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Abstract

The automotive hydro-pneumatic integrated suspen-
sion model is nonlinear with large dimensions. As a con-
sequence, the nonlinear H, control methodology based
on the traditional Hamilton-Jacoby-Isaacs equation is
impractical in this application. An alternative so-called
Parameterized Linear Matrix Inequality (PLMI) ap-
proach is proposed for solving this hard nonlinear H,
control problem. The validity of the proposed approach
is confirmed not only by detailed and realistic simula-
tions but also by extensive experiments. Specifically,
the proposed nonlinear control method outperforms the
more classical feedback linearization control technique.

1 Introduction

The central target of nonlinear H., control is to in-
ternally stabilize the nonlinear plant while minimizing
the effect of disturbances such as measurement noise,
input disturbances and other exogeneous signals which
invariably occur in most applications because of plant
interactions with the environment. However, in deep
contrast with linear H., control methods which are
flexible, efficient and allow to solve a broad class of lin-
ear control problems, there are few practical methods
in nonlinear H,, control which can handle real engi-
neering problems with similar comfort. For such hard
nonlinear problems, our opinion is that it is of extreme
importance to expoits the specific characteristics. Tt
is not doubtful that special structures and properties
of a given class of systems will play a crucial role for
developing adequate solution methods.

The purpose of the automotive hydro-pneumatic in-
tegrated suspension is to improve the ride comfort by oil
flow control to cylinder despite bad road environment
or vibrations in the human sensitivity band. The ride
comfort can be enhanced by attenuating vibration in
the human sensitivity band, and therefore, H,, control
with loop-shaping specifications is an effective method-
ology. The integrated suspension is different from the
pure active suspension system [13] by the additional
presence of the semi-active valve which exhibits non-
linear characteristics. Thus the control design for the
integrated suspension system becomes inevitably diffi-
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cult as the resulting model is nonlinear with a large di-
mension. Therefore the control design problem here is a
very challenging one in nonlinear H, control. Perhaps,
the most essential characterization of this control sys-
tem is that its nonlinearity is caused by the semi-active
input. Considering this semi-active input as a parame-
ter, the system can be viewed as a family of parameter-
dependent linear systems. It is well known that the
linear matrix inequality (LMI) approach is a very ef-
ficient and powerful tool to solve various problems for
linear systems including linear H,, problems [5] thanks
to the availability of efficient interior-point polynomial-
time algorithms for solving semidefinite programming
problems [6]. In [2, 12], we have extended the LMI
approach to so-called parameterized LMIs (PLMIs) in
order to solve various challenging problems of linear ro-
bust control. The purpose of the present paper is to
take advantage of these results to solve the nonlinear
‘Hoo control associated with the integrated suspension
system. Note that many systems like the integrated
suspension system with few state variables responsi-
ble of the nonlinearity very frequently arise in prac-
tical nonlinear models. This was our main motivation
for proposing an alternative and practical approach to
solve nonlinear H, control for such class of systems.
The power and efficiency of the proposed method are
confirmed by realistic simulations but also by experi-
ments on the physical plant. Particularly, the proposed
control is shown to outperforms feedback linearization
control and linear control techniques.

The organization of the paper is as follows. Section
2 deals with the model of the integrated suspension
system with some preliminary structural analysis. Use-
ful theoretical characterizations involving PL.MIs which
will constitute our constructive tools are detailed in Sec-
tion 3. Justification and validation of the approach are
shown through simulations and experiments in Section
4. We conclude the paper in Section 5 with some re-
marks and recommendations for future work.

The notation in the paper is quite standard. Namely,
M >0 or M < 0 for a symmetric matrix M, means it
is negative definite or positive definite. In symmetric
block matrices we use * as an ellipsis for the terms that



are induced by symmetry, e.g

S+ (K + %) *] [S+(A+A’) M’
M Q| M Q

2 Modeling of controlled inte-
grated suspension system

A quarter-car test bench with two degrees of freedom
is shown in Fig.1. This system has two control valves.
The first one is the active control valve which controls
the o1l flow from hydraulic pump to suspension cylinder.
The second one is the semi-active control valve which
controls the cross sectional area of the pipe between
cylinder and accumulator. The semi-active valve avails
to reduce energy consumption.
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Figure 1: The active suspension system

The sensitivity band is the limited frequency band
within which human is most sensitive and it is assumed
to range from 3 to 8Hz. [13]. With the assumptions
that the oil is incompressible, the active control valve
and the gas spring characteristics can be linearized, the
active suspension model can be represented as
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with the oil flow ¢(z) in the semi-active valve defined
by

p(z) = ap(®1 — &) + i (3)

To achieve improved ride comfort in the human sensi-
tivity band (3 to 8Hz), we introduce the following fre-
quency weighting function which in state-space is de-
scribed as .
L
Zﬂ)

Apzy + Byz
Cu Ty, ’ (4)

with

o 1 NI
Au = [—900 —24] ) Bu = [2.7]  Cu=[1 0]

Now, using (1) and (4) and taking the road holding con-
dition and the energy consumption (control input) into
account, the generalized plant of our nonlinear problem
can be obtained as

z = A(¢)z+ Biw+ Ba(¢)y,
e (5)
- Du |’
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and
e wp; = 0.2 is the weighting constant corresponding to road

holding,



o wigy = 0.03 is the weighting constant corresponding to atti-
tude,

® wg. = 0.0015 is the weighting constant corresponding to
active control input,

o wge. = 0.0015 is the weighting constant corresponding to
semi-active control input.

Now, a feedback control

u=u(z) (6)

will be called a y—gain control if it internally stabilizes
the system (5) and the following L,— gain condition
holds true for the closed-loop system (5)-(6)

T T
/ l2(t)| 2t < 72/ |lw(t)|2dt YT > 0, Yw € Ly(0,T)
0 0

7
with zero state initial conditions (i.e z(0) = 0). T(hz)e
Hoo control problem for the system (5) is to find a
y—gain control u(z) with minimal v > 0.

Clearly, (5) is a nonlinear system with 9 state vari-
ables, so the traditional approach based on HJI equa-
tion cannot be applied to solve the H , control problem.
Referring to equations (2) we see that (5) is nonlinear
by the presence of the semi-active input ¢(z) defined by
(3). For physical reasons, ¢(z) cannot take arbitrary
values but is restricted in some predefined bounded set
D. Therefore, it is sufficient to design a control such
that both internal stability and L, gain conditions (7)
are practically fulfilled, i.e. they have to hold when-
ever ¢(z) € D only. Therefore, an alternative way to
attack the nonlinear M., for the system (5) is to view
the system as a family of linear systems depending on
the semi-active input parameter ¢(z). Suppose that
for every fixed ¢ € D, a y—gain linear control is K(¢)z
associated with some matrix K (¢) and a quadratic Lya-
punov function 2’/ P(¢)z establishing an L,-gain condi-
tion. Then, as ¢ is varying as a function of z, we must
find conditions on K(¢(z)) and on

V(z) = 2’ P(4(z))= (8)

such that the nonlinear system (5) with control input

u=K(¢(z))z (9)

satisfy the Lo-gain condition (7). It turns out in the
next section that such conditions admit a tractable for-
mulation in terms of PLMIs.

Note that function V(z) might appear restrictive.
However, such form is general enough since the re-
cent max-plus algebra based results [7] show that the
value function for a nonlinear system is indeed piece-
wise quadratic which obviously has a strong connection

with the form (8).

3 PLMI characterization

Lemma 3.1 There is y—gain control if the following
matriz inequalities hold true for P(¢) > 0,

—P(g)+ (P(H)A(8) +%) + =

C1P(9) -yl *
B; 0 —4I
0 (10)
—a | Dis |[By(¢) D, 0] < 0
0

A particular K in (7) is
K(¢) = —(D13D12) " [D1,C1 +vBa2(¢) P(¢) '] (11)

The reader is referred to [1] and references therein for
more details. Thus our focus now becomes to solve the
differential inequality (10), which is still a difficult prob-
lem. To the aim of simplifying this problem, we shall
examine some approximated representations of P(¢).
Looking at the nonlinear system (5), we see that the
nonlinear terms A(¢) and By(¢) can be expressed as

A(@) = Ao + |8 A4, By(¢) = Bag + |¢|l¢Bar (12)

where Ag, A1, Bog, Ba1 are constant matrices.
The structure (12) suggests to seek a solution P(¢)
of the inequality (10) in the ad-hoc basis

P(¢) = Po+ |o|P1 + |¢l¢ P (13)

Note that P(¢) may be not differentiable at ¢ = 0 but
this does not cause any trouble in this application.

Now, restricting (¢,¢) on the area M Xx [—mg, mg]
with M C R bounded and 0 < my < 1 which can be
done by changing A1, By in (12) if necessary, and with
the notation P := (Py, P, Ps), 0 := ¢, we can rewrite
(10) in the form

Mo(P) + 0 Moy (P) + 06 Mos(P) + ¢ M, (P)
+¢? Mo(P) + 63 M3(P) + 6*My <0, (14)
V(6,4) € M x [0,mo],

where My(P), Mo1(P), Mo2(P), Mi(P), Ms3(P) are
affine matrix-functions in P.

Analogously, the positive definiteness of P(¢) can
rewritten as

P Py 9 | P2
N R Y R N X
Vo € [0, mo]
(15)
Using a methos developed in [2, 12], the solvability of
(14)-(15) is guaranteed by the following LMIs

+ max{¢? Ma(P), (mod — 0.25m2) M2(P)}
+ max{@3M3(P), (0.75m3¢ — 0.25m3) M5(P)}
+(0.5m3¢ — 0.1875m3) M4 < 0
Py + ¢P1 + min{¢? Py, (mo¢ — 0.25m3) Py} > 0
Py + qf)Pl + min{—gézPQ, —(m0¢ - 0251713)]32} >0
V(6,¢) € vertM x {0,mq},

(i6)



4 Experimental results

The controller developed in Section 3 is implemented
with a sample period of 5 ms. A hydraulic shaker simu-
lates road disturbance generated by driving at 50 km/h.
For solving the LMIs (16), we use the MATLAB LMI
Control Toolbox [6].

The performance of our nonlinear control can be as-
sessed by comparing its performance with other design
methods such as

e Control with passive suspension having constant
damping coefficient.

e Linear H., control for the feedback linearized

model of (5).

The passive suspension condition can be realized in our
apparatus, by adjusting the semi-active valve according
to

@p &1 — @]

o]

where ¢ is the coefficient determining the damping co-
efficient.

On the other hand, if we use the nonlinear transfor-
mation

(17)

as = G50

Uy = %(1—%—”3)—“5’3)7 (18)

then we can get the following exactly linearized model

& = A(¢o)z + Biw+ Ba(¢o),
. [Cx (19)
- Du |’

where
=[us u].

Note that the parameters in (18) are chosen so that
matrix A in (19) and for the passive suspension sys-
tem coincide. Also, the same weighting function is
used both for the linear and the nonlinear H., con-
trol. The linear Ho, control theory is readily applied to
solve the H o, control problem for system (19). The fre-
quency responses in Fig.2 and Fig. 3 represent the ratio
of FFT for the road displacement and body accelera-
tions. Fig.2 shows simulation results with impluse road
displacement (height=0.03 m) and Fig.3 shows exper-
imental results with random road displacement which
expresses actual road surface (driving at 50 km/h). The
time responses of the random road displacement and
body acceleration with the nonlinear H., controller are
shown in Fig. 4. The control effect at human sensitiv-
ity frequency band (3 ~ 8 Hz) and lower frequencies
is indicated in Fig.2. Clearly, the control effect of the
nonlinear H., control at frequencies lower than 5 Hz
is better than that of the linear M., control for the
feedback linearized system (19).

Fig. 4 displays the ride comfort and control inputs
with changing weighting constant w;, corresponding to
semi-active control input from 0.0015 down to 0.0005.

The frequency response characteristics in Fig. 5 demon-
strate that the ride comfort can be improved by de-
creasing the weighting constant corresponding to the
semi-active control input. The pure active suspension
has a constant damping coefficient and the controller
is designed by linear H, control[16]. The integrated
suspension and the pure active suspension have almost
the same control performance. However, the energy
consumption of the integrated suspension is better than
pure active suspension as indicated in Fig 7. This shows
that the semi-active valve avails to reduce the energy
consumption.

5 Conclusion

In this paper, we have considered the nonlinear H,
control problem of an active suspension system.
novel approach has been proposed in this context. It is
based on a PLMI characterization which provides suf-
ficient conditions for closed-loop stability and perfor-
mance of the nonlinear system. The main thrust of this
approach, which is seemingly absent in many existing
methodologies, is that it allows to solve nonlinear prob-
lems with Jarge state dimensions. The only limitation
appears to be the number of nonlinearities involved in
the model description. When compared to more tra-
ditional techniques, it appears that the additional cost
required for solving PLMI problems is more than offset
by the advanta%es provided by the technique in terms of
augmented stability and improved performance. This
has been showed by a fairly complete set of simulations
and experiments which finally more than anything else
advocate for the use of the proposed methog.
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sults: Nonlinear Ho, control (solid), linear Ho, control
for the feedback linearized model (dashed) and passive
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Figure 6: Frequency characteristics of experimental re-
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