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Abstract

We discuss closed-loop stabilization of linear time-invariant dynam-
ical systems, a problem which frequently arises in controller synthe-
sis, either as a stand-alone task, or to initialize algorithms for H∞

synthesis or related problems. Classical stabilization methods based
on Lyapunov or Riccati equations appear to be inefficient for large
systems. Recently, non-smooth optimization methods like gradient
sampling [11] have been successfully used to minimize the spectral
abscissa of the closed-loop state matrix (the largest real part of its
eigenvalues). These methods have to address the non-smooth and
even non-Lipschitz character of the spectral abscissa function. In this
work, we develop an alternative non-smooth technique for solving sim-
ilar problems, with the option to incorporate second-order elements
to speed-up convergence to local minima. Using several case studies,
the proposed technique is compared to more conventional approaches
including direct search methods and techniques where minimizing the
spectral abscissa is recast as a traditional smooth non-linear mathe-
matical programming problem.

1 Introduction and notations

Internal stability is certainly the most fundamental design specification in
linear control. From an algorithmic point of view, the output feedback sta-
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bilization problem is clearly in the class NP and conjectured to be NP-hard
[6]. Necessary and sufficient conditions leading to an efficient algorithmic
solution are still not known [5].

A less ambitious line is to address internal stability as a local optimization
problem. Recent approaches using non-smooth optimization techniques are
[9, 11] for stabilization, and [2, 3, 4, 7] for H∞ synthesis. In [11] for instance
the authors propose to optimize the spectral abscissa of the closed-loop ma-
trix via specific non-smooth techniques.

Our present contribution is also a local optimization technique, but our
method to generate descent steps is new. In particular, in contrast with [11],
our approach is deterministic. While local optimization techniques do not
provide the strong certificates of global methods, we believe that they offer
better chances in practice to solve the stability problem.

Matrix notations

The n eigenvalues of M ∈ Cn×n (repeated with multiplicity) are denoted
λ1(M), . . . , λn(M) in lexicographic order. The distinct eigenvalues are de-
noted µ1(M), . . . , µq(M) , with respective algebraic multiplicities n1, . . . , nq

and geometric multiplicities p1, . . . , pq.
In the sequel, α(M) denotes the spectral abscissa ofM , defined as α(M) =

max1≤j≤q Re (µj (M)). Any eigenvalue of M whose real part attains α(M) is
said to be active.

Plant and controller notations

The open-loop system we wish to stabilize is a continuous linear time-invariant
plant, described without loss of generality by the state-space equations

P (s) :

[

ẋ

y

]

=

[

A B

C 0

] [

x

u

]

(1)

where A ∈ Rn×n, B ∈ Rn×mand C ∈ Rp×n. We consider static or dynamic
output feedback control laws of the form u = K(s)y in order to stabilize
(1) internally. We suppose that the order of the controller k ∈ N is fixed.
In the case of static feedback (k = 0), the controller is denoted by K ∈
Rm×p. For dynamic controllers we use standard substitutions in order to
reduce to the static feedback case. The affine mapping K 7→ A + BKC

is denoted as Ac. The set of all closed-loop active eigenvalues is denoted
A(K) = {µj (Ac(K)) : Re (µj (Ac(K))) = α(Ac(K))}, the corresponding set
of active indices is J (K).
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2 Minimizing the spectral abscissa

We start by writing the stabilization problem as an unconstrained optimiza-
tion program

min
K∈K

α(A + BKC) (2)

where the search space K is either the whole controller space R
m×p, or

a subset of Rm×p in those cases where a stabilizing controller with a fixed
structure is sought.

Closed-loop stability is satisfied as soon as α(A + BKC) < 0, so that
the minimization process can be stopped before convergence. Convergence
to a local minimum is important only in those cases where the method fails
to locate negative values α < 0. If the process converges toward a local
minimum K∗ with positive value α ≥ 0, we know at least that the situation
cannot be improved in a neighborhood of K∗, and that a restart away from
that local minimum is inevitable.

Program (2) is difficult to solve for two reasons. Firstly, the minimax
formulation calls for non-smooth optimization techniques, but more severely,
the spectral abscissa M 7→ α(M) as a function Rn×n → R is not even locally
Lipschitz everywhere. The variational properties of α have been analyzed by
Burke and Overton [14]. In [13] the authors show that if the active eigenvalues
of M are all semisimple (nj = pj), α is directionally differentiable at M and
admits a Clarke subdifferential ∂α(M). This property fails in the presence
of a defective eigenvalue in the active set A(K).

Several strategies for addressing the non-smoothness in (2) have been put
forward: Burke, Lewis and Overton have extended the idea of gradient bundle
methods (see [16] for the convex case and [17] for the Lipschitz continuous
case) to certain non-Lipschitz functions, for which the gradient is defined,
continuous and computable almost everywhere. The resulting algorithm,
called gradient sampling algorithm, is presented in [11] (in the stabilization
context) and analyzed in [10, 12] with convergence results. The outcome of
this research is a package HIFOO, which will be included in our tests, see
section 6.

3 Subgradients of the spectral abscissa

3.1 Subgradients in state-space

In this section, we suppose that all active eigenvalues of the closed-loop
state matrix Ac(K) are semisimple, with r = |J (K)| < q distinct active
eigenvalues (s if counted with their multiplicity). The Jordan form J(K) of
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Ac(K) is then partly diagonal, more precisely :

J(K) = V (K)−1Ac(K)V (K)

=











D(K)
Jr+1(K)

. . .

Jq(K)











• D(K) = diag [λ1 (Ac(K)) , . . . , λs (Ac(K))] is the diagonal part of active
eigenvalues,

• Jj(K), for r < j ≤ q are nj × nj block-diagonal matrices of Jordan blocks,

• V (K) = [v1 (Ac(K)) , . . . , vn (Ac(K))], where the first s columns are right
eigenvectors of Ac(K) associated with the active eigenvalues,

• V (K)−1 =







u1 (Ac(K))H

...

un (Ac(K))H






,where the first s rows are left eigenvectors of

Ac(K) associated with the active eigenvalues.

We define U(K) = V (K)−H , and for 1 ≤ j ≤ r, Vj(K) (resp. Uj(K)) the
n×nj block from V (K) (resp. from U(K)) composed of the right eigenvectors
(resp. of the transconjugate of the left eigenvectors) associated with µj.

The function α ◦ Ac is Clarke regular at K, as a composition of the
affine mapping Ac with α, which is locally Lipschitz continuous at K. Let
µj ∈ A(K) be an active eigenvalue of Ac(K), then the real matrix

φj(K) = Re
(

BTUjYjV
H
j CT

)

=
(

Re
(

CVjYjU
H
j B

))T

is a Clarke subgradient of the composite function α ◦Ac at K, where Yj � 0
and Tr(Yj) = 1. Moreover, the whole subdifferential ∂(α◦Ac)(K) is described
by matrices of the form

φY (K) =
∑

j∈J (K)

(

Re
(

CVjYjU
H
j B

))T
(3)

where Yj � 0 and
∑

j∈J (K) Tr(Yj) = 1.
Notice that the complex conjugate paired active eigenvalues µj and µk =

µ̄j (k 6= j) share the same closed-loop spectral abscissa subgradient φj = φk.

Remark 1 If the open-loop plant is not controllable, then every uncontrol-

lable mode µl(A) persists in the closed-loop: for all controllers K, there exists

j such that µl(A) = µj(Ac(K)). Moreover, if this eigenvalue is semisimple

and active for α ◦ Ac, the associated subgradients are null, because UH
j B =
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0. The case of unobservable modes leads to the same conclusion, because

CVj = 0. In this way, whenever an uncontrollable or unobservable open-

loop mode µl(A) becomes active for the closed-loop spectral abscissa, we get

0 ∈ ∂(α ◦ Ac)(K) and then we have local optimality of K. Moreover, the

optimality is global because Re µl(A) is a lower bound for α ◦ Ac.

3.2 Subgradients and dynamic controllers

The problem of stabilizing the plant P by dynamic output feedback reduces
formally to the static case. Nevertheless, the dynamic case is slightly more
tricky, because the matrices AK , BK , CK and DK have to define a minimal
controller realization, both at the initialization stage and at every subsequent
iteration of the algorithm.

As an illustration, if the k-th order (non-minimal) realization of the ini-
tial controller is chosen with BK = 0 and CK = 0 (neither observable nor
controllable) and with α(AK) < α(A+BDKC), it is straightforward to show
that the resulting subgradients of the closed-loop spectral abscissa are convex
linear combinations of matrices of the form

φj(K) =

[

0 0

0 Re
(

CVjYjU
H
j B

)T

]

where Vj (resp. UH
j ) are blocks of right (resp. left) eigenvectors associated

with the active eigenvalues of A + BDKC, and Yj � 0, Tr(Yj) = 1. As the
successive search directions have the same structure, see (6), this results in
unchanged AK , BK , CK blocks among the new iterates. Put differently, they
all represent static controllers.

In order to initialize the descent algorithm with a minimal k-th order
controller, and to maintain this minimality for all subsequent iterates, we use
an explicit parametrization of minimal, stable and balanced systems [20].

3.3 Subgradients with structured controllers

Formulation (2) is general enough to handle state-space structured con-

trollers, such as decentralized or PID controllers. Let K : R
k̃ −→ R

m×p

be a smooth parametrization of an open subset K ⊂ Rm×p, containing state-
space realizations of a family of controllers of a given structure. Then the
stabilization problem can be written as min

κ∈Rk̃ α (Ac ◦K (κ)). The Clarke

subgradients ψ ∈ Rk̃ of the composite function α◦Ac◦K are derived from (3)
with the chain rule (see [15, section 2.3]) ψ(κ) = Jvec(K)(κ)

T vec (φ (K (κ)))
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where Jvec(K)(κ) ∈ Rmp×k̃ is the Jacobian matrix of vec(K) : κ ∈ Rk̃ 7→
vec(K(κ)) ∈ Rmp.

4 Descent step and optimality function

In order to derive a descent step from the subdifferential ∂(α ◦ Ac)(K), we
follow a first-order step generation mechanism for minimax problems intro-
duced by Polak in [21, 22]. It was described and applied in the semi-infinite
context of the H∞ synthesis in [2]. This descent scheme is based on the min-
imization of a local and strictly convex first-order model θ(K), which serves
both as a descent step generator and as an optimality function.

We first make the strong assumption that all the eigenvalues of the closed-
loop state matrix Ac(K) are semisimple. Then, with δ > 0 fixed, we define

θ(K) = min
H∈Rm×p

max
1≤j≤q

max
Yj � 0

Tr(Yj) = 1

[

Re (µj (Ac (K)))

− α (Ac (K)) + 〈φj(K),H〉+
1

2
δ ‖H‖2

]

(4)

Using Fenchel duality for permuting the min and double max operators, we
obtain the dual form of (4), where the inner minimization over H becomes
unconstrained and can be computed explicitly, leading to:

θ(K) = max
τj ≥ 0

∑

j τj = 1

max
Yj � 0

Tr(Yj) = 1

[

− α (Ac (K))

+

q
∑

j=1

τjRe (µj (Ac (K)))−
1

2δ
‖

q
∑

j=1

τjφj(K)‖2
]

(5)

and we get the minimizer H(K) of the primal formulation (4) from the

solution
(

(

τ ⋆
j (K)

)

1≤j≤q
,
(

Y ⋆
j (K)

)

1≤j≤q

)

of the dual expression (5) in the

explicit form

H(K) = −
1

δ

q
∑

j=1

τ⋆
j (K) Re

(

CVjY
⋆
j (K)UH

j B
)T

. (6)

We recall from [21] the basic properties of θ and H :

1. θ(K) ≤ 0 for all K ∈ Rm×p, and
θ(K) = 0 if and only if 0 ∈ ∂(α ◦ Ac)(K).
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2. If 0 6∈ ∂(α◦Ac)(K), then H(K) is a descent direction for the closed-loop
spectral abscissa at K. More precisely for all K:

d (α ◦ Ac) (K;H(K)) ≤ θ(K)−
1

2
δ‖H(K)‖2 ≤ θ(K).

3. The function θ is continuous.

4. The operator K 7→ H(K) is continuous.

Therefore direction H(K) will be chosen as a search direction in a descent-
type algorithm and combined with a line search. The continuity of H (·)
ensures that every accumulation point K̄ in the sequence of iterates satisfies
the necessary optimality condition 0 ∈ ∂(α ◦ Ac)(K̄) (see [2]). Notice that
even for semisimple eigenvalues, continuity fails for the steepest descent di-
rection. This is why steepest descent steps for non-smooth functions may
fail to converge. In our case this justifies the recourse to the quadratic, first-
order model θ as a descent function. Moreover, properties 1) and 3) suggest a
stopping test based on the value of θ(K), because as soon as θ(K) ≥ −εθ (for
a small given εθ > 0), the controller K is in a neighborhood of a stationary
point.

5 Non-smooth descent algorithms

5.1 Variant I (first-order type)

We discuss details of a descent-type algorithm for minimizing the closed-loop
spectral abscissa, based on the theoretical results from the previous section.

For a given iterate Kl, we have to address first the practical computa-
tion of the maximizer of the dual form (5) of θ(Kl). Without any additional
hypothesis, it is a semidefinite program (SDP). Assuming that all the eigen-
values of Ac(K) are simple, the SDP (5) reduces to a concave quadratic
maximization program

To go one step further, we reduce the dimension of the search space.
For a given ratio ρ ∈ [0, 1], we define the following extended set of active
eigenvalues

Aρ(K) =

{

µj (Ac(K)) : α (Ac(K))− Re (µj (Ac(K)))

≤ ρ

[

α (Ac(K))− min
1≤i≤n

Re (µi (Ac(K)))

] }

(7)
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Jρ(K) is the corresponding enriched active index set. It is clear that ρ 7→
Aρ(K) is non-decreasing on [0, 1], and that A(K) = A0(K) ⊂ Aρ(K) ⊂
A1(K) = spec (Ac(K)) for all ρ ∈ [0, 1]. Hence, we have locally

α (Ac (K)) = max
j∈Jρ(K)

Re (µj (Ac(K))) (8)

By applying the descent function θ to this local formulation, we finally get
the quadratic program

θ(K) = max
τj ≥ 0

∑

j τj = 1

[

− α (Ac (K))

+

|Jρ(K)|
∑

j=1

τjRe (µj (Ac (K)))−
1

2δ
‖

|Jρ(K)|
∑

j=1

τjφj(K)‖2
]

. (9)

The descent directionH(K) is obtained from the maximizer
(

τ ⋆
j (K)

)

1≤j≤|Jρ(K)|
as

H(K) = −
1

δ

|Jρ(K)|
∑

j=1

τ⋆
j (K) Re

(

Cvju
H
j B

)T
(10)

Notice that for ρ = 0 the QP in (9) reduces to the steepest descent finding
problem while ρ = 1 reproduces (5). The parameter ρ offers some additional
numerical flexibility, and allows the weaker assumption that only eigenvalues
in Aρ(K) are simple.

5.2 Variant II (second-order type)

In the optimality function (4) the parameter δ acts as an estimate of the av-
erage of the curvatures of Re µj ◦Ac. If second order information is available,
it may therefore be attractive to replace the scalar δ in (4) by Hessian ma-
trices. Polak [22] extends the Newton method to min-max problems, but the
corresponding dual expression for θ(Kl) does no longer reduce to a quadratic
program like (9). We propose a different approach here which is based on

a heuristic argument. The quadratic term of θ̂ is weighted by a matrix Ql,
which is updated at each step using a second-order model of α ◦ Ac. We
suggest a quasi-Newton method based on the new optimality function θ̂ at
iteration l ≥ 1:

θ̂(Kl) = min
H∈Rm×p

max
j∈Jρ(Kl)

max
Yj � 0

Tr(Yj) = 1

[

Re (µj (Ac (Kl)))

− α (Ac (Kl)) + 〈φj(K),H〉+
1

2
vec(H)T Qlvec(H)

]

(11)
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Algorithm 1 First-order descent type algorithm for the closed-loop spectral
abscissa
Set ρ ∈ [0, 1], δ > 0, K0 ∈ R

m×p, εθ, εα, εK > 0, β ∈]0, 1[.
Set the counter l← 0.

1. Compute α (Ac (K0)), the enriched active index set Jρ(K0) and the corre-
sponding subgradients φj(K0).

2. Solve (9) for K = Kl and get the search direction H(Kl) from (10).
If θ(Kl) ≥ −εθ then stop.

3. Find a step length tl > 0 satisfying the Armijo line search condition

α (Ac (Kl + tlH(Kl))) ≤ α (Ac (Kl)) + βtlθ(Kl)

4. Set Kl+1 ← Kl + tlH(Kl).
Compute α (Ac (Kl+1)), the extended active index set Jρ(Kl+1) and the
corresponding subgradients φj(Kl+1).

5. If α (Ac (Kl)) − α (Ac (Kl+1)) ≤ εα(1 + α (Ac (Kl))) and ‖Kl −Kl+1‖ ≤
εK (1 + ‖Kl‖)
then stop.
Otherwise set l← l + 1 and go back to 2.

The matrix Ql is a positive-definite, symmetric mp ×mp matrix, updated
with the symmetric rank-two BFGS update.

The dual form of (11) is then a convex QP and the vectorized descent
direction derived from the optimal

(

τ ⋆
j (Kl)

)

convex coefficients is:

vec
(

Ĥ(Kl)
)

= −Q−1
l

|Jρ(Kl)|
∑

j=1

τ⋆
j (Kl) vec (φj(Kl)) (12)

6 Numerical examples

In this section we test our non-smooth algorithm on a variety of output
feedback stabilization problems from the literature. We use variants I and
II of the descent algorithm in the following applications, with the default
parameters values (unless other values are specified): ρ = 0.8, δ = 0.1,
εθ = 10−5, εα = 10−6, εK = 10−6 and β = 0.9.

We compare the performance of our method with that of other mini-
mization algorithms, namely multi-directional search (MDS), two algorithms
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implemented in the Matlab Optimization Toolbox, and the Matlab package
HIFOO [8].

Multidirectional search (MDS) belongs to the family of direct search al-
gorithms [23]. This derivative-free method explores the controller space via
successive geometric transformations of a simplex. Its convergence to a local
minimum is established for C1-functions, but non-smoothness can make it
converge to a non-differentiable and non-optimal point [24], called a dead

point. In [1] we have shown how to combine MDS with non-smooth descent
steps in order to avoid this difficulty and guarantee convergence. Experi-
ments were performed with two simplex shapes (MDS 1: right-angled, MDS
2: regular).

Secondly, two Matlab Optimization Toolbox functions have been tested,
one designed for general constrained optimization (fmincon), the second
suited for min-max problems (fminimax). Both functions are essentially
based on SQP algorithm with BFGS, line search and an exact merit func-
tion, see [19]. Clearly here we make the implicit assumption that all the
eigenvalues are simple in order to work with smooth constraints or maxi-
mum of smooth functions, which is required by SQP. Our testing will show
whether the toolbox functions run into difficulties in those cases where this
hypothesis is violated.

Finally, we use the Matlab package HIFOO (version 1.0). As discussed
in [8], the underlying algorithm consists in a succession of (at most) three
optimization phases: BFGS, local bundle (LB) and gradient sampling (GS).
By virtue of its probabilistic nature, HIFOO does not return the same final
controller even when started from the same initial guess. This probabilistic
feature of HIFOO is inherent to the multiple starting point strategy (by
default, 3 random controllers, in addition to the user input), and to the
gradient sampling algorithm itself. The first stabilizing controller is obtained
with the parameter ’+’, whereas the final one is with ’s’. The iteration
number of each stage is given as BFGS+LB+GS.

Examples 6.1, 6.2 and 6.3 are initialized with K0 = 0. We discuss the
status of every termination case in terms of active eigenvalues multiplicity,
and of associated eigenspaces dimension.

6.1 Transport airplane

This linearized plant of 9th-order describes the longitudinal motion of a trans-
port airplane at given flight conditions (system AC8 from [18]). The open
loop is unstable, with spectral abscissa α = 1.22 · 10−2, attained by a simple,
real mode: the composite function α ◦ Ac is then differentiable at K0 = 0.
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6.1.1 Non-smooth optimization algorithm

In table 1, we show the influence of the ratio ρ (see equation (7)) on the
non-smooth algorithm (variant I here). Notice that the first case (ρ = 0) is
steepest descent. In each of the first two cases, the final value of θ is not

Table 1: Transport airplane stabilization
case # 1 2 3

ratio ρ 0 % 0.1 % 2 %
first α < 0 −7.07 · 10−2 −1.07 · 10−2 −1.05 · 10−2

(iter.) (1) (1) (1)
final α −1.15 · 10−1 −1.43 · 10−1 −4.45 · 10−1

(iter.) (20) (27) (9)
fun. eval. 96 121 43

final θ −1.54 · 102 −1.30 · 101 −5.60 · 10−17

reliable for optimality, because α ◦ Ac looses Clarke regularity.
The third case is more favorable. The enlargement of Aρ(K) generates

better descent directions for α◦Ac and allows longer descent steps and fewer
iterations. The final value of θ is close to zero, indicating local optimality.
There are three active eigenvalues at the last iteration: two of them are
complex conjugate (λ1 = −4.45 · 10−1 + 4.40 · 10−3i and λ2 = λ̄1), the other
one is real (λ3 = −4.45 · 10−1). We notice that these three modes come
directly from the plant, and are not controllable. This is confirmed by the
associated closed-loop subgradients, φ1 = φ2 ≈ 0 and φ3 ≈ 0, leading to a
singleton subdifferential ∂(α◦Ac)(K9) = {0}. The final point is then smooth,
in spite of multiple active eigenvalues, and the uncontrollability of the active
modes gives a global optimality certificate (see Remark 1, section 3.1).

6.1.2 Other algorithms

MDS is very greedy in function evaluations, and the global minimum is not
found, either because of an unsuccessful local minimum, or a dead point.

Both Matlab functions return the global minimum, after very few itera-
tions for fmincon.

HIFOO terminates far from the global minimum, because slow conver-
gence occurs: numerous BFGS iterations (99) are needed for each of the four
initial controllers (K0 = 0 and three perturbed K0). The final optimality
measure is 5.28 · 10−4.

6.2 VTOL helicopter

This model (HE1 from [18]) with four states, one measurement and two
control variables, describes the longitudinal motion of a VTOL (Vertical
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Table 2: Transport airplane stabilization
first (iter.) final (iter.) fun.

algorithm α < 0 α eval.

MDS 1 −1.09 · 10−1 (3) −4.21 · 10−1 (36) 366
MDS 2 −1.04 · 10−2 (7) −1.57 · 10−1 (37) 376
fmincon −4.45 · 10−1 (13) −4.45 · 10−1 (13) 32
fminimax −1.13 · 10−2 (1) −4.45 · 10−1 (25) 131
HIFOO −2.62 · 10−2 (1+0+0) −2.31 · 10−1 (396+3+2) 1140

Take-Off and Landing) helicopter, at given flight conditions. The open-loop
spectral abscissa is α = 2.76 ·10−1, attained by two complex conjugate eigen-
values. All the open-loop eigenvalues are simple.

6.2.1 Non-smooth optimization algorithm (variants I and II)

Table 3: VTOL helicopter stabilization
Alg. Variant I II (with BFGS)

first α < 0 (iter.) −6.16 · 10−2 (1) −6.16 · 10−2 (1)
final α (iter.) −2.39 · 10−1 (216) −2.47 · 10−1 (26)

fun. eval. 796 90
final θ −9.77 · 10−6 −1.70 · 10−6

Using variant I, the closed-loop becomes stable after the first iteration,
and the spectral abscissa decreases slowly until satisfaction of the local op-
timality stopping test. This slow convergence strongly calls for variant II of
our non-smooth descent algorithm, which finds a lower closed-loop spectral
abscissa with much less iterations. For both cases, the value close to 0 of θ
indicates local optimality.

The final closed-loop spectrum at convergence obtained by algorithm vari-
ant I is

Λ =
˘

− 2.39 · 10−1 ± 5.76 · 10−1i,−2.39 · 10−1,−7.91 · 101
¯

,

and the subgradients associated with µ1 = −2.39 · 10−1 + 5.76 · 10−1i and
with µ3 = −2.39 · 10−1 are, respectively,

φ1 = φ2 =

»

−1.26 · 10−1

+2.92 · 10−2

–

, φ3 =

»

+6.26 · 10−2

−1.55 · 10−2

–

.

Convergence analysis is favorable for our algorithm, because the non-smoothness
comes from several simple active eigenvalues for the closed-loop spectral ab-
scissa: the Clarke subdifferential is then well defined and the value of θ(K)
is reliable as an optimality criterion.

6.2.2 Other algorithms

The same closed-loop spectral abscissa is found by MDS (with regular simplex
shape), the Matlab routines, which are very efficient in this example, and by
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HIFOO (with final local optimality measure 9.87 ·10−4). Notice that iterates
of fmincon become feasible only at the last iteration, a classical feature of
SQP algorithms.

Table 4: VTOL helicopter stabilization
first (iter.) final (iter.) fun.

algorithm α < 0 α eval.
MDS 1 −1.23 · 10−1 (1) −1.35 · 10−1 (15) 63
MDS 2 −9.95 · 10−2 (1) −2.47 · 10−1 (58) 235
fmincon −2.47 · 10−1 (36) −2.47 · 10−1 (36) 73
fminimax −5.09 · 10−2 (1) −2.47 · 10−1 (36) 73
HIFOO −6.16 · 10−2 (1+0+0) −2.46 · 10−1 (116+0+0) 216

6.3 B-767 airplane

Our last example taken from [18] (system AC10) is of higher order (55 states),
with two controlled inputs and two measured outputs and describes a mod-
ified Boeing B-767 at flutter condition. The open-loop is unstable, but the
only active eigenvalues of A for the spectral abscissa are µ1 = 1.015 · 10−1

and µ̄1, with multiplicity one.

6.3.1 Non-smooth optimization algorithm (variants I and II)

The two versions of our algorithm stabilize the plant after a single iteration.
If the optimization is continued, variant II gives fast convergence to a local
minimum (certified by the small value of θ). Variant I is slower here.

Table 5: B-767 airplane stabilization
Alg. Variant I II (with BFGS)

first α < 0 (iter.) −2.37 · 10−2 (1) −2.36 · 10−2 (1)
final α (iter.) −7.99 · 10−2 (99) −3.50 · 10−2 (29)

fun. eval. 387 111
final θ −8.00 · 10−4 −8.70 · 10−6

An inspection of the largest real part eigenvalues of Ac(K) from the vari-
ant I final controller shows that one pair of complex conjugate eigenvalues is
active (λ1 = −7.992 · 10−2 + 4.912 · 10−1i and λ2 = λ̄1); another pair is very
close (λ3 = −7.996 · 10−2 + 4.892 · 10−1i and λ4 = λ̄3). The associated sub-
gradients are nearly opposite matrices which explains the small final value of
the optimality function θ.

6.3.2 Other algorithms

See table 6.
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Table 6: B-767 airplane stabilization
first (iter.) final (iter.) fun.

algorithm α < 0 α eval.
MDS 1 −3.59 · 10−3 (2) −3.23 · 10−2 (60) 485
MDS 2 −2.35 · 10−2 (13) −3.54 · 10−2 (100) 805
fmincon −2.47 · 10−2 (3) −3.44 · 10−2 (9) 21
fminimax −2.36 · 10−2 (1) −5.24 · 10−2 (15) 31
HIFOO −2.34 · 10−2 (1+0+0) −3.62 · 10−2 (132+3+15) 1858

6.4 PID controllers

As our algorithm can handle controller structure (see 3.3), it offers an inter-
esting framework for PID controller design, particularly attractive for MIMO
plants where very few generic tuning techniques are available. In this exam-
ple, we seek a 3 input, 3 output stabilizing PID controller for an open-loop
marginally unstable aircraft model (AC2 from [18]), given as:

K(s) = KP +
1

s
KI +

s

1 + εs
KD

where KP , KI , KD ∈ R2×2 and ε > 0. The algorithm is initialized with
KP = 0, KI = KD = I3 and ε = 10−3. The resulting closed-loop is unsta-
ble (α(Ac(K)) = 8.06). The algorithm (variant I) finds a stabilizing PID
controller after 2 iterations. It stops after 42 iterations, with:

KP =

2

4

72.23 4.62 −28.69
17.89 −3.93 33.70
33.65 13.17 114.77

3

5 ,

KI =

2

4

−41.38 3.80 −102.45
23.93 −3.82 42.75
11.79 18.42 −20.37

3

5 ,

KD =

2

4

0.91 0 0
0 0.91 0
0 0 0.91

3

5 , ε = 9.55 · 10−4

The final closed-loop spectral abscissa is α = −6.03 · 10−1. Notice that KD

and ε are nearly unchanged.

6.5 Conclusion

Formulated as an optimization program, static or fixed-structure output feed-
back stabilization has been solved for several case studies from the literature.
The proposed non-smooth algorithm addresses the non-smoothness of the
spectral abscissa and generates successive descent steps. Even if the theoret-
ical assumption of semisimple active eigenvalues may seem restrictive, the ex-
perimental results show that very few non-smooth steps will generally yield a
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stabilizing static controller. Our framework is generic enough to handle real-
istic stabilization problems with structured compensators. The two proposed
variants are deterministic and numerically efficient, with significantly fewer
evaluations of the spectral abscissa than MDS or HIFOO. Finally, although
BFGS is designed for smooth optimization, we noticed that it performs quite
well for static output feedback stabilization (in variant II, in the initial phase
of HIFOO and in the Matlab optimization tools), agreeing with [8].
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