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Abstract

An important class of linear time-varying systems consists of plants where the
state-space matrices are fixed functions of some time-varying physical parameters 6.
Small Gain techniques can be applied to such systems to derive robust time-invariant
controllers. Yet, this approach is often overly conservative when the parameters 6
undergo large variations during system operation. In general, much higher performance
can be achieved by control laws that incorporate available measurements of 8 and
therefore “adjust” to the current plant dynamics.

This paper discusses extensions of H., synthesis techniques to allow for controller
dependence on time-varying but measured parameters. When this dependence is linear
fractional, the existence of such gain-scheduled H., controllers is fully characterized
in terms of linear matrix inequalities (LMIs). The underlying synthesis problem is
therefore a convex program for which eflicient optimization techniques are available.

The formalism and derivation techniques developed here apply to both the
continuous- and discrete-time problems. Existence conditions for robust time-invariant
controllers are recovered as a special case, and extensions to gain-scheduling in the face
of parametric uncertainty are discussed. In particular, simple heuristics are proposed
to compute such controllers.

Key words: Gain-scheduling, H,, synthesis, Linear parameter-varying systems,
Linear matrix inequalities.

1 Introduction

In most linear control problems, the real challenge is to raise and maintain performance
in the presence of uncertainty. System uncertainty is essentially of two types:

e dynamical uncertainty, which corresponds to neglected plant dynamics (high-frequency
behavior, non-linearities, etc);
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e parametric uncertainty, which results either from inaccurate knowledge of the value of
physical parameters, or from variations of this value during operation.

When the nominal model can be taken linear time-invariant, the H., theory and its
ramifications offer powerful synthesis tools for achieving robust performance (see, e.g., [10,
12, 24] and references thererin). Even though parametric uncertainty remains delicate to
handle, the p-synthesis [9, 5] and Lyapunov-based techniques [7, 27, 36, 17] give satisfactory
results in many applications.

In comparison, available design techniques for uncertain linear time-varying (LTV) plants
are relatively immature. Recall that a LTV plant is any linear system governed by state
equations of the form:

i(t) = A1) alt) + B u(t) )

y(t) = Ct)z(t)+ D(t) u(t) '
where the state-space matrices A(t), B(t),C(t), D(t) vary in time. A solution of the cor-
responding H,, control problem has been proposed in [34, 28]. Yet, its implementation is
often impractical since it requires real-time integration of Riccati differential equations. Al-
ternatively, Small Gain LTI techniques can be applied to LTV plants whose time dependence
assumes the form

#(t) = A(0(1)) =(t) + B(6(1)) u(t)
y(t) = C(0() x(t) + D(0(1)) u(t)
where 6(t) is a vector of time-varying plant parameters and A(-), B(-),C(-), D(-) are fixed
functions of §. Such plants will be referred to as linear parameter-varying (LPV) following the

(1.2)

terminology of [31]. For tractability reasons, we further restrict our attention to LPV systems
where A(+), B(+),C(+), D(-) are linear fractional functions of #. Though not fully general, this
class of LPV plants encompasses many relevant systems such as aiplanes, missiles, robots,
etc. In the approach discussed below, no a priori information on 6(t) is required other than
its range of variations.

For LPV plants, the Small Gain approach proceeds by treating the parameter variations
as uncertainty and by designing a single robust controller for the resulting family of systems
[9]. This is generally very conservative and can result in poor performance when the physical
parameters undergo large deviations during system operation. In fact, plant stabilization
by a single LTI controller may not even be feasible. When the parameter value is measured
during operation, one way of reducing conservatism is to design robust controllers around
each operating point and to switch between controllers according to some gain-scheduling
policy [3]. This often provides a reasonable compromise between performance and robustness,
yet at the expense of higher complexity and delicate stability questions in the switching zone
(see [31, 32] and references therein).

The present paper discusses an alternative approach based on the concept of parameter-
dependent H,, controllers. Such controllers depend on the varying parameters 6(t) through

() = Ax(6() C(1) + Br(6(1)) y(t) (1.3)
' Cre(0(1)) (1) + Dic(0(1)) y().
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where Ak (-), Bk(+),Ck(+), Dk (-) are linear fractional functions of . Introduced by Packard
et al. in [26], this new and promising control structure is applicable whenever the value
of 6(1) is measured at each time t. The resulting controller is time-varying and smoothly
“scheduled” by the measurements of 8(¢). Thanks to their adaptive nature, such controllers
can achieve higher performance than classical robust LTI controllers. Moreover, they can be
implemented at little or no extra cost. In the sequel, the terms gain-scheduled, parameter-
dependent, and LPV will be used interchangeably to refer to control laws of structure (1.3).
The synthesis of gain-scheduled H,, controllers relies on the Small Gain Theorem [35, 9].
Tractability of the discrete-time problem by means of linear matrix inequalities (LMI) was
established in [26, 18]. In this paper, we present a direct and complete solution for the
continuous-time output feedback problem and propose a unifying LMI approach for both
continuous- and discrete-time contexts. Simpler feasibility conditions are obtained as well
as a characterization of all adequate controllers. Our derivation technique parallels that
of [14] and involves only straightforward linear algebra manipulations on positive definite
matrices. Finally, note that this LMI-based approach is practical since efficient interior-point
algorithms are now available to numerically solve LMI problems [20, 21, 6, 13, 22].

The paper is organized as follows. Section 2 gives a precise statement of the linear
parameter-dependent H., control problem. Invoking standard results from Small Gain The-
ory, this original problem is recast as one of robust performance in the face of structured
uncertainty. In Section 4, the general robust performance problem is solved using LMI tech-
niques and standard tools such as the scaled Bounded Real Lemma, In Section 5, these
results are specialized to the H., gain-scheduling problem to derive the main result of the
paper. That is, a complete and tractable characterization of all LPV controllers achieving
some prescribed performance level v. The computation of LPV controllers is discussed in
Section 6 with an emphasis on the well-posedness issue. Finally, Section 7 compares gain-
scheduled LPV and robust LTI controllers and Section 8 discusses mixed problems where
only a few of the varying parameters are measured while the others must be considered as
uncertain.

Linear fractional transformations (LFT) are used extensively in the sequel. For appro-
My, My,
My My

priately dimensioned matrices K and M = < ) and assuming the inverses exist,

the lower LFT is defined as

F(M,K) = My + M3 K(I — Moy K)™" My, (1.4)
and the upper LFT is defined as

Fu(M, [X’) == M22 ‘|‘ lel((] - Mlll()_lMlg. (15)

For a stable real-rational transfer function matrix G, the H., norm is defined in the usual
way

o ||G(5)||so =supo(G(jw)) for continuous-time systems
weR



o ||G(2)| = 963[1011; ]5(G(ej€)) for discrete-time systems

where (M) stands for the largest singular value of a matrix M. With a slight abuse, || 7]~
will also denote the Ly-induced norm of a general operator 7'. That is,

Tu
170 = sup 1l
SO0 Tl

where L, is the space of square-integrable signals.

For real symmetric matrices M, the notation M > 0 stands for “positive definite” and
means that all the eigenvalues of M are positive. Similarly, M < 0 means negative definite,
that is, all eigenvalues of M are negative. For M > 0, M'/? will denote the unique positive
definite square root. Finally, for an arbitrary matrix P, Ker(P) stands for the null space of
the linear operator associated with P.

2 Gain-Scheduled H., Control

In the sequel, o stands for the Laplace variable s in the continuous-time context and
for the Z transform variable z in the discrete-time context. Similarly, 7 stands for the time
t € R in the continuous-time case and for the sample k& € Z in the discrete-time case. The
parameter vector is denoted by

0,=(6,...,05) € RE

to mark its time dependence. The material in this section is essentially borrowed from [23].

2.1 LPYV control structure
LPV plants with a linear fractional dependence on 6. can be represented by the upper LFT

(1) = PuPo),0.) () (2.1)

Y
where P(o) is a known LTI plant and ©, is some block diagonal operator specifying how 6,
enters the plant dynamics. Specifically,

interconnection

O, = blockdiag (61 1,,,...,0k1,,.) (2.2)

where r; > 1 whenever the parameter 6; is repeated [9]. The set of operators with structure

(2.2) will be denoted by
A := { blockdiag (611,,,...,0k1,,.) : 0;(7) € R}. (2.3)

Note that A is traditionally referred to as the uncertainty structure.
The feedback equations associated with the LFT interconnection (2.1) read:
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(o) Pog(o) Poi(o) Pelo)\ [welo)
qlo) | = | Pulo) Pulo) Piao) w(o) (2.4)
y(o) Py(o) Paulo) Px(o) u(o)

Wy = 67 qg. (25)

Note that wg, gs can be interpreted as the inputs/outputs of the time-varying operator ©,.
At each time 7, the LPV plant defines a tangent LTI plant of transfer function:

()= o () =A(en p) + () 00 = Pty e ()

(2.6)
_—
Y% Q 7, © 0
L L —~ 0 O — q
q w ]
— P(0) T A Wei %(0)
y u q — J W
. — P(o)
K(o) — ‘W
% K (o)
Figure 2.1: a) LPV control structure — b) Transformed structure
Consistently with (2.1), we seek LPV controllers of the form
u=F(K(0),0,)y (2.7)
where the LTI system
- [(11(0’) [(15(0')) ‘
K = < . . 2.8
()= Knn(0) Koolo) (2:8)



specifies the LFT dependence of the controller on the measurements of §,. Recalling that 6.
plays the role of scheduling variable, (2.7) gives the rule for updating the controller state-
space matrices based on the measurements of .. For more details on the implementation of
LPV controllers see Section 6.

The overall LFT interconnection is depicted in Figure 2.1a). Note that the closed-loop
operator from disturbance w to controlled output ¢ is given by:

T(P,K,0,) = Fi( F.(P,0,), Fi(K,0,)). (2.9)

2.2 'H, control of LPV systems

Given some LTI plant P(0) mapping exogenous inputs w and control inputs u to controlled
outputs ¢ and measured outputs y, the usual H,, control problem is concerned with finding
an internally stabilizing LTI controller K (o) such that

IE(P, K)o <

where ~ is some prescribed performance level.

The gain-scheduled version of this problem has a similar statement, except that both
the plant and the controller are now LPV instead of LTI. Here the objective is to guarantee
some closed-loop performance v > 0 from w to ¢ for all admissible parameter trajectories 8.
Assuming that any such trajectory is bounded, the H,., control problem for LPV systems
can be formulated as follows:

Find a control structure K (o) such that the LPV controller Fi(K (o), ©,) satisfies:

e the closed-loop system (2.9) is internally stable for all parameter trajectories
0. such that 72(9;97 <1,

e the induced Ly-norm of the operator T'(P, K, ©,) satisfies:

omax TP K, 0:)lleo <. (2.10)

In this statement, the parameter range is restricted to the ball of radius 1/ for practical
reasons. Note that this implies no loss of generality since 6. can always be scaled to comply
with this requirement. Such rescaling merely amounts to redefining the inputs wy of P(o).
Solutions to this H., problem (if any) will be called y-suboptimal gain-scheduled controllers.

A particularity of the H,, gain-scheduling problem is that the varying parameters enter
both the plant and the controller. To apprehend this problem with Small Gain Theory,
we must first gather all parameter-dependent components into a single uncertainty block.
Introducing the augmented plant

qs Fa(0) g
e 0 0 I W
qg|=10 Plo) O w |, (2.11)
Yy 1, 0 0 u
w u



it is readily verified that the closed-loop mapping from exogenous inputs w to controlled
outputs ¢ can be expressed as:

T(P,K,0,) = F, (Fl(Pa(a), K(0)), (% @0)> (2.12)

This alternative expression amounts to redrawing the interconnection of Figure 2.1 a) as in
Figure 2.1 b). By inspection of this second figure, we see that the original LPV problem can
be viewed as a more classical robust performance problem in the face of the block-repeated

G()) ) . With A defined by (2.3), this repeated structure will

be denoted A & A throughout the paper.

In the light of the reformulation (2.12), the LPV problem can be interpreted as a robust
performance problem for the nominal LTI plant 7'(P, K,0) = P, in the face of the norm-
bounded uncertainty A & A. Sufficient conditions for solvability are then provided by Small

uncertainty structure ( ()T

Gain Theory [35, 9]. Specifically, consider the set of positive definite similarity scalings
associated with the structure A in (2.3):

K
La={L>0: LO=0L, VO € A} CR™ with r=>_r. (2.13)

i=1
This set enjoys the following immediate properties:
(P1) I, € La
(P2) L€ La= LT € L
(P3) LelLa=L"'ela
(P4) Ly € La, Ly € La = [11,0 =011, VO € A
(P5) L, is a convex subset of R"*".

Given La, the set of scalings commuting with the repeated structure AGA is readily deduced
as:

Laga = {(% éz) 50 ¢ Ly, Ls € Ly and 1,0 = OL,,¥0 € A } (2.14)

From Small Gain Theory, a sufficient condition for robust performance in the face of the

uncertainty A & A, or equivalently for the existence of gain-scheduled controllers, is as
follows.

Theorem 2.1 Consider an uncertainty structure A and the associated set of similarity scal-
ings Laga defined in (2.14). If there exists a scaling matriz L € Laga and an LTI control
structure K (o) such that the nominal closed-loop system Fi(P,(c), K((0)) is internally stable
and satisfies

("0 %) meeen ke (537 D] < .15)

then Fi(K(0),0,) is a y-suboptimal gain-scheduled H., controller.



Proof: The proof is a straightforward application of the Small Gain Theorem. See [8, 35,
30] for more details. O

The problem stated in Theorem 2.1 is a particular case of the general scaled H., problem
considered in Section 4. Recall that the parameter vector 8, is assumed to range in the ball
of radius 1/4. Note also that the operator Fi(K(0),0,) may not be causal. This issue is
discussed in more details in Section 6. The problem discussed in the remainder of this paper
is that of computing, for a given v > 0, an adequate scaling matrix L and a control structure

K (o) such that (2.15) holds.

2.3 State-space set-up

The LMI approach discussed in this paper is state-space-based. To set it up, consider some
minimal realization of the LTI plant P(o):

Dsg  Dgr Dy, Cy
Plo)=| Dy D Dz |+ | Gy (U]—A)_1(39 B: Bs) (2.16)
Dys Dy Dy Cy

where the partitioning is conformable to (2.4). The problem dimensions are given by:

AeR™™ Dgg € R, Dy € RPVPL Dy, € RP2X™2 (2.17)
Throughout the paper, we will only assume that
(A1) (A, By, () is stabilizable and detectable,

(AZ) D22 - 0

The first assumption is necessary and sufficient to allow stabilization of the plant by dynamic
output feedback and (A2) incurs no loss of generality while considerably simplifying the
calculations. Note also that the parameter matrix § as well as the transfer function from
the disturbance w to the controlled outputs ¢ have been considered to be square in (2.17).
This can be always fulfilled by augmenting the problem with columns and/or rows of zeros.
This operation greatly simplifies the notation and the manipulations of the similarity scaling
matrices defined in (2.13)
From (2.16), a state-space realization of P,(o) is readily derived as

0 0 0 0 I 0
0 Dgp Do Dy 0 Cy
0 Dlg D11 D12 0 + Cl (O'] — A)_I(O, B@ 5 B1 5 BQ 5 0) (218)
0 Dy Dn 0 0 Cy
I, 0 0 0 0 0

Similarly, realizations of the control structure K (o) will be denoted by

<

P,(o) =

K(o) = (DKH DW) + (Cf“) (oI — Ax) " (Bx1, Brs),  Ax € R¥* (2.19)
Dror Dxoo Cko

Note that the order k of K (o) is arbitrary at this point.
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3 Scaled Bounded Real Lemmas

This LMI approach developed in this paper relies heavily on the Bounded Real Lemma
as a means of turning H,, constraints into LMIs. This section states the Bounded Real
Lemma for the scaled H,, problem in both continuous- and discrete-time contexts.

Lemma 3.1 (Continuous-time case)

Consider a parameter structure A, the associated scaling set La defined in (2.13), and a
square conlinuous-time transfer function T'(s) of realization T'(s) = D+ C(sI — A)™'B. The
following statement are equivalent:

(i) A is stable and there exvists L € La such that |LY/*(D + C(sI — A)™'B)L™Y?||,, < v

(i1) there exist positive definite solutions X and L € L to the matriz inequality:

ATX + XA XB ct

BTX —~L DT < 0. (3.1)
C D —yL7!
Proof: Omitted for brevity, see e.g., [14] and references therein. a

Lemma 3.2 (Discrete-time case)

Consider a parameter structure A, the associated scaling set La defined in (2.13), and a
square discrete-time transfer function T'(z) of realization T(z) = D + C(z1 — A)™*B. The
following statements are equivalent:

(i) A is stable and there exvists L € L such that |LY*(D + C(2I — A)'*B)L™Y?||, < ~

(i1) there exist positive definite solutions X and L € L to the matriz inequality:

-X1 A B 0
AT X 0 ct o ¢
BT 0 —~L DT < 0. (3.2)
0 C D —~L7!
Proof: Omitted for brevity, see e.g., [14] and references therein. a



4 Solution of General Scaled H. Problems

By means of Theorem 2.1, we have replaced our original LPV problem by a scaled H.,
problem, admittedly with some degree of conservatism. In this section, all solutions of general
scaled ‘H., problems are characterized for LTI plants and arbitrary uncertainty structures A.
Consider a proper continuous- or discrete-time LTI plant (G(o) mapping exogenous inputs
w and control inputs u to controlled outputs ¢ and measured outputs y as:

Q(O')) — (GII(U) Glg(O')) (LU(O')) _ "
(y(a) Ga(o) Gaalo) u(o) )’ g=35% (4.1)
The general statement of scaled ‘H,, problems is as follows:

Given v > 0, an uncertainty structure A, and the associated scaling set La
defined in (2.13), find L € La and a LTI controller K (o) such that the closed-

loop system is internally stable and

I F(G(o), K(0) L™l < 7. (1.2)

This problem was solved for the state-feedback case in [25] and a generalization to the output
feedback case is derived next.
Consider a state-space realization

_(Du D12> <C1> -1 .
Gy = (P P2+ (o) el =7 (B B (4.3)
of the plant G where the dimensions of the problem are described in (2.17) and assumptions
(A1) and (A2) hold. Combining the main result of [14] and the scaled Bounded Real
Lemmas of Section 3, solvability of the general scaled H,, problem can be characterized as
follows.

Theorem 4.1 (Continuous-time case)

With G(s), A, and La defined as above and the realization (4.3) of G(s), let Ng and Ns de-
note bases of the null spaces of (B, D1,,0) and (Cy, Dy1,0), respectively. With this notation,
the suboptimal scaled H., problem is solvable if and only if there exist pairs of symmetric

matrices (R, S) in R™*" and (L, J) in RPP1 such that

AR+ RAT RCT B

Ng ClR —"}/J Dy NR <0 (44)
B1T Dfl —L
ATS+SA SB, CF

NE BTS —~IL DL | Ns<0 (4.5)
Cy Dy —oJ

R I
< I 5) 20 (46)



LeLn, JELx, LJ=1. (4.7)

Moreover, there exist suboptimal controllers of order k if and only if (4.4)-(4.7) hold for
some quadruple (R, S, L, J) where R,S further satisfy the rank constraint

rank(/ — RS) < k. (4.8)

Proof: See Appendix A. O

The discrete-time version of the Bounded Real Lemma leads to similar solvability condi-
tions for discrete-time systems. These conditions are summarized in the next Theorem and
included for the sake of completeness.

Theorem 4.2 (Discrete-time case)
Given a discrete-time plant G(z) and with the notation of Theorem 4.1, the suboptimal scaled
Hoo problem is solvable if and only if there exist pairs of symmetric matrices (R, S) in R™*"

and (L, J) in RP*P1 such that

ARAT — R ARCT B,

NE| CiRAT  —4J+C,RCT Dy | Nr<0 (4.9)
Bf D —L
ATSA-S ATSB, cT

NIl BISA  —4L+BI'SB, DL |Ns<0 (4.10)
Cl D11 —"}/J

R I
( ] 5) >0 (4.11)
LelLa, JELp, LI=1. (4.12)

Moreover, there exist suboptimal controllers of order k if and only if (4.9)-(4.12) hold
for some quadruple (R, S, L, J) where R, S further satisfy the rank constraint

rank(/ — RS) < k. (4.13)

O

Comments on numerical tractability: The inequalities (4.4)—(4.6) for the continuous-
time case and (4.9)—(4.11) for the discrete-time case are LMIs in R, S, L, J and the structure
constraints L. € L and J € L are convex constraints. In the full order case & > n more-
over, the rank constraints (4.8) and (4.13) are trivially satisfied. However, the constraints
(4.7) and (4.12) are strongly non-convex and numerical tractability of these conditions is
therefore unclear. Devising algorithms that generate solutions to the problems (4.4)—(4.7) or
(4.9)—(4.12) remains a challenging issue because of the importance of output feedback and
structured uncertainty in control applications.
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Convex solvability conditions for H,., synthesis:  The classical H., control problem
corresponds to A = CP**P1. The corresponding similarity scaling set is

La={ L, :AeR, A>0}

and L, .J can be set to the identity matrix without loss of generality. In the full order case,
the conditions of Theorems 4.1-4.2 then reduce to a system of three LMIs and define a convex
program. This LMI-based solvability conditions are numerically tractable in an efficient way
and have the merit of eliminating all difficulties related to imaginary axis zeros and rank
deficiencies in D13 and Dy;. See [14] for a complete discussion.

5 Gain-Scheduled H. Synthesis

From Section 2, gain-scheduled H,, synthesis can be recast as a scaled H., control
problem. In this section, we specialize the general results of Section 4 to derive sufficient
conditions for feasibility of the LPV design. Thanks to the particular structure of the LPV
problem, the difficulty with the non-convex constraint

LJ=1

in Theorem 4.1 entirely disappears. As a result, we obtain sufficient conditions that are pure
LMIs and are therefore numerically tractable.

A complete treatment of the discrete-time case can be found in [23, 18] and we therefore
restrict our attention to the continuous-time case. In order to simplify the presentation, the
following shorthands will be used hereafter:

- A C ~ D D
pewm o=(G) n=(B B)

Theorem 5.1 Consider an LPV plant given by the LFT interconnection (2.1) where P(s) is
a proper continuous-time LTI plant with minimal realization (2.16), and ©, is the parameter
operator given by (2.2). Let A denote the structure set associated with ©, and La denote
the corresponding set of scaling matrices defined by (2.13). Finally, assume (A1)—(A2) and
let N and Ns be arbitrary bases of the null spaces of (BL, DL, DT, 0) and (Cy, Dag, Ds1,0),
respectively.

With this notation and assumptions, the gain-scheduled H., control problem of Section
2 is solvable if there exist pairs of symmetric matrices (R,S) in R™*" and (L3, Js3) in R™*"
such that

AR + RAT RCT B (‘{f’ (]))
A Js 0 ~ J3 0
Ng ClR - < 03 ]) D11 ( 03 ]) NR <0 (52)

J3 O HT J3 O NT J3 0
<0 I)Bl <0 I)DH _7(0 1)
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ATS 4 5A SB, OIT(]BS 9)

N BTS —7<L03 ?) D1T1<L03 ?) Ns <0 (5.3)
(5 Do (v D)o (5 ])

(fl% é)zo (5.4)

Ls€La, Js€La, (LIS i)zo. (5.5)

Moreover, there exist v-suboptimal controllers of order k if (5.2)—(5.5) hold for some
quadruple (R, S, Ls, J3) where R, S further satisfy the rank constraint

rank(/ — RS) < k. (5.6)

Proof: The proof is a straightforward specialization of Theorem 4.1 to the problem (2.15).
The conditions (5.2)—(5.4) follow from (4.3)-(4.5) when performing the following substitu-
tions in the state-space realization of G(s):

0
Cl — Cg 5 B1 — (0 B@ Bl), CQ — (C(’)Q) 5 B2 — (BQ O) (57)
Cy
0 O 0 0 I
Dy — |0 Dgg Do |, Dig— | Doz 0
0 Dy Dy Dy 0O (5-8)
0 D D D 0
D“_}(I 0 021) D22_>< 0 0)

Note that the A matrix remains unchanged and that ANz and Ns become the null spaces of
(BY, D},, DL,) and (Cy, Dyg, Dy1), respectively.

Meanwhile, the condition (5.5) follows from (4.7) of Theorem 4.1. To see this, first note
that the similarity scalings are modified to

Ly Ly O Ji Jy 0
L — Lg L3 0 ; J — JQT J3 0

0 0 I 0 0 I
with I g
(i ) etoss (GF 7)€ laes

Since L1, L, Jy, and Jy are not involved in (5.2)-(5.4), the constraint LJ = [ reduces to
the spectral condition Apin(J3L3) > 1 (see [26] for details). This together with the positive
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definiteness of L and J yields
Ly 1
> 0.
(7 5)20
As for the constraints L3 € La and J3 € La, they are direct consequences of the definition
(214) of LA@A- O

Note that the discrete-time counterpart of this result can be derived from Theorem 4.2
by exactly the same manipulations.

Convexity of the solvability conditions In the full-order case k > n, the sufficient
solvability conditions of Theorem 5.1 form a system of LMIs with variables R, S, Ls, Js.
Testing the feasibility of these conditions is therefore a convex program which is readily
solve using interior-point LMI solvers [33, 20, 21, 6, 22] and software like LM I-Las [13, 16].
Note that minimizing v subject to the feasibility of these constraints is also an LMI problem
[14]. Hence it is possible to directly optimize the closed-loop performance ~.

6 Computation of the Gain-Scheduled Controller

The results of Section 5 provide sufficient conditions for the existence of gain-scheduled
'Hs. controllers but do not address the actual computation of such controllers. We now turn
to this issue and discuss various aspects of the controller computation and implementation.

Recall from Section 2 that the gain-scheduled controller is specified by the LTI system
K (o) of (2.8). Denote by

K(o) = <DKH DKW) + <CKI) (0 — Ag)™" (Bk1, Bis) ,  Ax € R®* (6.1
Dko1r Dxos Cke

any realization of K (o) and let

Ax  Bkg1  Bke
Q :=| Cx1 Dgu Diyp | € RUEHmetn)x(btpetr), (6.2)
Cko Dgor Dioo

For notational simplicity, the following shorthands are used in the sequel:
(A 0 (0 By Bl) B ( 0 By 0 )
Ao = (0 kak) o= (kar 0 0)’ =5 o Ofxr
rxk rXT 0 Orxk T
Co=1Cy 0 , D= 0 Deg Dg1 |, Dia= 0 Dgp 0 (6.3)
C1 0 0 Dy D1y 0 Dy 0 '

0 1y, Ogxr 0 0
C - CQ 0 ) Dgl - 0 DQ@ Dgl .
0 Opxk 1, 0 0

14



6.1 Computation of the controller matrices

Solving the characteristic LMI conditions of Theorem 5.1 for some feasible performance ~
provides a quadruple of symmetric matrices (R, S, L3, J3). A systematic procedure for deriv-
ing the state-space data  of some gain-scheduled controller from (R, S, L3, J3) is outlined
next. This algorithm involves solving one extra LMI and parallels the algorithm described in
[14] for pure Ho, control. Note that the feasible set of (5.2)—(5.5) parametrizes all solutions
K (o) of the scaled H,, problem stated in Theorem 2.1 [14].

Algorithm 6.1  Given any solution (R, S, Ls, J3) of the LMI system (5.2)—(5.5), the state-
space data ) of some y-suboptimal K (o) can be computed as follows:

e From R, S derive the Bounded Real Lemma matrix X, > 0 by

1. computing via SVD two full-column-rank matrices M, N € R™** such that

MNT =1 - RS (6.4)

2. computing X as the unique solution of the linear matrix equation (see [14]):

w5 )= b o

e Compute two matrices Ly € La and Ly commuting with the structure A such that

Ll L2 ) -1 <>|< >k )
L::( >0, L'= .
Lg L3 * Jg

The matrix L can be computed in the same way as X, above, except that the SVD
(6.4) must now be performed on each diagonal block of I — L3.J3 separately (see [11]
for more details).

e Set o
_ _ et
E‘(o%)’ J =L
e Solve for ) the LMI
Xa 0N pr TAT <Xcl 0)
w+<0 ])PQQ+QS2P o 0) <o (6.6)
where
Achl + XclAO XCIBO Cg
U= BIX, —L D (6.7)
Co Dyy —7j
P = (BT707ID{2)7 Q = (67D2170)- (68)
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O
Note that the LMI (6.6) is nothing else than the scaled Bounded Real Lemma of Section
3. Interestingly, the same algorithm applies to discrete-time LPV synthesis upon replacing

(6.6) by
U+ QTP+ PTQQ <0 (6.9)
where U, P, () are now given by

X' A By 0
AT —x, 0 CF

Rl I R (6.10)
0 Co Dyy —’Yj
P:=(B", 0,0, D), Q:=(0,C, D, 0). (6.11)

Finally, the state-space matrices of K(o) can also be computed using the explicit formulas
of [14] or [15]. Involving only standard linear algebra, these formulas are appealing from
a computational efficiency viewpoint. In comparison, the LMI approach is more costly but
also offers more flexibility. In particular, additional LMI constraints on €} can be handled
by the algorithm given above (see next subsection and Section 7 for illustrations).

6.2 Well-posedness of the gain-scheduled controller

Once the state-space data 2 of K(o) has been computed as indicated above, the time-varying
gain-scheduled controller is given by

F(K(0),0,) (6.12)

conformably to Figure 2.1a). One question arises when inspecting this expression: is this
linear fractional interconnection well-posed for all admissible values 8, of the parameter
vector? In other words, does the resulting time-varying controller remain causal along all
parameter trajectories?

Given the realization (6.1) of K (o), well-posedness is equivalent to the invertibility of
the matrix

I — Dggs©- (6.13)
at all times 7 and for all ®, in the closed ball

10 floc < 1/7. (6.14)

Recalling that the LPV synthesis is performed via the scaled H., problem (2.15), we are
guaranteed that the overall closed-loop interconnection

F, <F1(Pa(a)7 K(0)), (G())T (ST))
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is well-posed for all O, satisfying (6.14). Equivalently, the matrix

Dicop Dgo1 Dy ) (67 0 )
I — ( 6.15
Dy D19 Dog + Dya D11 Do 0 O, ( )

is invertible at each time for all O, satisfying (6.14). Unfortunately, this is not sufficient to
guarantee well-posedness of the LPV controller as seen when comparing (6.13) and (6.15).
In other words, there may be parameter values for which the control input u is not causally
determined by the output measurement y and the parameter measurement 6., .

This difficulty can be alleviated in a number of ways. First of all, observe that the
invertibility of (6.15) implies that of (6.13) whenever Dy = 0 or Dgz = 0. This corresponds
to LPV plants where either

e the measurement equation is

Yy = CQCE + Dgl’w
independently of 6, or

e the matrices B3(f) and Dq3(0) specifying how the control input u enters the state
equation and the controlled output equation are both independent of 6.

For such LPV plants the gain-scheduled controller Fj(K,©,) is guaranteed to be causal.
While many problems already fall in this category, it is possible to systematically enforce
D3y = 0 or Dy = 0 by inserting low-pass filters in the control or measurement channels (see
[2]). Note that the introduction of such filters is very reasonable from a practical standpoint.

If this first remedy is not applicable, we can work with the Small Gain condition for
well-posedness. From standard g theory, I — Dggg© is invertible for all © of structure (2.3)
satisfying (6.14) if

. _crl/2y  7-1/2
LleanA O'(L Dygo L ) < 7. (616)

Recalling that the state-space data € of K(o) can be chosen as any solution of the LMI
(6.6) or (6.9), we should seek solutions of this LMI which further satisfy (6.16). This can be
formulated as the following feasibility problem:

Find L € La and § satisfying (6.6) and D}Q%LDKM < ~%L. (6.17)

This problem is not jointly convex in ) and L due to the last constraint. Nevertheless, it
can be attacked by the following “€Q0—L iteration” scheme:

1. Start with L = 1,
2. Solve for fized L the LMI problem:

S tL DL,
Minimize t over all Q such that (6.6) and ( o ) >0,
Dggy 1L

3. Solve for fixred Q) the LMI problem:

Minimize t over L € La such that L > 1 and D}Q%LDKM < t?L.
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4. Repeat steps 2 and 3 until t < ~.

Note that this scheme is not guaranteed to find a solution to the problem (6.17) even if
one exists.

Finally, another possible approach to well-posedness is to add extra uncertainty on the
parameter measurements @,. Specifically, instead of assuming exact measurement of 8;, we
consider the case where only an approximate value

0; = 0:(1+6)

is available for control purposes. Here 6; can be seen as a multiplicative norm-bounded
uncertainty that models measurement errors on #;. In addition, this extra uncertainty leaves
room for adjusting 0 so as to prevent singularity of 1 — Dyos©.

This modified problem is more realistic and was also considered in [23]. Gathering all ¢;
in a block-diagonal operator ¢,, the gain-scheduled controller is now given by

Fi(K(0),0.(1 +6,)).

Equivalently, this controller is represented by the feedback equations:

(a) = ® ()

g = qo+w
(%) = (v 5)(2)
w B 0 57’ 69
Note that 6 and © share the same structure A.

The corresponding control structure is represented in Figure 6.2. As before, this inter-
connection can be rearranged to isolate K (o) at the bottom and the uncertainty operator

o 0 0
0 O, 0
0 0 O,

at the top. This leads to another scaled H., problem, this time with both measured and
uncertain parameters. For a discussion of such mixed problems, see Section 8.

6.3 Practical implementation

As mentioned above, the LPV controller is given in LE'T form as Fi(K(0),0,). Equivalently,
its state-space equations read

tx = Ag(0)zx + Br(0)y
u = C]((H)x]{ ‘|‘ D[{(H)‘y (618)
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where

Ar(0) = Ak + Bro Mg Cky
Br(0) = Bg1+ Bke¢ Ao Do
Ck(0) := Cg1+ Dgis A Crko
Dg(0) := Dgri1+ Drig Ao Do
Ag = ©O.(]— DkgO;)™"

Given the measurement 6, of the parameter vector at time 7, the matrix Ay is readily
computed and the control input u is obtained at the flight by real-time integration of (6.18).

o,
qe We
w
q -— P ———————
’y (13
. K %)
. go v q

Figure 6.2: Modified LPV control structure

7 Comparison of LPV and Robust LTI controllers

Compared to classical Small-Gain-based robust LTI control, the LPV synthesis technique
proposed above yields higher performance controllers in general. To see this, consider the
LTT counterpart of problem (2.10) which seeks a parameter-independent LTT controller K (s)

such that
m F(F(P(s), K ,0. < 7.1
||®T||ooa§1/w | Fu(Fi(P(s), K(s)) Moo <y (7.1)

where the plant P(s) is given by (2.4). Applying Small Gain theory to this standard prob-
lem of robust performance in the face of time-varying parametric uncertainty, a sufficient
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condition for solvability is the existence of a scaling matrix I € La and of a LTI controller

K (s) such that

H<L(1)/2 IO )F’(P(S)’K(S)) <L_01/2 JS)HOO <7 (7.2)

P1
In turn, this problem is addressed by Theorem 4.1 which provides the following solvability
conditions in the continuous-time case.

Theorem 7.1 (Robust LTI Controllers) Assuming (A1)-(A2), the problem (7.2) is
solvable if and only if there exists a quadruple (R, S, Ls, J3) satisfying (5.2)—(5.5) together
with

L3J3 = ]7«. (73)

Proof: This is a straightforward application of Theorem 4.1 where the scalings L and J
Ly 0 ) <J3 0 ) .

are replaced by ( 0 1, and 0 1, , respectively. a

Comparing Theorems 5.1 and 7.1, the only difference between the characterizations of
LPV and LTI controllers is the extra condition (7.3) on the scaling matrices Ls, J;. Recalling
that the positivity condition (5.5) is equivalent to

L3 > 07 JS > 07 )‘min(LSJB) 2 17

this additional constraint has a simple interpretation in terms of admissible scaling matrices.
While any positive scalings Ls, J3 such that

)\Z(ngg) Z 1, = 1, e, T (74)

can be used for LPV synthesis, the set of admissible scalings for robust LTI synthesis is
restricted to positive matrices L3, J3 satisfying:

)\Z(ngg) = 1, 1= 1,...,7". (75)

Clearly (7.5) corresponds to a small subset of the convex set of scalings defined by (7.4).
In particular, all scalings satisfying (7.5) lie on the boundary of this convex set. Since it
works with a larger set of scalings, gain-scheduled synthesis will typically achieve higher H,,
performance than robust LT1 synthesis based on (7.2).

Interestingly, there is a complete analogy between the robust LTI problem and the static
output feedback problem. Specifically, the robust LTI problem amounts to finding scaling
matrices Ls, Js satisfying (5.2)—(5.3) and such that

L3>0, J3>0, LsJs = 1.

Meanwhile, the static output feedback amounts to finding R, S satisfying (5.2)—(5.4) and
such that rank(/ — RS) = 0. That is, such that

R >0, S >0, RS =1.
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Observing that the gain-scheduled controller can be written as

FI(K(s),0,) = F(F,(Qs'1), 0,)

] 0 A {4 B {4 -1 B {4
= Drn 4 (Cra Dicao) { <50k (9_1]7«) - (Clié‘ Dli';é’ )} (Dli'é’ll) ’

this analogy has the following simple interpretation. While static output feedback corre-
sponds to zero-order controllers with respect to the Laplace variable s, robust LTI control
seeks controllers with zero-order dependence on the parameter variable ©. In this formal
analogy, both s and ©~! play the role of dynamical variables.

8 LPV Systems with Uncertain Parameters

In many practical situations, only some physical parameters are measured while the
others must be regarded as uncertain. If gain scheduling is applicable to the measured
parameters, parametric uncertainty must be handled by classical robust synthesis techniques.
This mixed problem will be referred to as the synthesis of robust LPV controllers.

Let 8, and 6, denote the vectors of uncertain and measured parameters, respectively, and
let A, and A,, denote the corresponding uncertainty structures. The robust LPV problem
again falls within the scope of the results of Section 4. Here the total uncertainty structure
assumes the form

©, 0 0
0 0, 0 |,
0 0 O,

where the operators ©, and O,, are independent. It follows that the corresponding set of
scalings reads

L, 0
{( 0 Lm) >0 : LuELAM LmELAmEBAm}'

The solvability conditions of Theorem 4.1 can be applied to the resulting scaled H., control
problem. Unfortunately, convexity is destroyed by the extra uncertainty block ©, and D-K
iterations are needed to compute adequate LPV controllers. Since the problem is convex as
soon as the upper block L, of the scaling matrix is fixed, it is advisable to alternatively

e fix L, and compute a controller by solving the resulting convex LPV problem,
e fix K and L,, and optimize the performance v with respect to L,.

Like p synthesis algorithms, such a scheme is only guaranteed to find a local minimum

[1, 19, 4, 29].

Finally, we mention a simple heuristics which may prove useful for robust LPV synthesis.
From Section 7, robust LPV controllers can be viewed as LPV controllers with a zero-
order dependence on the parametric uncertainty ©,. This suggests applying the following
heuristics:
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e solve the LPV problem where 6, is assumed to be measured. Let R,S, L3, J; be a
solution of the LMIs (5.2)—(5.5).

e when computing the LPV controller data 2 as indicated in Section 6, minimize the
Bre,

D ) or (Ckg, Dga,1) characterizing the interconnection
K16,

norm of the matrices <

with ©,.

This minimization problem is still an LMI problem in 2 and the resulting LPV controller will
be independent of 8, if the global minimum is zero. Note that this scheme is not guaranteed
to find adequate controllers even when there exists some.

9 Conclusions

We have presented an LMI approach to the synthesis of gain-scheduled H., controllers.
Using a Small Gain argument, the original problem has been reformulated as one of ro-
bust performance in the face of structured uncertainty. Thanks to the special structure
of the plant/uncertainty interconnection, necessary and sufficient LMI-based conditions for
solvability of this robust performance problem have been derived.

Using this technique, the synthesis of gain-scheduled H., controllers proceeds in two
stages. First, the closed-loop H,, performance is optimized by solving the underlying LMI
problem. Efficient numerical algorithms are available for this purpose. Secondly, an LPV
control structure is computed from the quadruple R, S, L3, J3 of matrices produced by this
LMI optimization. Up to taking care of well-posedness issues, the corresponding time-
varying parameter-dependent controller is readily implemented. Specifically, its state-space
matrices are “self-scheduled” by the measurements of the varying parameter values according
to simple explicit formulas.
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Appendix A

Proof of Theorem 4.1: Given the realization (4.3) of the plant 7, a realization
K(0) = Dg + Cg(sl — Ag)™'Bg,  Ag € RF** (A1)
of the controller K and with assumption (A2) in force, a realization

Fi(G(s), K (5)) = Du + Cu(sl — Au)™' By (A.2)
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of the closed-loop transter function is given by:

AO Bo B
(Acl Bcl) — Fl {(CO Dll ,D12) 7Q} _ < Ao—l—BQC Bo +BQD21 ) (AS)

Ca Dy C Dy 0 Co+ D1202C  Dyy + D120Dy
where A 0 B, 0 B,
A0:<0 kak)’ B(J:(kam)’ B:<]k 0)’
Co=(C1, Opyxk)s D12 = (0pxk D12), (A1)
(8 8) mee)
and
0= (gfk %k) (A.5)

Using the Bounded Real Lemma 3.1, the k-th order controller K(s) and the similarity
scaling L € La solve the scaled H,, problem (4.2) if and only if the LMI

Az} + XclAcl Xcchl ch;
BTX,, ~IL DL | <o
Ccl Dcl _’YL_I

(A.6)

holds for some X, > 0 in RUHRAX04R) and for the closed-loop state-space parameters
A, B, Co, D,y defined by (A.3)-(A.5). Using the notations (A.4), the inequality (A.6)

can be rewritten as

U+ Pf QQ+ Q" Py, <0 (A.7)
where
Achl + XCIAO XCIBO C(:)F

v = BIX, —~L DT (A.8)

Co Diy —"}/L_l
Py = (B"X.,0,D},),  Q=(C,Dy,0). (A.9)

In turn, the LMI (A.7) has a solution € if and only if (see [14]):
Wi UWp, <0,  WEIIWG <0 (A.10)

where Wp, and Wq denote any bases of the null spaces of Py and () respectively. Observing
that

Xg 00
Px=Pl 0 I 0|, P=(B0,DL), (A.11)
0 0 I

23



a basis for the null space of Py is given by

X710 0
Wp,=| 0 I 0|Wp (A.12)
0 0 I

where Wp denotes any basis of the null space of P. Consequently, the first inequality in
(A.10) can be written as W2 ®Wp < 0 where

AoXP+ XJ'AT By X3P
¢ .= BY —~L DI (A.13)
C()Xc_ll D11 —"}/L_l
Partition X, as
S N _ R M
Xcl = (NT E) ) )(cl1 = (MT F) (A14)

where N, M € R™* and E,F € R¥** and introduce bases <§1) and (gl) of the null
2 2

spaces of (B, DI) and (Cy, Da;), respectively. Then bases for the null spaces of P and Q
are given by:

0 P 0
1o o o o ;
We=|p o We=|y o, (A.15)
0 P Qs 0

Observing that the second row is identically zero in the expressions (A.15), evaluation of the
block matrix products WZ®Wp and Wg\I/WQ yields the solvability conditions:

0 PA\"[AR+RAT B, RCT 0 P
Py 0 BT —~L DY, Ps 0 |<0 (A.16)

0 P CiR Dy —"}/L_l 0 B
and
0 @\  [ATS+54 SB, CT 0 O
0 @ BIS —~L DY 0 Q| <0. (A.17)
Qs 0 Cy Dy —AL7! Qs O

Defining J := L' € La, (A.16) and (A.17) are exactly the conditions (4.4) and (4.5).
Meanwhile, the condition X > 0 is equivalent to (4.6) and (4.8) given the block partitioning
(A.14). Consequently, the problem (4.2) has a solution if and only if there exist R, S, L, J
for which (4.4)-(4.8) hold. O
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