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Abstract

We present a method to efficiently compute locally optimal feedback controllers for syn-
thesis problems formulated in the time-domain. We minimize a time-domain performance
objective subject to state or input time-domain constraints. The possibility to include state
or input constraints in the design is very appealing from a practical point of view, in particular
for plants subject to operational limits as input saturations. Our method is based on a nons-
mooth minimization technique, which can handle time-domain constraints as hard constraints.
For model-based designs, a stability constraint can also be handled as a hard constraint. The
validity and efficiency of the approach are demonstrated through a variety of numerical tests
with comparisons with a state-of-the-art technique in constrained optimization.
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1 Introduction

In traditional frequency based feedback control design for linear time-invariant systems, closed-loop
performance specifications like limited overshoot, short settling- or rise-times cannot be addressed
directly. Instead, experienced designers know how to handle these specifications heuristically by
introducing suitable frequency-domain performance channels, which are then optimized using clas-
sical loop-shaping design techniques or more recent H∞ or H2 synthesis methods.

Another approach allowing to handle time-domain constraints more directly uses closed-loop
system responses z(t) to fixed test input signals w(t) such as steps, ramps or other inputs. The idea
is then to find a controller that minimizes the discrepancy between system responses and a given
expected behavior. We follow this line here, and discuss state and control constraints for system
response trajectories z(t) and u(t) to control not only overshoot, settling- and rise-time, but also
actuator saturation and other operational limits on the system.

A substantial body of work addressing the fixed input design problem uses the Youla parametri-
zation, see [14, 5]. This method solves a recurring difficulty with optimization-based methods: how
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to efficiently handle the internal stability specification. Unfortunately, it is no longer suited if
general structural constraints on the controller have to be satisfied.

A difficulty with the above l∞- or L∞-norm formulations is the nonsmoothness of the resulting
optimization problem. A recent trend in feedback control - referred to as iterative feedback tuning
(IFT) [9] - follows the least squares approach. IFT techniques handle time-domain specifications as
soft constraints by penalizing L2 integrals of the constraint violation [11] and use penalization when
constraints are present. Penalization strategies raise important and critical questions like how to
initialize and update the penalty parameter and how to avoid the inherent ill-conditioning of these
techniques for asymptotic values of the penalty parameter. Also, it may lead to unsatisfactory
execution times since an unconstrained nonlinear problem must be solved to completion for each
value of the parameter.

Our design method computes locally optimal structured controllers using a nonsmooth opti-
mization technique. Despite their local nature, these solutions prove to be very useful in practice
as demonstrated on a variety of examples. The present work is an extension of our previous work
on time-domain synthesis [4] to the considerably more difficult problem where explicit time-domain
constraints are present. The paper is organized as follows. Section 2 discusses the time-domain
shaping design problem. Our nonsmooth optimization technique is briefly presented in Section 3.
Section 4 covers several challenging applications.

Notation

We use concepts from nonsmooth analysis covered by [7]. For a locally Lipschitz function f : Rn →
R, ∂f(x) denotes its Clarke subdifferential at x while f ′(x; h) stand for its directional derivative
at x in the direction h. For functions of two variables f(x, y), ∂1f(x, y) will denote the Clarke
subdifferential with respect to the first variable. For differentiable functions f of two variables x
and y the notation ∇xf(x, y) stands for the gradient with respect to the first variable. The symbol
[·]+ denotes the threshold function [x]+ = max{0, x}.

2 Structured controllers synthesis in time-domain

Consider a plant P in state-space form

P (s) :




ẋ
z
y


 =




A B1 B2

C1 D11 D12

C2 D21 D22







x
w
u


 , (1)

where x ∈ Rn is the state vector of P , u ∈ Rm2 the vector of control inputs, w ∈ Rm1 is a test
signal, y ∈ Rp2 the vector of measurements and z ∈ Rp1 the controlled or performance vector.

We consider control laws of the form u = K(s)y with state-space realization

K(s) = CK(sI − AK)−1BK + DK , AK ∈ Rk×k, (2)

where the case k = 0 of a static controller K(s) = DK is included. We develop the formulas
for static controllers, which allows to unify the setup notationally and facilitates implementation.
Formulas for dynamic controllers are then obtained by a prior standard dynamic augmentation of
the plant P (s), so that dynamic controller for P (s) becomes static
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K :=

[
AK BK

CK DK

]
∈ R(k+m2)×(k+p2) . (3)

for the augmented system [1]. Structural constraints on the controller may now be defined by a
matrix-valued mapping K(·) from a parameter space Rq to R(k+m2)×(k+p2). That is K = K(κ),
where κ ∈ Rq denotes the independent variables in the controller parameter space Rq. For the time
being we will consider free variation κ ∈ Rq, but the reader will be easily convinced that parameter
restrictions under the form of mathematical programming constraints gI(κ) ≤ 0, gE(κ) = 0 could be
added if needed. We will assume throughout that the mapping K(.) is continuously differentiable,
but otherwise arbitrary.

The focus is on time-domain synthesis with structured controllers K(κ) for the plant in (1). We
want to find κ ∈ Rq such that

• Internal stability: K(κ) stabilizes the original plant P (s) in closed-loop.

• Performance: For all stabilizing K(κ) with that structure, the closed-loop time response
z(κ, t) to an input test signal w(t) with controller K(κ) satisfies the envelope constraints

zi,min(t) ≤ zi(κ, t) ≤ zi,max(t), ∀t ≥ 0, i ∈ I := {1, . . . , p1} . (4)

The constraints in (4) with upper and lower envelopes define in some sense templates for shaping
the closed-loop responses z(t). Typical cases will be illustrated in Section 4, where envelope or shape
constraints on overshoot, damping, rise-time, settling-time and steady-state accuracy are imposed
on closed-loop responses. Yet, the approach offers the flexibility to incorporate any deterministic
input of practical interest such as ramps, sinusoids, stair sequences, etc.

It is also possible and useful to formulate amplitude and rate constraints for the control signal
u(t). A standard technique to handle these constraints amounts to augmenting the plant with
inputs as new states, as shown schematically in Figure 1. The original sought control law is then
easily recovered afterward. The order and structure of the controller are slightly altered in this
formulation. Control signal constraints arise regularly in practical designs, and this has generated
intensive research in the past decade. Our approach differs from anti-windup schemes and is closer
in spirit to the saturation avoidance philosophy. Admittedly with some sacrifice of performance,
we try to keep signals at levels where the system dynamics remain linear.

}

K(κ)

w

P

z

u̇ uI
s

y

Figure 1: Augmentation of standard form
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Figure 2: Interconnection for gradient computation

There exist various optimization strategies to handle the specifications in (4). Consider for
instance a partition of I into disjoint subsets S and H, i.e., I = S ∪H, S ∩H = ∅, where we think
of S as the soft constraints, H the hard constraints. With
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ei(κ, t) := max {zi(κ, t)− zi,max(t), zi,min(t)− zi(κ, t)} (5)

a possible form of the program is now

minimize
κ∈Rq

f(κ) := max
i∈S

max
t≥0

[ei(κ, t)]+

subject to g(κ) := max
i∈H

max
t≥0

ei(κ, t) ≤ 0 .
(6)

Notice that program (6) has nonsmooth semi-infinite objective and constraints, which do not admit
closed-form expressions via space-state representations. For that reason, the max operations in-
volving the closed-loop system responses have to be performed explicitly. In a model-based design,
time responses are generated from the state-space model (1) through numerical simulation, which
can be performed using the classical discrete state-propagation approach or a general-purpose or-
dinary differential equation solver. Yet, they can also be obtained from experiments carried out
online with the real system. The latter approach is often referred to as the model-free approach
and forms the basis of the IFT method. In both cases, and also from a practical point of view,
a finite horizon for simulation or data acquisition has to be selected, so only a limited number of
samples t ∈ T = {t0, ..., tk} are considered at each iteration, where the set T may in principle differ
at each iteration.

An equivalent more classical formulation for (6) is the following cast:

minimize
γ∈R,κ∈Rq

γ

subject to

{
zi(κ, t)− zi,max(t)− γ ≤ 0
zi,min(t)− zi(κ, t)− γ ≤ 0

,∀i ∈ S, t ∈ T
{

zi(κ, t)− zi,max(t) ≤ 0
zi,min(t)− zi(κ, t) ≤ 0

,∀i ∈ H, t ∈ T .

(7)

When a fixed sampling time is used to generate the set T throughout the iterations sequence, then
program (7) becomes a smooth constrained nonlinear program, since for each fixed time t ∈ T the
constraints are differentiable with respect to the parameters κ of the controller.

Even though state-of-the-art smooth constrained optimization techniques are available for pro-
gram (7) or the least squares formulation [11], we privilege a nonsmooth semi-infinite optimization
algorithm that solves program (6) directly for several reasons:

• First of all, time-domain specifications can be handled as hard constraints hence dispens-
ing with the often critical management of barrier or penalty parameters. The nonsmooth
algorithm is more in line with exact penalization techniques where solutions to the original
problem are obtained with a single minimization of an appropriate progress function.

• Classical approaches including the state-of-the-art sequential quadratic programming (SQP)
of Matlab (function fgoalattain in the Optimization Toolbox) and the least square ap-
proach require sampling every trajectory in (7) hence leading to a discretized problem with
so many constraints that it might reveal impractical for currently available codes. An illus-
tration of this difficulty is discussed in Applications 4.1 and 4.2.

In sharp contrast, the nonsmooth technique relies solely on active times to generate descent
steps. Active times are those times where the max of f and g in (6) are attained which leads to
a reduced size discretized problem and therefore enhances efficiency. The proposed technique also
offers the flexibility to update the simulation or experiment horizon as well as the sampling time
along the iterations to further improve execution times.
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3 Nonsmooth minimization technique

We give now a brief presentation of our optimization method and emphasize the main ingredients.
For a more detailed discussion we refer the reader to [1, 12, 2]. Following an idea in [12, 2], we
introduce the so-called progress function for (6):

F (κ+, κ) = max{f(κ+)− f(κ)− µg(κ)+; g(κ+)− g(κ)+}, (8)

where µ > 0 is some fixed parameter. We think of κ as the current iterate, κ+ as the next iterate
or as a candidate to become the next iterate. We must search for points κ̄ satisfying 0 ∈ ∂1F (κ̄, κ̄),
because this is a necessary condition for a local minimum of (6), see [2] for the proof. Excluding
practically rare cases where κ̄ is a critical point of the constraint violation g(κ̄) ≥ 0, critical points
κ̄ of F (·, κ̄) will also be critical points of the original program (6).

Approximating a point κ̄ with 0 ∈ ∂1F (κ̄, κ̄) is based on an iterative procedure. Suppose the
current iterate κ is such that 0 6∈ ∂1F (κ, κ). Then it is possible to reduce the function F (·, κ) in
a neighborhood of κ, that is, to find κ+ such that F (κ+, κ) < F (κ, κ). Replacing κ by κ+, we
repeat the procedure. Unless 0 ∈ ∂1F (κ+, κ+), in which case we are done, it is possible to find κ++

such that F (κ++, κ+) < F (κ+, κ+), etc. The sequence κ, κ+, κ++, . . . so generated is expected to
converge to the sought local minimum κ̄ of (6).

Finding the descent step κ+ away from the current κ is based on solving the tangent program
at κ. Its name is derived from the fact that a first-order approximation F̂ (·, κ) of F (·, κ) is built,
which provides a descent direction dκ at κ, that is, d1F (κ, κ; dκ) < 0, where d1F denotes the
directional derivative of F (·, κ) at κ in direction dκ. The next iterate is then κ+ = κ + dκ, or
possibly κ+ = κ + αdκ for a suitable stepsize α ∈ (0, 1) found by a backtracking line search.

The choice of the progress function in (8) leads to a so-called phase I/phase II method. As
long as the constraint g(κ) > 0 is not satisfied, the right hand term in F is dominant and reducing
F amounts to reducing constraint violation. This is phase I, which ends successfully as soon as
a feasible iterate has been found. Now phase II begins, and from now on iterates stay (strictly)
feasible, and the objective function is minimized at each step. In that case the algorithm converges
towards a critical point of (6). The choice of the constant µ > 0 may have an influence on the
behavior of the method in phase I, but has been fixed to µ = 1 in our implementation.

In order to define the initial iterate, a stabilizing controller is computed from scratch using the
nonsmooth technique in [3]. For model-based designs, a spectral abscissa constraint is added to
the original hard constraints g in (6) whenever the solution of the nonsmooth algorithm (6) is not
internally stabilizing. The spectral abscissa α is defined as the maximum real part of closed-loop
eigenvalues. The constraint in program (6) then becomes max{α − α̂, g(κ)} ≤ 0, where α̂ < 0
represents a prescribed largest acceptable spectral abscissa.

In order to generate a first-order approximation F̂ (·, κ) of F (., κ) around κ, we need the set of
active times for f : Tf (κ) := {t ≥ 0 : ∃i ∈ S, [ei(κ, t)]+ = f(κ)}. Tg(κ) is defined analogously for
g. Let us consider the case where f(κ) > 0, because for f(κ) = 0 there is nothing to optimize.
As the active sets may be small, we consider finite extensions T e

f and T e
g of the sets Tf and Tg,

respectively. The idea here is that enriched sets capture more information on the closed-loop
responses which results in a better tangent model. The proposed technique offers great flexibility
to build such extensions, while guaranteeing convergence [2]. A general characterization is ∀t ∈
T e

f ,∃i ∈ S, [ei(κ, t)]+ > 0 . For all such t, the functions [ei(κ, t)]+ are differentiable in a neighborhood
of κ. Indeed, [ei(κ, t)]+ = max{zi(κ, t) − zi,max(t), zi,min(t) − zi(κ, t), 0}, and only one component
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is active in this expression. We have

∇κ[ei(κ, t)]+ =

{ ∇κzi(κ, t) if zi(κ, t) > zi,max(t)
−∇κzi(κ, t) if zi,min(t) > zi(κ, t)

For all t ∈ T e
f , we collect all pairs (φf , Φf ) := ([ei(κ, t)]+,∇κ[ei(κ, t)]+) and denote this finite set as

Wf . The set Wg is constructed analogously.
All signals in (1) are differentiable with respect to controller entries, so∇κzi(κ, t) can be obtained

by differentiating the state-space equations with respect to κj. It follows that the partial derivative
of the output signal ∂z

∂κj
(κ, t) corresponds to the output of the interconnection in Figure 2, where

the exogenous input w is held at 0, and the vector ∂K
∂κj

y is added to the controller output signal.

One readily infers that q experiments or simulations are required to form the sought gradients.
For SISO controllers, however, the linear operators ∂K

∂κj
and the closed-loop transfer on Figure 2

commute, so instead of filtering y with ∂K
∂κj

and then injecting the result in the closed-loop system,

one may alternatively inject y only and then filter the system output with ∂K
∂κj

. Consequently, only

one experiment or simulation involving the plant is required for gradient computation no matter the
order and structure of the controller. This allows to reduce the experimental overhead in model-free
designs and to speed-up computations for the model-based case. We refer the reader to [10] and
references therein for a discussion on how to reduce the number of experiments in the MIMO case.

With this preparation, a first-order (tangent) approximation is obtained as

F̂ (κ + h, κ) := max

{
max

(φf ,Φf )∈Wf

φf − f(κ)− µg(κ)+ + ΦT
f h, max

(φg ,Φg)∈Wg

φg − g(κ)+ + ΦT
g h

}
,

where h is the displacement in the controller parameter space Rq. This gives the tangent program

minimize
h∈Rq

F̂ (κ + h, κ) + δ
2
‖h‖2 . (9)

Program (9) can be turned into a standard convex quadratic program (CQP), and can be efficiently
solved using currently available codes. Current state-of-the-art CQP codes solve problems involving
several hundreds of variables and constraints in less than a second.

4 Applications

4.1 Step following with input amplitude and rate constraints

We start our experiments with a simple step following problem borrowed from [8]. Consider the
standard negative feedback interconnection of the plant G(s) = s+0.5

s(s−2)
and controller K(s) in Figure

3. As in the original problem, we do not use a prefilter in this preliminary study, i.e. F (s) = I.
The closed-loop system must follow a step reference command with minimum overshoot.

The specified time-domain constraints define a settling-time of 4 seconds with worst-case over-
shoot of 10% and steady-state error of ±2%. The corresponding envelope constraints are drawn as
dashed lines in Figure 4. We seek a second-order controller meeting the above constraints.

An initial stabilizing controller is computed as K0(s) = 7.93s2+79.78s+805
s2+9.972s+99.55

. The corresponding
closed-loop response y(t) is depicted in Figure 4. Simulation step and and sample time are selected
according to the closed-loop system bandwidth using standard Matlab routines. We also display

6



w = r +
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−
u
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Figure 3: Standard interconnection
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Figure 4: Comparison of step-responses: Kns

(solid), Ks (dash-dot), [8] (dot)

times (‘+’ symbols) where envelope constraints are violated. These samples are selected to build the
tangent subproblem (9) for computation of the descent direction with the nonsmooth technique.
In the present case, a globally optimal solution meeting all template constraints has been obtained
for problem (6) with zero value of the cost function, and the associated second-order controller is
described as Kns(s) = 39.02s2+928s+6408

s2+24.49s+157.9
. The nonsmooth algorithm takes 3.2 seconds cputime on

a 2.8GHz Pentium D processor with 1Gb RAM, performing 15 evaluations of (8) and requiring a
total of 87 simulations, including those for subgradients computation.

For the sake of comparison, a controller is also designed using the smooth approach. Program
(7) is solved using the fgoalattain routine from the Optimization Toolbox from Matlab, which
implements a SQP method. The same simulation routines were used, as well as the initial controller
K0. The smooth program needs 15.5 seconds to finds a feasible controller Ks(s) = 28.92s2+293.1s+3364

s2+9.339s+111.6
,

performing 119 function evaluations (8) and a total of 1111 simulations. Figure 4 depicts the
corresponding closed-loop response together with the results for the third-order controller in [8].

With the same example, we now consider a more realistic set-up, where the step following
problem is combined with hard constraints on both control input amplitude and rate. This is
easily formulated via (6) and the scheme in Figure 1. The additional constraints are |u(t)| ≤ 5 and
|u̇(t)| ≤ 15. Constraints on the closed-loop step response y(t) are considered as soft constraints.
In order to avoid injecting pure step commands, which may result in unduly conservative designs
when rate restrictions are present, we use the prefilter F (s) = 1

0.3s+1
in Figure 3.

The proposed nonsmooth method finds a locally optimal solution in 22 seconds cputime, per-
forming 132 function evaluations and 618 simulations. The associated controller is described as
K15(s) = 90.31s2+6114s+1079

s(s2+64.9s+626.6)
. The corresponding time-domain simulations including step responses,

control signal u(t) and control input derivative u̇(t) are presented in Figure 5.

The input rate constraint turns out to be severe, and the computed controllers do not meet
the shape constraints. The rate constraint is in some sense exhausted in the transient part of the
output response, and we have exactly maxt≥0 |u̇| = 15. Relaxing the rate constraint to 20 allows
to satisfy all time-domain specifications, as shown in Figure 5. The associated controller is then
K20(s) = 114.2s2+9402s+2270

s(s2+81.52s+691.4)
.
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Figure 5: Responses with control amplitude and rate constraints: K15 (dash-dot), K20 (solid)

4.2 Power system oscillation damping

We discuss now the control of a large dimension system, the oscillation damping of the power system
presented in [13]. The system response oscillation is due mainly to a lightly-damped resonant mode,
known as the NS (north-south) mode, which resulted from the interconnection of the Brazilian north
and south sub-systems. In the closed-loop block diagram shown in Figure 6, the measured and also
the controlled output y ∈ R corresponds to the active power deviation, the control input u ∈ R
represents the susceptance deviation, and the disturbance w ∈ R stands for the deviation in the
mechanical power of a plant located at the north side of the interconnection.

Figure 6: Closed-loop system block diagram
representation
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Figure 7: Frequency response for Tw→y

(dashed: open-loop, solid: final closed-loop)

We have used a model with 90 states corresponding to the worst-damped scenario in [13]. The
NS mode presents a natural frequency of 1.08 rad/s and 3% damping, dominating the transient
phase of the open-loop step response. This is confirmed by the magnitude of the frequency response
for the open-loop transfer function Tw→y as displayed in Figure 7.

This problem imposes some challenging design specifications. Firstly, from a performance per-
spective, the primary control objective is to guarantee oscillation damping with the lowest possible
overshoot in the presence of disturbance. This must be achieved with a limited control effort de-
viation to avoid saturation of the Thyristor Controlled Series Compensator(TCSC) components.
Secondly, a reduced-order controller must be sought, given the large dimension of the system. It is
also desirable that the controller possesses washout filtering properties to eliminate bias. Therefore,
the controller structure was chosen of the form K(s) = s

s+p
K̂(s), where K̂(s) is a 5th-order strictly
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proper transfer function, and the position of the real washout pole −p is also a decision variable
of the optimization program. Altogether, this gives a controller parametrization K(κ) with free
parameters κ ∈ R36.
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Figure 8: Step and control input responses (dark solid: nonsmooth, dash-dot: smooth)

The closed-loop step response and control input with the computed initial controller K0(s)
are shown in Figure 8. In order to achieve the desired level of oscillation damping, time-domain
constraints were constructed as a piecewise constant approximation of a decaying exponential cor-
responding to 20% damping for the NS mode frequency. These shape constraints appear as step
functions in Figure 8. The exponential envelope has an offset equal to the asymptotic value of the
open-loop step response, since the controller incorporates a washout filter. Regarding the control
effort, constraints were introduced to limit the peak value, which avoids saturating TCSC compo-
nents. The nonsmooth algorithm needs 31 seconds, 64 function evaluations and 964 simulations to
find a feasible controller

K(s) =
s(22.02s4 + 652.4s3 + 6440s2 + 6920s + 392.2)

s6 + 12.43s5 + 60.57s4 + 144.8s3 + 195.5s2 + 168.5s + 64.21
.

By feasible we mean that the closed-loop step response satisfies both response and control input
constraints, see Figure 8. The closed-loop transfer function Tw→y is drawn in Figure 7. A feasible
controller has also been found using the smooth SQP approach of Matlab based on (7). Contrast-
ing with the nonsmooth approach, it required 445 seconds, 623 function evaluations and 22497
simulations.

Figure 8 reveals that the envelope constraints for the output response has been chosen to
accommodate a low frequency oscillatory component, which is caused by an almost uncontrollable
mode with natural frequency of 0.26 rad/s (dotted line in the figure 8). By definition such a
phenomenon cannot and should not be compensated by feedback. As it is very flexible, the proposed
design technique can take such plant characteristics into account to avoid unrealistic solutions.

4.3 Model-free design for a process with large dead time

Most design methods are model-based and may perform poorly when confronted with the actual
plant. An appealing feature of model-free approaches is that they rely only on experimental data
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and consequently inaccuracies in the mathematical model are no longer harmful. Moreover, the fact
that there is no need to open the control loop is another attractive feature of IFT. A reasonable
strategy appears to combine both model-based and model-free strategies. A first controller is
computed using an identified model of the plant. If matching the result with experimental data
turns out unacceptable, a model-free design is performed to further improve the controller. With
this procedure, a complex accurate model is no longer needed and initializing the model-free design
with a sensible controller should reduce the number of iterations in the tuning phase.

The process we consider to emulate experimental data is taken from [6] and is described by

y (s) =
3

3s + 1

7

s + 7
e−6su (s) + v, (10)

where v is white Gaussian noise with zero mean and variance σ2 = 0.01. The true dynamics
(10) of the process are supposed unknown, and will be used solely as a black-box to generate
experimental data of the real system during the re-tuning phase. For the model-based synthesis, a
simple model of the process is constructed as a first-order transfer function in series with a 2nd-
order Padé approximation for the dead time. The steady-state gain and bandwidth of the system
are accurately modeled, but the dead-time has been underestimated to 5 seconds:

y (s) =
3

3s + 1

(
s2 − 1.2s + 0.48

s2 + 1.2s + 0.48

)
u (s) . (11)

We are seeking a PID controller K (s) = Kp + Ki

s
+ Kds

1+εs
with the classical feedback interconnection

shown in Figure 3 (with F (s) = I). Parameters for the initial controller K0(s) are chosen as
Kp = 0.09, Ki = 0.02, Kd = 0.01 and ε = 1. Figure 9 shows the closed-loop system responses and
control signal for model (11) with controller K0(s).
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Figure 9: Closed-loop responses with model (11) (dash-dot: K0, solid: K1)

Notice in Figure 9 that the process dead time is easily captured by defining appropriate tem-
plates. A control effort constraint is also introduced, although it remains initially inactive. Evolu-
tion of the step responses along a few final algorithm iterations are shown as dotted-lines in Figure
9. Also shown are the closed-loop responses for a model-based controller K1(s) computed using
the nonsmooth technique. This controller meets all time-domain constraints, and is described by
Kp = 0.199, Ki = 0.045468, Kd = 0.22304 and ε = 1.0507.
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In the next step, controller K1(s) is tested with the true noisy process (10). The corresponding
responses are shown in Figure 10. Due to the discrepancy between model (11) and the true process
(10), K1(s) performs poorly. Compare with Figure 9.(a).

This leads us to re-tune the controller using experimental data and identical time constraints.
The model-free synthesis automatically adjusts to the true time-delay and no further information is
required. The (model-free) PID parameters are obtained as Kp = 0.1994, Ki = 0.0395, Kd = 0.2872
and ε = 0.7274. The initial overshoot has been significantly reduced, see Figure 10.(a). The
specified control effort constraint becomes active, as can be seen from Figure 10.(b). The final
constraints violation falls below γ = 0.27495, that is 2.7% and hence becomes acceptable.
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Figure 10: Closed-loop responses with true process (dash-dot: K1, solid: K2)

5 Conclusion

We have described a nonsmooth algorithm to compute locally optimal solutions to time-domain
synthesis problems. The approach is flexible as it applies to many different scenarios and can capture
any controller structure of practical interest. The proposed technique expands on our previous
results which were restricted to the minimization of a single cost function without trajectory (hard)
constraints [4]. In terms of execution times, our technique outperforms the standard SQP approach
as illustrated on a variety of examples.
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