as applications of this type are eminent.

We suppose that Z is a local minimum of (P) and that there exists a Lagrange multi-
plier A = (Ag, A;) satisfying the necessary optimality condition

(1) f'(z)+d' @)\ =0
(KT) (2) gr(z) = 0; )
(3) gl(j) EKO, )\IGK, <gl(‘r)’)‘1>:0

Observe that the existence of ) is guaranteed under a weak regularity assumption, like
for instance Robinson’s constraint qualification hypothesis (cf. [33]). The Lagrangian
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associated with (P) is

Lz;A) = f(z) +{9(z), A) = f(z) + (gr(x), Ap) + (g1(2), Ar)- (22)

We consider Newton’s method for solving the Kuhn-Tucker system (K7') which gen-
erates a sequence (z¥, \*) approximating the optimal pair (Z,\). Given the kth iterate
(xF, \F), the (k + 1)st iterate is obtained by solving the tangent problem

minimize  (f'(z*), Az) + $(Az, L" (z*; \F) Az)
(Tx) subject to gg(z*) + gp(z*)Az = 0
gr(z*) + gj(z¥)Az € K°

If Az is the solution to (7}), then z**! = 2% + Az. The Lagrange multiplier update
MNFL = (AEFLNEHTY is just the Lagrange multiplier belonging to the linearized constraints
in (7%). The Kuhn-Tucker conditions for (7}) are the following:

L'(xk;)\k“) + L//(xlc;)\k)(xk—f—l _ .Tk) =0

9p(z*) + gig(a*) (2" — 2*) = 0

0i(o%) + g (F) (a1 — a) € KO, N* € K.
(91(z*) + g7 (a*) (@1 — %), AFH) = 0.

(KTy)

The aim of the following analysis is to give sufficient conditions for local quadratic or
superlinear convergence of the sequence (z¥, \¥).

Remark. The usual choice of quasi Newton methods is easily obtained from our scheme
by approximating the Hessian L”(z*; \*) of the Lagrangian of (P) by a matrix M*. In
order to account for modifications of L”(x*; \F) like convexifications as proposed in our ex-
perimental section, we include the quasi-Newton approach into our convergence analysis.
We shall use the notation (Tj(M*)) for the modified tangent problem with M¥* replacing
the Hessian of the Lagrangian. O

Inspecting classical approaches for the usual polyhedral cone in nonlinear programming
shows that local convergence of Newton’s method usually requires two types of hypothesis,
(a) the second order sufficient optimality condition, and (b) a constraint qualification. As
we mentioned before, a third type of condition, strict complementarity, is often used but
should be avoided, since it is artificial as a rule. At the core is the second order sufficient
optimality condition, saying that the Hessian of the Lagrangian L”(z; \) is positive definite
along critical directions. We adopt the definition of critical directions from [33, 11], which
in the presence of a multiplier leads to the following:

Definition. The direction h # 0 is critical at z with respect to the Lagrange multiplier
Aif

L gp(T)h = 0;

2. There exists h¥ — h, 2% = 7 + t,h* with #, — 07 in tandem with \¥ — \;, \¥ € K
such that for some v* with v¥ = o(t;), gr(z*) — vF € K° and (g;(zF) — v*, \¥) = 0.

|
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Remark. Recall that in the case of the polyhedral cone K = Rf in nonlinear program-
ming, a critical direction h satisfies condition (1) for the equality constraints along with
the following condition (2') for inequalities: g;(Z)h = 0 for active constraints 7 € I having
multiplier A; > 0, and ¢/(Z)h < 0 for active constraints i € I where \; = 0. It is an easy
exercise to show that in this case, (2) is equivalent to this classical definition of criticality
(2). O
Let us now start upon analyzing the Newton step for (P) via the following perturbation
result.
Lemma 6. Suppose there erist sequences x* — T, \¥ — X, 6, — 0% and u*,v* = (vk, vF)
satisfying u* = O(&), v* = O(6;), such that

1. L'(aF; XF) = uk;
2. gp(zF) = vk;

3. gl(xk) - U}c € KO’ <g1(l‘k) - UIIca)‘IIc> =0, )‘IIC € K.

Suppose further that the second order sufficient optimality condition is satisfied at (z, M),
i.e., (h, L"(Z; A)h) > 0 for every critical direction h # 0, and that g'(Z) has mazimal rank.
Then z* — 7 = O(6;) and \¥ — X = O(6},).

Proof. Subtracting equation (1) in the Kuhn-Tucker equations from the perturbed equa-
tion (1) above gives

L'(z" ) — L'(z; ) + ¢' ()" (W — X)) = uP. (23)

Now it suffices to show 2¥ —Z = O(d;), for then the first term L'(z*; \)—L'(z; \) on the left
hand side of (23) is O(;), hence so is the second term. Since ¢'(z*) = ¢'(Z) + O(z* — 7),
this implies ¢'(Z)*(A\¥ — X) = O(z* — %), and since ¢’(Z) has maximal rank, we conclude
M —X=0(zF - z) = O65).

Suppose now that the result is incorrect, so u*/||z¥ — z|| — 0, v*/||lz* — z|| — 0.
Picking a subsequence if necessary, we may assume that (zF — z)/||z* — Z|| — h with
||k|| = 1. We show that A is a critical direction.

Notice first that subtracting the perturbed condition (2) from condition (2) in the
Kuhn-Tucker ensemble gives

kY = k
) b,
[a* —z| la* — 2|

hence the equality part (1) of criticality is satisfied. As for the inequality part, observe
that the perturbed conditions (1) - (3) just match the second part of the definition of
criticality if we use the standing hypothesis that 2* — z slower than §, — 0. Hence h is
critical.

To conclude the proof, let us multiply equation (23) above by z*¥ — Z, and divide by
||z — Z||?>. The right hand term of the modified equation is then

<uk’ ak — j)

— —0
|z% — z||?
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by our standing hypothesis, so the left hand side of the modified equation also has to
converge to 0. The first term on the left hand side of the modified equation is
(L' (2% \) — L' (5 M), 2* — 7)

% — 2| ’

which converges to (L"(z;A\)h,h). Since the direction h was seen to be critical, this

term is strictly positive. We shall now obtain the sought for contradiction by showing

that the remaining term on the left hand side of the modified equation is asymptotically

nonnegative. This is verified by splitting this term into its equality and inequality part.
The equality part of the term in question is

(gp(*) (=" — ), X — Ap)
% — 7| ’

which due to g%,(Z)h = 0 tends to 0. This argument uses the fact that \¥,—\p = O(a*—7),
which itself is a consequence of the standing hypothesis, equation (23), and the constraint
qualification.

Inspecting the inequality term remains. Via Taylor expansion, the latter is

(91(z%) — g1(2), N — \p)

1 24
||x’9—a‘c||2 +0( )’ ( )
again using \¥ — X\ = O(z* — 7). The left hand term of (24) is recast as

2% — |2 2% — 7|

and the second term in (25) tends to 0 due to the standing hypothesis. The first term in
(25) is nonnegative, for expanding its nominator gives

(gr(@®) =i, A7) = (gr(a®) = vf, A) = (91(2), A]) + (91(2), A1)

Here the first and the last term vanish as a consequence of the complementarity condition

(3) in the Kuhn-Tucker ensemble (KT), and the perturbed condition (3) above, while the

two terms with the negative signs are themselves negative, again due to the conditions

(3) above and in (K7T). Indeed, \¥,\; € K and g;(z) € K°, g;(z*) — v¥ € K°, imply

{gr(z*) —v¥,A) < 0 and (g;(z), A\¥) < 0. This settles the case by providing the desired

contradiction. a
With this observation, we are now ready to state our first result.

Lemma 7. Suppose Newton’s method for solving (P) via successive solution of (Tj,(M*))
with a choice of matrices M* generates a sequence of iterates (z*, \F) which converges to
the Kuhn-Tucker pair (z,)). Suppose further that ¢'(z) has mazimal rank, and that the
second order sufficient optimality condition is satisfied at (T, \).

1. If M* — L"(z; )\), convergence (2%, \¥) — (&, ) is superlinear.

2. If M¥ — L"(z; \) = O(x* — z), then convergence (¥, \F) — (Z, \) is even quadratic.
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Proof. We observe that with z¢*! = 2% + Az, and M*! the Lagrange multiplier in
(T}, (M*)), the quasi-Newton step about the current iterate (z*, \¥) may be represented
as

() Lk = ok
(i) gu(a*) = vE;
(i45) gr(a**t) — ok € KO, Mt e K, (gr(a**1) — ok, AEH!y = 0.

where the perturbation terms u* and v* = (vk, v¥) are as follows:

k _ L'( k+1 ) L'(.Tk,_j\) L"( )( k+1 ) (L"(i 5\) )_( k+1 —.Tk)
(LY (k2 — L@ W) (0 — k) + (¢'(a ’““) g'(@")) (W =)
ok = —g(a*H) + g(a*) + ¢/ (a*) (@ it - z¥).

As we wish to bring in the perturbation Lemma 6 above, we let 6 — 0 the speed of
convergence of (u¥, v*) — (0,0), then (z*, \¥) — (z,)) = O(6;) as a consequence of that
lemma.

Now observe that v¥ = o(zF™' — z*), and similarly u* = o(x z*) if we use the
hypothesis M*— L"(z; )\) = o(1). Altogether, d; = o(x**!'—2*). The perturbation Lemma
therefore implies

k+1

" — 7 = O(8;,) = o(x" ! — 2¥) = o(J]a* ! — z|| + []2F — z])).
Similarly, as ¢'(Z) has maximal rank,
NFE =X = 0(6) = o(l|l=z**" — || + ||l2* — ).

These estimates prove superlinear convergence.
The argument giving quadratic convergence under the stronger hypothesis in (2) is
standard and left to the reader (see for instance [11]). O
As a consequence of Lemma 7, what remains to be checked is mere convergence of
Newton’s method under the same regularity hypotheses. Here we shall be able to follow
a known line of argument already present in Robinson’s approach [33]. Let us consider
the limiting tangent problem

)
(Tw) subject to gp(Z)+ (9% x),c)l} =

whose optimal solution is d = 0, and for which ) is a Lagrange multiplier. Observe that
the second order optimality conditions for (T,) are identical with those of (P), so if we
adopt the constraint qualification from before and the second order sufficient optimality
condition for (P), they also hold for (7). Using a result obtained by Robinson [33,
Theorems 2.3, 3.1], we have the following

Lemma 8. Suppose the second order sufficient optimality condition for (P) is satisfied at
the optimal pair (Z, ). Suppose further that g'(Z) has mazimal rank. Then, given € > 0,
there exists & > 0 such that if ||2F — Z|| < &, ||\F = A < § and |[M* — L"(z;))|| < 6,
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the tangent problem (Ty(M*)) has a local minimum x**' and an associated Lagrange

multiplier \F+1 satisfying |25 — Z|| < € and || M = )| < e.

Proof. Notice that the tangent subproblem (Ty(M*)) may be considered a perturbed
version of the ideal tangent problem (T) in the sense of [33, (2.7)]. Now by assumption
¢'(Z) has maximal rank, and hence (T) is regular in the sense of [33]. Secondly, since
(P) satisfies the second order sufficient optimality condition at (Z, ), so does (Th) at the
optimal pair (0,). Using [33, Thm. 3.1], there exist neighborhoods N; of Z, Ny of A,
and N3 of L"(Z; ) such that for 2% € Ny, \¥ € Ny, and M* € N3, the tangent problem
(Tx(M*)) has a solution z**1. We may in addition choose N; small enough to guarantee
that ¢'(z*) has maximal rank, and therefore (Ty(M¥*)) also admits Lagrange multipliers
pLas

Now using Theorem 2.3 of the same paper, the set-valued operator mapping the datum
(z*, Ak, M*) of (Tp(M*)) into the set of possible optimal pairs (z**!, \¥*1) is upper semi-
continuous. By second order sufficient optimality, (Z, A) is locally unique. Therefore upper
semi-continuity translates into the following statement: Given € > 0, there exists § > 0
such that if (z¥, \¥, M*) is in the 6-neighborhood of (Z, A, L"(z; \)), then any (zF+1) A\F+1)
lies in the e-neighborhood of (zZ, A). This is just what we claimed. O

With these auxiliary results, we are now ready to state our local convergence theorem
for Newton’s method.

Theorem 9. Let (%, \) be a Kuhn-Tucker pair for (P) satisfying the second order sufficient
optimality condition, and suppose ¢'(Z) has mazimal rank. Then there exists § > 0 such
that if ||2° — z|| < 6, [|\° = A|| < 6, ||M* — L"(Z; N)|| < & for every k, and M* — L"(z; \),
the sequence (2%, \*) obtained by successive solution of the tangent subproblems (T}, (M*¥))

is well-defined and converges superlinearly to (z,)). Convergence is even quadratic if
M* — L"(z; 1) = O(||l2z* — z[| + |A* = Al]).

Proof. 1) Observe that the perturbation Lemma 6 tells that due to second order sufficient
optimality, the Kuhn-Tucker conditions for (P) follow a Lipschitz type behavior with
respect to specific perturbations u*,v*. Let us quantify this: There exist §; > 0 and
a > 0, 3 > 0 such that if u*, v* are sufficiently small in the sense that [[v¥||, ||u¥|| < &1,
and if z¥, \¥ along with u*, v¥ satisfy (1) - (3) in the perturbation Lemma 6, then
2% = Z[| + | = All < @, and |2 = Z[| + [|]A* = Al < B([lu*[] + [[o*]])-

2) Let 03 < min(c, %) According to Lemma 8 above, there exists d, > 0 such that
whenever || — Z|| < 82, ||\ — M| < 82, and ||M — L"(z; )| < &2, the result (z,\) of the
Newton step with datum (%, A, M) satisfies ||(z, A) — (Z, \)|| < .

3) Choose 6, > 0 such that the following 5 conditions are satisfied. First,

lg(z") — g(=*) — ¢'(2") (2" —2%)|| < ﬁll%1 -2

whenever z!, 22 € B(%,d,). Secondly,

12/ 8) = L) = L@ N e =) < gzl =]



23

whenever z', 2% € B(Z,d;). Thirdly, §, < 1/248, fourthly,

- - 1
LII 1. _ LII =. <
I127(453) ~ (@ D) < 57

whenever z' € B(z,4,). Finally,

1,2 roIV D 2 Lo 2
[(g'(z%) = g'(z"))(A" = A%)[| < mHA =N
whenever \!,\? € B(),d4) and z!, 2% € B(z,6,).

4) Now choose 0 = min(dq, ds,d3,0,), then the conclusion of the theorem holds. In
fact, let (z*, \¥, M*) be the datum of the kth Newton step. As § < §;, an optimal pair
(z*+1, \E+1) exists and satisfies ||(F+!, \ETL) — (2, M) || < 6s.

As in the proof of Lemma 7, let us write the Newton step in the form

(1) Dt A = uf
(i)  gu(a®) = vp
(id) gr(a®*!) — v € KO, MF! € K, (gr(a"+1) — ok, , M1y = 0,

where u*, v*¥ have the meaning given there. Then § < §, and § < §; and step 1) imply
|Juf|| < é“w’““ — zF|| and |[v*|| < %(Hac’”r1 — z®|| + ||\ — X¥||). Therefore step 1)
implies
1
la* ! — || < B (|l = 2F[ + A = AF) <

606

1 _ .
Ul =21+ 1™ = 2+ 1A = A+ X = AlD,

and similarly for ||]\**! — )||. Adding both estimates gives

I A = @ V< S (@5 A = @ )+ @52 = (@ M)]).

Wl

Therefore,
_ 1 _
[[(2*1 M) — (2, V)] < §||(x'“,k’“) —(z, N,

and this proves linear convergence of the sequence. This settles the case, since it proves
in particular that the situation needed to start this argument is reproduced at each step.
O

Remarks. 1) Notice that Newton’s method M* = L(z*; \F) satisfies hypothesis (2) and
therefore converges quadratically.

2) As is well-known, superlinear and quadratic convergence of the primal-dual pair
(x*, A\F) does not imply superlinear or quadratic convergence of the primal sequence z*. In
order to establish primal superlinear convergence, an extra argument is needed, and this
leads to a result in the style of the classical Dennis-Moré characterization of superlinear
convergence for unconstrained optimization. The result is similar to [12, Théoréme 11.5],
and we do not present the details here.
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In the same vein, a more thorough analysis of the SSDP method will have to address
the following elements not considered here due to the lack of space. A global convergence
analysis based on an appropriate merit function, and an extension of the known result in
polyhedral programming saying that the Hessian of the augmented Lagrangian is positive
definite at the optimal pair if the penalty parameter c is properly chosen (cf. for instance
[12, Proposition 12.2]). In particular, in our numerical tests we observed this effect, and
it should be proven rigorously in order to fully justify our approach via SSDP.

3) Let us point to the main difference of our approach to the setting [11]. Following
Robinson’s methods, Bonnans embeds the Newton step for (P) into the Newton step of
a suitably formulated variational inequality, and then establishes a perturbation Lemma
in the style of Lemma 6, but with perturbations based on the variational formulation.
Consequently, more (and in fact, too many) perturbations are allowed, and the Lipschitz
type behavior is then only established under polyhedrality.

6 Existing Techniques and Comparison

In principle, the optimization step in our control design algorithm may be replaced with
any optimization technique adapted to deal with LMI constraints. Here we shall compare
SSDP to two other methods which we have previously used in robust control design, the
augmented Lagrangian method, and an approach via concave programming. Numerical
experiments based on interior-point methods have been reported by Leibfritz et al. [25, 26]
for a different but related type of application. Our own experiments with the interior-point
approach will be presented in [3].

A thorough investigation of nonlinear optimization techniques in robust control syn-
thesis should include comparison with existing techniques like the D-K iteration scheme.
This has already been addressed in [16], where test examples similar to the ones here were
used to compare these approaches. As a result, we observed that D-K was not at ease
with these seemingly innocent cases, and very often could not even be started due to lack
of a useful initial controller.

A partially augmented Lagrangian scheme for solving (D) was discussed in [16], and
we reproduce it here for the convenience of the reader:

AUGMENTED LAGRANGIAN METHOD

1. Select an initial penalty parameter ¢y > 0, a Lagrange multiplier estimate \°, and
an initial decision vector z9 satisfying the LMIs, A(2%) < 0.

2. For given cg, \¥ and 2%, solve

minimize L, (x;0, \¥) (26)
subject to A(z) <0

and let z**! the solution to (26).
3. Update the Lagrange multiplier using the first order update formula

ML= \F 4 e B(oF ) (27)
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4. Update the penalty parameter such that cx1 > ¢, increase k, and go back to step
2.

This scheme is often called first-order method of multipliers. It takes the constraint set
{z : A(z) < 0} as an unstructured set and does not attempt to exploit its special LMI
structure, which would require attaching a matrix Lagrange multiplier variable A > 0 to
the LMI. As a consequence, its rate of convergence is only linear if the penalty parameter
¢, = c is held fixed, while super-linear convergence is guaranteed if ¢, — oo. The latter
is of minor practical importance due to the inevitable ill-conditioning for large c.

Remark. Aiming at good theoretical local convergence properties, we should certainly
avoid the augmented Lagrangian method. To ensure super-linear convergence with fixed
large enough ¢, we have to use second-order methods like the proposed SSDP. Nevertheless,
the augmented Lagrangian method has some merits as it is robust in practice and, similar
to the case of SSDP, may be tackled by a series of SDP subproblems if the Newton step
called for to solve (26) is suitably convexified. In contrast with the tangent subproblem
(T') in SSDP, these SDP subproblems may be solved by primal methods, as Lagrange
multipliers A are not required. This may be an advantage of the augmented Lagrangian
approach, since for instance in our experiments a well-implemented primal SDP solver like
[20] often outperformed existing primal-dual software, even though the latter is preferred
by theory. O

Let us finally recall an approach to (D) discussed in [4]. Primarily, this scheme is
suited for the feasibility problem (find z such that B(z) = 0, A(z) < 0), but may be
modified to apply to (D).

Consider (D) with a nonlinear equality constraint of the form B(z) = PP — I =0 as
encountered in our applications. Introducing a slack matrix variable Z, problem (D) may
be replaced by the concave program (cf. [4] for a proof):

minimize  f.(z) =y + ctrace(Z, — ZL Z;' Z3)
subject to A(z) <0,

(©) Al Z;;F P I
Zy Zy I P

= >

L(z) * x I 0 20
* x 0 1

We may solve (C) by a sequence of subproblems each of which minimizes the first order
Taylor polynomial of f.(z) about the inner current iterate z and over the convex set
{A < 0,£ > 0} . This procedure is known as the conditional gradient or Frank and
Wolfe method. In order to improve its performance, second order information is at least
partially included by approximating the concave second order term of the objective f.(x)
by a linear underestimate (see [31]). This modification improves convergence but still has
the inconvenience of a high CPU cost. Altogether, concave methods cannot compete with
the SSDP or augmented Lagrangian techniques, as they are very slow and, due to the
slack variable Z, lead to large size problems. We use the concave programming approach
in order to check on the quality of our local optimal solutions. In a reasonable number
of tests, SSDP did in fact terminate with values of v close to the global optimum. Yet
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another way to testing the quality of the gain + is to establish a lower bound 7, for the
optimal 7,p by solving (D) without the nonlinear constraint B = 0.

7 NUMERICAL EXPERIMENTS

In this section two typical test examples are used to compare SSDP to the augmented
Lagrangian method proposed in [16] for a related situation, and a concave programming
approach.

7.1 Robust Control of a Flexible Actuator

k
N

F—

Figure 3: Flexible Actuator

Consider the unbalanced oscillator described in Figure 3. The plant is built with a
cart of weight M, fixed to a vertical plane by a linear spring k£ and constrained to move
only along the z axis. An embedded pendulum with mass m and moment of inertia I is
attached to the center of mass of the cart and can be rotated in the vertical plane. The
cart is submitted to an external disturbance F', and a control torque N is applied to the
pendulum to stabilize its movement. The nonlinear equations of motion are:

(M +m)Z + med cos) = med?sin) —kZ+F  meZcos® + (I +me?)d =N

where 9 and 9 denote the angular position and velocity of the pendulum, and Z, Z denote
the position and velocity of the cart. We normalize these equations as in [14]:

¢+ edcost = ed?sind — ¢ + w, eCcosd+0 =u

where [C C 9 19]T is the new state vector. We assume 6, = cos?) measured, and we express
the remaining nonlinear term in the left hand equation through the uncertain parameter
6, = ¥sin¥. The parameter block becomes © = diag(f,,,6,I3). The LET model of the
plant is then derived and numerical data are given below in order to allow testing of our
results with different approaches. Table 1 displays the behavior of the SSDP-Algorithm.
We can see that SSDP achieves good values of ~ already after a few iterations. The
nonlinear constraints decrease with an approximately linear rate. In practice, one may
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stop the algorithm whenever 7 is no longer reduced over a certain number of iteration and
the nonlinear constraint is sufficiently small, say smaller that 1076 or 10~7. The final steps
in the table are only for illustration of the asymptotic behavior of the method. Note that
the number of decision variables in this example was 94. The gain 7, = 1.262 obtained
by SSDP was close to the lower estimate 7, = 1.18 obtained by solving (D) without the
constraint B = 0.

The numerical data for the flexible actuator LF'T plant are:

0 1 0 0 0 0o 0 0 0 0
( -1 0 0 0 be € —€ —€ 1 —0.2 \
0 0 0 1.02| 0 0o 0 o0 0 0
0.2 0 0 0 —e & e 0| -02 1
0 0 0 0 0 0 0 0 0 0
084 0 0 0 | -4 —e 0 e | —0.84] 0.16
P(s) &~ 123 0 0 0 | -6 0 2 2 |-1.23] 023
0 0 0 0 0 0 0 0 0 1
0.1 0 0 0 0 0 0 0 0 0
0 0 01 0 0 0o 0 0 0 0
0 0 0 0 0 0 0 0 0 0.2
\ 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0o 0 0 0 0 /

where €, a coupling parameter, is chosen in this problem to equal 0.01. The vector of
regulated variables z consists of three components: z., zy are the damping specifications
on (,9, and z, serves to limit the control activity. The exogenous input w is the external
force F.

SSDP method Augmented Lagrangian
step | v [ IPP—1I% [ ¢ | v [IPP—I% | c
0 7 1.152 e+002 | 0.5 7 1.152 e+002 | 0.5
1 4.429 | 1.935 e-000 3.771 | 1.085 e+001
2 2.976 | 1.529 e+001 2.870 | 1.156 e+001
3 1.795 | 1.717 e-000 2.083 | 1.297 e+001
4 1.287 | 6.214 e-000 1.849 | 1.415 e+001
5 1.262 | 1.762 e-000 1.276 | 7.169 e-000
6 1.259 | 7.276 e-001 1.245 | 2.615 e-000
7 1.261 | 4.679 e-001 1.246 | 4.716 e-001
8 1.262 | 1.526 e-002 1.249 | 1.274 e-001 2
9 — 2.647 e-004 2 | 1.251 | 4.247 e-002
10 1.796 e-006 1.254 | 1.676 e-002
11 — 7.462 e-003 8
12 1.179 e-003
13 9.584 e-005 | 32
14 2.145 e-005
15 1.217 e-006 | 128

Table 1: Behavior of SSDP for the Flexible Actuator
Computations on PC with CPU Pentium II
333 MHz.

7.2 ROBUST AUTOPILOT OF A MISSILE

Consider the missile-airframe control problem illustrated in Figure 4, where the missile is
flying with an angle of attack a. The control problem requires that the autopilot generate
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Modified conditional gradient
step | v | IPP—1I|Iy | ¢ |step| v |[[PP-I|}| c

0 7 1.152 e+002 | 0.5 11 1.725 e-002 | 512
1 1.295 | 2.169 e+001 12 1.315 | 7.642 e-003

2 1.292 | 2.576 e+001 13 1.319 | 2.764 e-003 | 1024
3 1.302 | 1.145 e+001 2 14 1.321 | 9.476 e-004

4 1.307 | 5.872 e+000 | 8 15 —— | 6.125 e-004 | 2048
5 1.309 | 2.057 e+000 16 4.679 e-004

6 1.311 | 8.451 ¢-001 17 1.325 | 2.762 e-004

7 — 4.251 e-001 32 18 — 1.927 e-004

8 1.312 | 2.745 e-001 19 1.322 | 2.169 e-004

9 — 7.567 e-002 | 128 | 20 | 1.324 | 1.742 e-004

10 4.571 e-002

Table 2: Behavior of Modified Conditional Gradient Algorithm for Flexible Actuator

V4

Figure 4: Aerodynamic model for air to air missile

the elevator deflection § to maintain the angle of attack «, called for by the guidance law.
The tail-fin actuator is modeled as a first order system

6 = 7(u—0)

with time constant 7 = 1/150 seconds, so ¢ becomes itself a state of the system. The
nonlinear dynamics of the missile are adopted from [32]:

cos(a/ f)

&= mV

Z+q, =M,
where m is the mass, V = M/V; is speed , I, the pitch moment of inertia, Z =
Cz(a, d, M)QS the normal force, M, = Cy,(a, §, M)QSd the pitch moment, () is dynamic
pressure, and S, d reference area and diameter. The normal force and pitch moment
aerodynamic coefficients are approximated by third-order polynomials in « and first oder
polynomials in 6 and M.

Sensor measurements y for feedback include the pitch rate ¢ and «, while the state of
the actuator deflection ¢ is unobserved. The robust control scheme for the missile autopilot
is shown in Figure 5. The time-varying matrix-valued parameter is © = diag(6,,14, 6,),
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Figure 5: Configuration for synthesis

where 6, is used to translate the nonlinearity in « in the left hand equation into an LFT
with uncertainty. The scheduled parameter 6,, is the variation in Mach number M about
nominal flight conditions, My = 3. The Mach number is slowly time-varying and easily
measured on-line.

The vector of regulated variables z consists of two components (see Figure 5). The
first, z1, corresponds to a frequency-weighted sensitivity design goal, for tracking error
accuracy, while 2z, = ¢s6 = cs7(u — 6) serves to limit the tail-fin actuator rate 6, and
indirectly, to bound the controller bandwidth in order to avoid trouble with unmodeled
flexible modes. The vector of exogenous inputs w includes the command «, and the pitch
rate sensor noise n.

For the problem considered, it is desired to track step input commands a, = 20° with
a steady state accuracy of 2%, to achieve a rise time of less than 0.3 seconds, and to limit
overshoot to 5% for a wide range of angles of attack £20 deg and under variations in
Mach number ranging from 2 to 4.

For comparison, the numerical data for this LF'T model of the missile are reproduced
below. Our optimization techniques are then readily applicable, and the results are shown
in Table 3. SSDP achieves good values of v after a few iterations, with a similar rate
of decrease for the nonlinear constraints. The autopilot example involved 132 decision
variables. Again the gain 7, = 0.597 observed at the optimum was close to the lower
estimate 7, = 0.57. The optimal controller obtained by SSDP was then tested in a time
domain simulation based on the nonlinear model shown in Figure 6. The upper curve
shows the tracking in «, the lower curve shows the corresponding elevator deflection 9.

—0.876 1 —0.1209 0 |0201 1.18 0 0 0273| 0 0 | 0 \
(M8.9117 0 -13075 0 |8.32 0 3 1 2346| 0 0 | 0
0 0 —150 0 0 0 0 0 0 0 0 |150
-1 0 0 —0.05| 0 0 0 0 0 0o 1] o0
0.5 0 0 0 0 0 0 0 0 0 0] 0
—0.123 0  —0.017 0 |002 0 0 0 0038|0 01 0
P(s) o 0.495 0 —7.264 0 4796 0 0 0 1303/ 0 0| 0
1.485 0 —21.79 0 1438 0 5 0 391, 0 0] 0
1 0 0 0 0 0 0 0 0 0 o o0
~0.25 0 0 3487 | 0 0 0 0 0 0 25| 0
0 0 -3 0 0 0 0 0 0 0 0| 3
\ -1 0 0 0 0 0 0 0 0 0 1] 0
0 —1 0 0 0 0 0 0 o0 |.00 01 o0 )
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SSDP method Augmented Lagrangian
sep | v | IPP—1I% | ¢ | ~v | IPP—1I% | <
7 6.254 e+003 | 0.25 7 6.254 e+003 | 0.25
1.124 | 0.476 e-001 1.552 | 2.147 e+002
0.854 | 1.876 e-000 1.467 | 6.345 e-001
0.762 | 1.287 e-000 0.745 | 1.827 e-000
0.631 | 2.655 e-001 0.642 | 1.845 e-000
0.609 | 1.425 e-002 0.598 | 1.475 e-000

0.597 | 1.721 e-005 2 0.617 | 7.857 e-001 2
0.607 | 5.749 e-003 8
0.596 | 4.671 e-003
0.597 | 2.612e-005 | 64
— 1.682 e-006

S0 otk W~ O

Table 3: Behavior of SSDP for the Missile autopilot
Computations on PC with CPU Pentium II
333 MHz

Remark. Computational experience with a larger set of typical design examples indicates
that the number of iterations (in terms of SDPs) required by SSDP is almost independent
of the problem dimension, whereas the CPU of course strongly depends on the efficiency
of the SDP solver. As it turns out, in its actual state, the bottleneck of SSDP is the
SDP-solver. The public domain software for SDP we tested could be reliably used to
problem sizes of up to 500 — 1000 decision variables. For larger sizes, the method may
fail due to failure of the SDP-solver, often already at the stage of finding feasible starting
values, or while trying to solve one of the LMI-subproblems. Solvers exploiting at best
the structure of the problem under consideration may then be required. O

Remark. A special type of LMI-solver which replaces the SDP by an eigenvalue op-
timization and uses the bundle method from nonsmooth optimization was presented by
Lemaréchal et al. [27], and reported to work well for certain large size LMI problems.
On the other hand, for large size problems where most SDP solvers are at ill, the direct
approach via interior-point methods may turn out preferable. O

8 CONCLUDING REMARKS

In this paper we have developed sequential semi-definite programming (SSDP), a technique
for finding local solutions to robust control design problems. SSDP is an extension of (and
inspired by) sequential quadratic programming (SQP), a method in nonlinear optimiza-
tion known since the late 1970s. Expanding on SQP, SSDP comprises LMI-constraints,
which are handled explicitly in the course of the algorithm. The method is comfortably
implemented with available SDP codes if the Hessian or reduced Hessian are suitably
convexified. We found the approach highly reliable (as we demonstrated on a set of test
examples), exhibiting local super-linear convergence properties, and applicable to a rich
list of problems in robust control theory.
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Figure 6: Nonlinear simulation for missile autopilot example
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