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Abstract: This paper is devoted to the adaptive control design for a class of nonlinearly
parameterized systems assuming the so-called generalized matching condition. A
simple adaptive controller with a linear-in-parameter-like structure is designed to
account for general parameter-dependent plant nonlinearities. An important feature
of our approach is that compactness of parameter sets is not required. Global
boundedness of the overall adaptive system and convergence to zero equilibrium
state with any prescribed accuracy are established. Our construction technique takes
advantage of Lipschitzian properties with respect to the parameter of the plant
nonlinearity. Copyright c©2002 IFAC
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1. INTRODUCTION

In this paper, we consider the adaptive control
problem for a class of nonlinearly parameterized
(NP) systems satisfying the so-called generalized
matching condition. Without loss of generality, we
focus on the second-order case, i.e.

ẋ1 = x2 + ϕ(x1, θ),
ẋ2 = u,

(1)

where u ∈ R is the control input, x = [x1, x2]T is
the system state. Function ϕ(x1, θ) is nonlinear in
both the variable x1 and the unknown parameter
θ ∈ Rp. The problem is to design a stabilizing
state-feedback control u such that the state x1(t)
converges to 0. As clarified later in the paper, our
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approach can be extended to systems of any order
in a streamlined manner.

Classically, a useful methodology for designing
controllers of this class is the adaptive backstep-
ping method (Krstic et al., 1995), under the as-
sumption of a linear parameterization (LP) in the
unknown parameter θ, i.e. the function ϕ(x1, θ)
in (1) is assumed linear in θ. The basic idea is to
design a ”stabilizing function”, which prescribes
a desired behavior for x2 so that x1(t) is stabi-
lized. Then, an effective control u(t) is synthesized
to regulate x2 to track this stabilizing function.
Very few results, however, are available in the
literature that address adaptive backstepping for
NP systems of the general form (1) (Kojic et
al., 1999). The difficulty here is attributed to
two main factors inherent in the adaptive back-
stepping. The first one is how to construct the
stabilizing function for x1 in the presence of non-



linear parameterizations. The second one arises
from the fact that as the actual control u(t) in-
volves derivatives of the stabilizing function, the
later must be constructed in such a way that it
does not lead to multiple parameter estimates (or
overparameterization) (Krstic et al., 1995). The
idea of convexity/concavity-based nonlinear adap-
tive control (A.M Annaswamy, 1998) has been
exploited in (Kojic et al., 1999) when ϕ(x1, θ) is
additive and moreover either convex or concave in
θ. Because of the complexity of the proposed min-
max adaptive controller, its stabilizing function is
restricted to depend only on state x1. Otherwise,
it will lead to a controller whose structure is sig-
nificantly more complex with multiple parameter
estimates. Also, such stabilizing function can be
found only under the assumption of compactness
of the parametric set (i.e. the unknown parameter
θ is known belonging to a prescribed compact set).
Additionally, the projection strategy is employed
to ensure that the estimate θ̂(t) of θ lies in the
same definition set as θ. The resulting control
may be sensitive to the size of the parametric set
and thus may be unnecessarily high gain. Other
difficulties in implementation of the min-max ap-
proach is due to the non-trivial step of identifying
convex or concave structures for not only the non-
linear function ϕ(x1, θ) but also for its multiplica-
tion by the derivative of the designed stabilizing
function. Moreover, solving the min-max problem
is a very costly operation. Finally, form candidates
for the stabilizing function seem to remain an
immature matter and very few simulation results
are explicitely discussed in the literature (Kojic et
al., 1999).

In this paper, we utilize the idea of monotonicity-
based approach (Tuan et al., 2001) to address the
adaptive backstepping for the system (1). Our
approach enables the design of the stabilizing
function containing estimates of the unknown
parameter θ without overparameterization. The
compactness of parametric sets is not required.
The proposed approach is naturally applicable not
only to smooth, convex, concave nonlinearities but
also to the broader class of Lipschitzian functions.

The organization of the paper is as follows. Section
2 addresses the adaptive backstepping problem for
the system (1) in the case of Lipschitzian parame-
terizations. Then, the case of smooth nonlinearity
ϕ(x1, θ) is more specialized in Section 3. Numeri-
cal simulations are discussed in Section 4 to verify
the validity of the proposed approach. Finally,
some concluding remarks are given in Section 5.

Throughout the paper, the following saturation
function is used

sat(e/ε) =




e/ε when −ε ≤ e ≤ ε
1 when e > ε
−1 when e < −ε

(2)

Then given ε > 0 and eε = e − εsat(e/ε), the
following relations obviously hold true whenever
|e| > ε,

e2
ε ≤ eεe, sat(e/ε) = sgn(eε). (3)

We shall use the absolute value of a vector, which
is defined as

|θ| = [ |θ1| |θ2| ... |θp| ]T , ∀ θ ∈ Rp .

Also, by θ ≥ θ̄, we mean that θj ≥ θ̄j , j =
1, 2, ..., p.

In order to simplify the derivations throughout
the paper, it is assumed that 2

θ ∈ Rp
+, i.e. θj ≥ 0, j = 1, 2, 3, ..., p. (4)

2. ADAPTIVE BACKSTEPPING FOR
LIPSCHITZIAN PARAMETERIZATIONS

Assumption 1. Function ϕ(x1, θ) is Lipschitzian
in θ, i.e. there are continuous functions 0 ≤
Lj(x1) < +∞, j = 1, 2, ..., p, such that ∀θ̄, θ ∈ Rp,

|ϕ(x1, θ̄)− ϕ(x1, θ)| ≤ L(x1)|θ̄ − θ|, (5)

with L(x1) = [L1(x1) L2(x1) ... Lp(x1) ] .
Additionally, it is assumed that

• L(x1) is differentiable,
• ϕ(x1, 0) is smooth in x1.

It is worth noting that Lipschitzian parameteriza-
tions includes convex, concave or smooth param-
eterizations as special cases.

The next lemma will be used frequently in subse-
quent developments.

Lemma 1. (Tuan et al., 2001) The following in-
equality holds true for any e(t),

e(t)ϕ(x1, θ) ≤ e(t)(ϕ(x1, 0) + sgn(e(t))L(x1)θ).

We start our design procedure by rewriting sys-
tem (1) in the presence of a stabilizing function
α(x1, θ̂) for x1(t),

ẋ1 = z + α(x1, θ̂) + ϕ(x1, θ),
ẋ2 = u,

(6)

where

z = x2 − α(x1, θ̂) (7)

2 In Remark 2 of Section 2, we will show how the general

case θ ∈ Rp can be easily retrieved from our results.



is the error between the stabilizing function
α(x1, θ̂) and the state x2(t) of the system.
Given an arbitrary ε > 0, define

V1(t) :=
1
2

x2
1ε(t) +

1
2

z2(t),

with

x1ε = x1 − εsat(x1/ε). (8)

Whenever |x1| ≤ ε, one has x1ε = 0 and hence,

V̇1 = z(u − d

dt
α(x1, θ̂)). (9)

On the other hand, by Lemma 1, for |x1| > ε,

V̇1 = x1ε(z + α(x1, θ̂) + ϕ(x1, θ))

+z(u − d

dt
α(x1, θ̂))

≤ x1ε(z + α(x1, θ̂) + ϕ(x1, 0) + sgn(x1ε)L(x1)θ)

+z(u − d

dt
α(x1, θ̂)). (10)

In order to make the first term in the RHS of
inequality (10) nonpositive, i.e. to stabilize the
state x1(t), we choose the stabilizing function
α(x1, θ̂) in the form

α(x1, θ̂) = −k1x1 − ϕ(x1, 0)
−h(x1)L(x1)θ̂,

(11)

with an estimate θ̂ of the unknown parameter θ
and

h(x1) =

{
sin(

π

2ε
x1) when |x1| ≤ ε

sgn(x1) when |x1| > ε .
(12)

Note that when |x1| ≤ ε, instead of sin( π
2εx1),

h(x1) can be any function such that h(x1) is
smooth on R. In case of (12), h(x1) is indeed
smooth with its derivative given by

h
′
(x1) =

{ π

2ε
cos(

π

2ε
x1) when |x1| ≤ ε

0 when |x1| > ε .
(13)

With

d

dt
α(x1, θ̂) =

∂α

∂x1
(x2 + ϕ(x1, θ))

−h(x1)L(x1)
˙̂
θ,

in view of (3),(10),(12) and Lemma 1, it follows
that whenever |x1| > ε,

V̇1 ≤ (−k1x
2
1ε + x1εz + |x1ε|L(x)θ̃)

+z(u − ∂α

∂x1
(x2 + ϕ(x1, θ)) + h(x1)L(x1)

˙̂
θ)

≤ (−k1x
2
1ε + x1εz + |x1ε|L(x)θ̃)

+z(u − ∂α

∂x1
x2 + h(x1)L(x1)

˙̂
θ − ∂α

∂x1
ϕ(x1, 0)

+sgn(z)| ∂α

∂x1
|L(x1)θ), (14)

where θ̃ = θ − θ̂ is parameter error.

In the view of (9) and (14), the following designed
control input u(t)

u = −x1ε − k2z +
∂α

∂x1
x2 − h(x1)L(x1)

˙̂
θ

+
∂α

∂x1
ϕ(x1, 0)− sgn(z)| ∂α

∂x1
|L(x1)θ̂,

(15)

together with the following Lyapunov function for
the system (1)

V (t) = V1(t) +
1
2
||θ̃||2, (16)

result in

V̇ ≤




−k2z
2 + |z ∂α

∂x1
|L(x1)θ̃

− ˙̂
θT θ̃, when |x1| ≤ ε

−k1x
2
1ε + |x1ε|L(x1)θ̃

−k2z
2 + |z ∂α

∂x1
|L(x1)θ̃

− ˙̂
θT θ̃, when |x1| > ε

(17)

It follows that the following update law for the
estimate θ̂

˙̂
θ = [|x1ε|+ |z ∂α

∂x1
|]L(x1)T , (18)

leads to the inequalities:

V̇ (t) ≤
{ −k2z2 when |x1| ≤ ε

−k1x2
1ε − k2z

2 when |x1| > ε
(19)

The last inequalities imply that V (t) is de-
creasing, and thus is bounded by V (0). Conse-
quently, x1ε(t), z(t) and θ̃(t) must be bounded
quantities by virtue of definition (16). Also, re-
lation (19) gives

∫ T

0 x2
1ε(t)dt ≤ V (0),

∫ T

0 z2(t)dt ≤
V (0), ∀T > 0, i.e. x(t)1ε, z(t) ∈ L2. Applying Bar-
balat’s Lemma (K.J. Astrom, 1995, p. 205) yields
limt→∞ x1ε(t) = 0, limt→∞ z(t) = 0. Finally, let
us mention that the update law (18) guarantees
θ̂(t) ∈ Rp

+, ∀t > 0 provided that θ̂(0) ∈ Rp
+. We

are now in a position to formulate the following
result.

Theorem 1. Under assumption 1, the adaptive
controller defined by equations (11),(15), and (18)
stabilizes system (1) in the sense that all signals
in the closed-loop system are globally bounded
and the system state x1(t) asymptotically tracks
0 within a precision of ε.



The control determined by (11),(15) and (18) is
discontinuous at z(t) = 0. However, we can modify
it to get a continuous version with the following
modified stabilizing function α(x1, θ̂)

α(x1, θ̂) = −k1x1 − ϕ(x1, 0)
−h(x1)(εz + L(x1)θ̂),

(20)

and its associated continuous control input u(t)

u = −x1ε − k2z +
∂α

∂x1
x2

−h(x1)L(x1)
˙̂
θ +

∂α

∂x1
ϕ(x1, 0)

−sat(z/εz)| ∂α

∂x1
|L(x1)θ̂,

˙̂
θ = (|x1ε|+ |zε

∂α

∂x1
|)L(x1)T .

(21)

The error z(t) of the system converges to 0 within
a precision of εz. As before, the system state x1(t)
asymptotically tracks 0 within precision of ε.

Remark 1 It is also possible to design an adap-
tive controller for system (1) with a new one-
dimensional observer θ̂ independent of the di-
mension of the unknown parameter θ. For that
purpose, define Lmax(x1) := maxj=1,2,...,p Lj(x1),
with L(x1) in (5). By taking a Lyapunov function
in the form

V (t) := V1(t) +
1
2
(

p∑
j=1

θj − θ̂)2,

it can be readily shown that Theorem 1 is still
satisfied when the one-dimensional observer

˙̂
θ = [|x1ε|+ |z ∂α

∂x1
|]Lmax(x1)

is used in the adaptive controller (11),(15) with
L(x1) replaced by Lmax(x1).

Remark 2 For the general case θ ∈ Rp, it follows
in a straightforward manner from relation (5) and
Lemma 1 that (Tuan et al., 2001) for all e(t)

eϕ(x1, θ) ≤ e(ϕ(x1, 0) + sgn(e)L(x1)|θ|).

Therefore, using a Lyapunov function defined as

V (t) = V1(t) +
1
2
|||θ| − θ̂||2,

Theorem 1 remains valid for θ ∈ Rp. We refer
interested readers to reference (Tuan et al., 2001)
for more details on this technique.

Remark 3 The results of this section can be di-
rectly applied to the design of adaptive controller
for the following class of systems considered in
(Kojic et al., 1999)

ẋ1 = x2 +
n∑

i=1

σifi(x1, θ),

ẋ2 = u,

(22)

where parameter θ is assumed to be in a compact
set Θ, σi ∈ R, functions fi(x1, θ) are nonlinear
in both variable x1 and unknown parameter θ.

In this case, ϕ(x1, θ, σ) =
n∑

i=1
σifi(x1, θ) can be

considered as a Lipschitzian function in σ and
satisfies assumption 1 for unknown parameter σ,
where

L(x1) ≥ [ sup
θ∈Θ

|f1(x1, θ)| ... sup
θ∈Θ

|fn(x1, θ)| ].

Such term L(x1) can always be found, since the
parameter θ is assumed to lie in a compact set.
The resulting controller is simpler than the pro-
posed adaptive controller in (Kojic et al., 1999).

3. ADAPTIVE BACKSTEPPING FOR A
CLASS OF SMOOTH NONLINEARITY

In this section, we show that when the nonlinear
function ϕ(x1, θ) in system (1) is continuously
differentiable (or smooth), our proposed adaptive
control for this case will be better structured
by exploiting the smoothness of the nonlinear
function ϕ(x1, θ). The smooth function ϕ(x1, θ)
can be decomposed as follows

ϕ(x1, θ) = ϕ(0, θ) +A(x1, θ)x1,

A(x1, θ) =

1∫
0

∂ϕ

∂x1
|ρx1dρ.

(23)

Assumption 2. A(x1, θ) is Lipschitzian in θ, i.e.
there are continuous functions 0 ≤ Lj(x1) <
+∞, j = 1, 2, ...p such that for all θ̄, θ ∈ Rp

|A(x1, θ̄)− A(x1, θ)| ≤ L(x1)|θ̄ − θ|, (24)

with L(x1) = [L1(x1) L2(x1) ... Lp(x1) ] .

Under this assumption, the following result is
immediate

x2
1A(x1, θ) ≤ x2

1A(x1, 0) + x2
1L(x1)θ. (25)

Furthermore, with the representation (23), the
process model (6) is rewritten as

ẋ1 = z + α(x1, θ̂) + ϕ(0, θ) +A(x1, θ)x1,
ẋ2 = u.

(26)

Next, the function V2(t) =
1
2

x2
1 +

1
2

z2 by relation

(25) satisfies

V̇2(t) = x1(z + α(x1, θ̂) + ϕ(0, θ) +A(x1, θ)x1)

+z(u − d

dt
α(x1, θ̂))

≤ x1(z + α(x1, θ̂) + ϕ(0, θ) + x1A(x1, 0)

+x1L(x1)θ) + z(u − d

dt
α(x1, θ̂)).



Naturally, an adaptive controller for this case
should consist of a traditional update law ϕ̂0

for adaptation to linear parameter ϕ(0, θ) and
a newly designed update law θ̂ for adaptation
to nonlinear parameter θ. For that purpose, the
stabilizing function α is chosen as

α(x1, ϕ̂0, θ̂) = −k1x1 − x1A(x1, 0)
−x1L(x1)θ̂ − ϕ̂0,

(27)

with its derivative calculated by

d

dt
α(x1, ϕ̂0, θ̂) =

∂α

∂x1
(x2 + ϕ(0, θ)

+A(x1, θ)x1) − x1L(x1)
˙̂
θ − ˙̂ϕ0.

Hence,

V̇2(t)≤ (−k1x2
1 + x1z + x1ϕ̃0 + x2

1L(x1)θ̃)

+z(u − ∂α

∂x1
(x2 + ϕ(0, θ) (28)

+A(x1, θ)x1) + x1L(x1)
˙̂
θ + ˙̂ϕ0),

where θ̃ = θ − θ̂, ϕ̃0 = ϕ(0, θ) − ϕ̂0 are pa-
rameter errors. Applying Lemma 1 for the term

(−zx1
∂α

∂x1
)A(x1, θ) in the RHS of inequality (28),

it follows that

V̇2(t)≤ (−k1x
2
1 + x1z + x1ϕ̃0 + x2

1L(x1)θ̃)

+z(u − ∂α

∂x1
x2 + x1L(x1)

˙̂
θ (29)

+ ˙̂ϕ0 −
∂α

∂x1
ϕ(0, θ) − x1

∂α

∂x1
A(x1, 0)

+sgn(z)| ∂α

∂x1
x1|L(x1)θ).

In view of (29), the following Lyapunov candidate
function

V (t) = V2(t) +
1
2

ϕ̃0
2 +

1
2
||θ̃||2,

together with the following design of control input

u(t) =−x1 − k2z +
∂α

∂x1
x2 − x1L(x1)

˙̂
θ − ˙̂ϕ0

+x1
∂α

∂x1
A(x1, 0)− sgn(z)| ∂α

∂x1
x1|L(x1)θ̂

+
∂α

∂x1
ϕ̂0, (30)

results in

V̇ (t) ≤ −k1x
2
1 − k2z

2

+(x1 − z
∂α

∂x1
)ϕ̃0 − ˙̂ϕ0ϕ̃0

+(x2
1L(x1) + |z ∂α

∂x1
x1|L(x1))θ̃ − ˙̂

θT θ̃.

Therefore, the following update laws

˙̂ϕ0 = x1 − z
∂α

∂x1
,

˙̂
θ = (x2

1 + |z ∂α

∂x1
x1|)L(x1)T ,

(31)

lead to V̇ (t) ≤ −k1x
2
1 − k2z

2, which like Theorem
1 guarantees that limt→∞ x1 = 0, limt→∞ z(t) =
0. We summarize these results in the following
theorem.

Theorem 2. Under assumption 2, the adaptive
controller defined by equations (23),(27), (30),
and (31) stabilizes system (1) in the sense that
all signals in the closed-loop system are globally
bounded and the system state x1(t) asymptoti-
cally tracks 0 as t → ∞.

As before, the control law determined by (30) and
(31) is discontinuous at z(t) = 0. In the same way
as described in section 2, it can be modified into a
continuous one whose the resulting error z(t) and
system state x1(t) converge to 0 within a precision
of ε.

4. SIMULATION EXAMPLES

Consider system (1) with

ϕ(x1, θ) = θ1sgn(x1) + e−x2
1θ2 . (32)

In this case, θ = [θ1, θ2]T ∈ R2
+ is the unknown

parameter. The nonlinear function ϕ(x1, θ) is Lip-
schitzian in θ with L(x1) =

[
1 x2

1

]
. Thus, the

adaptive controller (20), (21) stabilizes the system
(1),(32) by Theorem 1. In simulations, the values
of the parameters and initial values of the system
are chosen as x1(0) = 1(rad), θ1 = 0.3(rad), θ2 =
0.5(rad). Figure 1 shows performances of the
above designed system whose feedback gains are
set to k1 = 1, k2 = 1 and εz = 0.02.

Next, consider system (1) where

ϕ(x1, θ) = lθ

+
1
2
ln (1 + (g(x1) + h(x1)θ)2)x1

(33)

and θ = [θ1, θ2]T ∈ R2
+, l = [ l1 l2 ] , g(x1) =

x1, w(x1) = [ x1 + 1 x2
1 ]. Clearly, ϕ(x1, θ) is a

smooth function in θ. Thus, it can be decomposed
as ϕ(x1, θ) = ϕ(0, θ) +A(x1, θ)x1, where

ϕ(0, θ) = lθ,

A(x1, θ) =
1
2
ln (1 + (x1 +w(x1)θ)2).

(34)

Noting that A(x1, θ) is Lipschitzian in θ with
L(x1) = [ x2

1 + 2 x2
1 ]. Applying Theorem 2 to

system (1) and (33), we have the system stabilized
by adaptive controller (27),(30),(31).
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For simulations, the values of the parameters and
initial values of the system are chosen as x1(0) =
1(rad), θ = [ 0.3 0.5 ](rad), l = [ 2 2 ]. Figure 2
shows performances of the designed system.

On the other hand, it can be seen that ϕ(x1, θ)
in (33) is also a Lipschitzian function in θ with

L(x1) = l +
1
2
(x2

1 +1)[ x2
1 + 2 x2

1 ]. Thus, we can
also have another stabilizing adaptive controller
by applying Theorem 1 to system (1) and (33).
Performances of such controller in Figure 3 shows
how a better behaved controller is obtained by
exploiting the smoothness of function ϕ(x1, θ) to
expand it into linear part ϕ(0, θ) and a nonlinear
counterpart as in expression (23).

5. CONCLUSIONS

Thanks to simple structures of monotonic func-
tions, adaptive backstepping can be designed for
NP unknown parameter without conservatism at-
tached to the size of the parameter set. Indeed,
compactness of parameter sets is not required in
our approach. A simple but effective adaptive con-
troller is designed in the general situation where
the nonlinearity of the system enjoys a general
Lipschitzian structure. When nonlinear structures
of the system is exploited more in depth as in the
case of a smooth nonlinearity, we have also shown
through our theory and simulations how a better
behaved adaptive controller can be designed. The
LP-like structure of the proposed adaptive con-
trol, whose unknown parameter estimator does
not result in any overparameterization, is a key
point to extend our approach to systems of arbi-
trary order in a natural and direct manner.
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