AN AUGMENTED LAGRANGIAN METHOD FOR A CLASS OF LMI-CONSTRAINED
PROBLEMS IN ROBUST CONTROL THEORY

B.Fares*

Abstract — This paper presents a new approach to solve a
class of non-convex LMI-constrained problems in robust con-
trol theory. These problems are recast as minimization of
a linear objective subject to constraints including LMIs and
non-convex constraints which are related to rank conditions.
The central idea of our approach is based on an Augmented
Lagrangian Technique. The Lagrangian function combines
a Lagrange multiplier term and a penalty term governing
the non-convex constraints while the LMI constraints, due
to their special structure, are handled explicitly. Global and
fast convergence is then achieved by using an LMI-constrained
Newton method combined with line search strategy. This
procedure may therefore be regarded as a sequential semi-
definite programming (SSDP) method, inspired by the se-
quential quadratic programming (SQP) in nonlinear optimiza-
tion. The method is conveniently implemented with available
SDP interior-point solvers. We compare its performance to
the well-known D-K iteration scheme in robust control. Two
test problems are investigated and demonstrate the power
and efficiency of our approach.

Key words: Nonlinear Programming, Semi-Definite Pro-
gramming, Robust control, Linear Matrix Inequality.

1 INTRODUCTION

A large variety of problems in robust control can be cast
as minimizing a linear objective subject to linear matrix
inequality (LMI) constraints and additional nonlinear con-
straints which represent rank deficiency conditions. More
formally, this can be stated as

minimize ¢’z (1)
L(z) <0, (2)
Rank A(x) =, (3)

where ¢ and r are given and z denotes the vector of de-
cision variables. Inequality (2) represents LMI constraints,
while (3) is a rank condition on A(z), with both A, £ affine
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matrix-valued functions of x. Synthesis problems that can
be formulated as (1) - (3) are:

e fixed-order H, synthesis,

e robust synthesis with different classes of scalings multi-
pliers,

e reduced-order linear parameter-varying (LPV) synthe-
sis.

The rank condition (3) renders these synthesis problems
highly complex. Due to their practical importance, however,
various heuristics and ad hoc methods have been developed
in recent years to obtain solutions to these difficult problems.
The D — K iteration procedure is a popular example of this
type, [3]. Most currently used methods are based on coordi-
nate descent schemes which alternatively and iteratively fix
parts of the coordinates of the decision vector, while trying
to optimize the remaining indices. This is conceptually sim-
ple and easily implemented as long as the intermediate steps
are convex LMI programs. The latter may often be guaran-
teed through an appropriate choice of the decision variables
held fixed at each step. However, a major drawback of coor-
dinate descent schemes is that they may (and often will) fail
to converge even for starting points close to a local solution.
As a result, solutions obtained via such methods are highly
questionable and bear the risk of additional conservatism in
the synthesis task.

In this paper, we follow a quite different line of attack
initiated in [1]. The rank constraints (3) are incorporated
into an augmented Lagrangian function with a suitably de-
fined penalty term and a term involving Lagrange multiplier
variables. The LMI constraints (2), due to their infinite
character, are treated explicitely and not included in the
Lagrangian. Instead, the augmented Lagrangian function
is minimized subject to these LMI constraints, using an in-
creasing sequence of penalty parameters and a first-order up-
date rule for the Lagrange multiplier estimates. At each step,
the minimization of the augmented Lagrangian is performed
by a Newton type method including a line search strategy.
The entire scheme may be considered as a sequential semi-
definite programming (SSDP) method which at each step
requires solving a convex LMI program. It therefore lends
itself to currently available LMI solvers [7] based on SDP
interior-point codes. Even though more sophisticated than
most coordinate descent schemes, the advantages of the new
approach are at hand:



e The decision variables do not have to be treated sepa-
rately. The entire vector z of decision variables is up-
dated at each step.

e The method, being of descent type, is guaranteed to
converge globally, that is, to a local minimum from any
feasible, even remote, starting point. Moreover, the rate
of convergence is at least linear.

From a control theory viewpoint, the first observation is
important since it means that there is no need to separate
Lyapunov and scaling variables from control variables. All
these parameters are processed jointly during the iteration.

In this paper, we focus on the robust synthesis problem
which, in a sense, is the most difficult among the problems
mentioned above, with rank constraint of the form Rank
A(xz) = 0. The paper is organized as follows. Section 2
recalls the setting of the robust control problem. Section 3
gives a detailed description of the augmented Lagrangian
method. Numerical aspects of the algorithms are presented
in Section 4.

The notation used throughout the paper is fairly standard.
8™ denotes the set of n x n symmetric matrices. M7 is the
transpose of the matrix M. The notation Tr M stands for the
trace of M. For Hermitian or symmetric matrices , M > N
means that M —N is positive definite and M > N means that
M — N is positive semi-definite. The notation co{ps,---,pr}
stands for the convex hull of the set {p1,---,pr}. In sym-
metric block matrices or long matrix expressions, we use * as
an ellipsis for terms that are induced by symmetry. Finally,
the gradient of real-valued function ®(z) is denoted V& (x)
and its Hessian V2®(z).

2 ROBUST CONTROL SYNTHESIS

This section provides a brief review of a basic result that will
be exploited throughout the paper. We are concerned with
synthesis of robust controllers for uncertain plant subject
to structured parametric LFT uncertainty. In other words,
Consider the uncertain plant governed by:

T A B@ Bl B2 x
zg | _| Co Dee Deir Des we (4)
z Ci Die Di1 Dia w
Yy Cy Dy Doy 0 u
with we = O(t)ze, where O(t) is a time varying matrix-

valued parameter ranging over a polytopic set P, i.e.,
O) € P =co {Oy,-..,0,4 1},
and ©,, are the vertices of the polytope P.

VE>0.  (5)

Hence the plant with inputs w and u and outputs z and y
has state-space entries which are Fractional functions of the
time-varying parameter ©(t). The definitions of signals are
as follows:

e u is the control input.

e w is the vector of exogenous signals.
e 2 is the vector of regulated variables.
e y is the measurement signal.

For the uncertain plant (4) the purpose of robust control
is to find a LTI (Linear Time-Invariant) controller (6)
itk = Akxk + Bgy 6)

u=Cgxrx + Dry

such that
e the closed-loop system is internally stable,

e the Ls-induced gain of closed-loop operator mapping w
to 2z is bounded by 7.

Moreover, the above specifications must hold for all addmis-
sible values of the parameter O(t) defined by (5).

It is now well-known that such problems can be handled
via a suitable generalization of the Bounded Real Lemma
which expresses as the existence of a Lyapunov matrix X,
and scalings @, S, R such that X, > 0 and

.ATXCe + XA X Bo + CZ)ST XeeB1 CgR ClT
BEX+SCo Q+SDeo+DseST SDe1 DEeR Dis

B X D&, ST —~I DE,R DYy | <0
RCo RDeo RDe1 —R 0
C1 Dio D1 0 —I

(7)

where the scalings @ < 0,R > 0 and S must satisfy the
LMI constraints Vi = 1,---, N:
) >0

(7)) (& 2)(%

The state-space data A, By, Cee, D¢ determine the closed-
loop system (4) and (6) with the loop we = O(t)ze open,

The Bounded Real Lemma conditions (7) are then sim-
plified by means of the Projection Lemma [6, 8], and the
following characterization, more easily amenable to numeri-
cal computation, is obtained.

(8)

Theorem 2.1 Consider the LFT plant governed by (4)
where © is ranging over the polytopic set P defined in
(5). Let Nx and Ny denote any bases of the null spaces
of (Ca, D2, Da1) and (B, DL,, DL), respectively. Then,
there exists a controller such that the closed-loop system
is well posed and the Bounded Real Lemma holds for all
admissible © € P and with Lo gain performance -y, if
there exist a pair of symmetric matrices (X,Y) and scal-
ings Q,S,R,Q,S and R such that the LMIs (9)-(12), and
the nonlinear algebraic constraints (13) below are met:

ATX+XA XBo+CEST XxB1 CEZR cCf
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3 AUGMENTED LAGRANGIAN METHOD

0O,
I

) >0 Vi=1,---,N (12

(13)

In this section, we present our approach to finding local so-
lutions, in a sense to be defined later, to the robust syn-
thesis problem in Theorem 2.1. We recast it as an opti-
mization problem using a cost function which combines the
Ly-gain performance index v and a penalty term account-
ing for the nonlinear constraint (13), attributing a high cost
to infeasible points. The LMI-constraints, being different in
nature, are not included in the objective but kept explicitely.
Our approach is known in nonlinear optimization with a fi-
nite number of equalities [5] as an augmented Lagrangian
method, and we extend it here in a natural way to include
LMI constraints. The entire procedure is then a sequential
semi-definite programming (SSDP) scheme inspired by the
sequential quadratic programming (SQP) method in classi-
cal optimization.

In order to simplify the expressions, we shall use the fol-
lowing notations. Define new variables P, P as :

r-(83) (8 1)

ST R ST R
Let X be the convex set of LMI constraints (9)-(12), and =
be the complete vector of decision variables z = (v, P, P).
The robust control problem is equivalently formulated as :

(14)

min{y:Pﬁ—I:O,weX}, (15)

The key idea in solving (17) is now to eliminate the non-
convex constraints (13) by including them into a partially
augmented Lagrangian function. This allows us to break
the difficult non-convex synthesis problem into a series of
easier LMI subproblems. The non-convex problem (17) is
now approximated by a series of new optimization problems
each of which involves minimizing the augmented Lagrangian
function, ®.(x, A), defined as:

o~ c ~
Oo(x,A) =7+ > _Ay(PP—1I)i + EZ(PP—I)%

ij ij

subject to the LMI-constraints (2). In matrix form, the new
objective is:

®.(z,A) = 7+Tr(A(P13—I)) + gTr((Pﬁ—I)T(Pﬁ—I)) :
(16)

where ¢ is a positive penalty parameter and A is a Lagrange

multiplier. Each of the new optimization problems

minimize  ®.(z, A) (17)
subject to z € X

can then be solved by a sequence of SDPs. At the current
position z, a new iterate =1 is obtained by minimizing a
second-order Taylor series approximation of ®.(-,A) about
the current z subject to the LMI-constraints. We must keep
in mind, however, that the variables v, P, P are linked to
the Lyapunov variables X and Y appearing in the LMI con-
straints (9)-(12).

Let (z*,A*) be a local minima-lagrange multiplier pair of
(17). There are now two mechanisms by which the minimiza-
tion of (17) can yield points close to z* [5]. Clearly, when A
is close to A*. If this is not the case, it is still reasonable to
infer that exists a local minimizer of ®.(.,A) close to z* if ¢
is chosen sufficiently large, say ¢ > ¢ for a certain threshold
¢. In fact, by taking c large, we attribute a high cost to
infeasible points, so the local minimizer of ®.(.,A) will be
nearly feasible and we can expect ®.(x,A) to be close to ¥
for nearly feasible z. This suggests that in both cases, we
can obtain good approximations to z*.

To ensure that A tends to A* during the iteration, we
consider an intelligent update of A7 based on first-order La-
grange multiplier estimates [5, 4]:

N = N 4 (P Py = 1)

This updating rule improves the convergence to a local min-
imizer z* even when the penalty parameter c is not large [5]
and thus, numerical ill conditioning is avoided.

3.1 Lagrangian algorithm

Step 0. Initialization. Initialize the algorithm by deter-
mining a feasible point of the LMI constraints: For fixed
large enough v = 4o, find an initial point that renders
the LMIs (9)-(12) maximally negative by solving the
SDP:

min {t . LMIs (9)-(12) < tI}.

Then, determine Xq, Yy, Py and ]30 so that Poﬁo -1
is as close as possible to zero. This can be done us-
ing the techniques in [1, 2]. Then initialize the penalty
parameter ¢® > 0 and the Lagrange multiplier A°.

Step 1. Lagrangian minimization. For j = 0,1,- - - min-
imize the augmented Lagrangian ®;(z) := ®.i(z, A7)
associated with A7, ¢/ subject to x € X. The solution
so obtained is .’L'j+1 = (7j+17 Pj+1,Pj+1).



Step 2. Update penalty and multiplier.
A = A 4 (P Py — ).

i1 { pc’ if ||Pjs1Pip1 = I|lr > pl|PjP; — I||F
c =
cj

for given p and pu.

if ||Pjit1Pi —I|lp < pllPB; —I||p
(18)

Step 3. Terminating phase. Due to non-linearity the al-
gebraic constraint (13) is never exactly satisfied at 2771.
It is, however, possible to terminate the program with-
out strict satisfaction of the nonlinear constraints by a
simple perturbation technique [1], which is applicable
as long as the LMIs (9)-(12) are strictly satisfied. One
can then replace 13]-+1 with P];ll and check whether the
LMTI constraints (9)-(12) hold, possibly with new X and
Y. In this case a controller is readily obtained. Du-
ally, we can replace P ; with P;;Y and check the LMI
constraints (9)-(12), with the scaling constraint in (12)
suitably replaced with its dual form

T
(_({)T) 13j+1( —({)T. ) <0, Vi=1,---,N.

If the test fails, set j = j + 1 and return to Step 1.

3.2 Choice of parameters

An important practical question is how to select the initial
multiplier A° and the penalty parameter sequence ¢/. Any
prior knowledge should be exploited to select A° as close as
possible to A*, but this is generally difficult. Concerning the
penalty parameter sequence ¢ some important remarks are
in order:

e the initial value of ¢ should not be too large. This
increases the number of steps, when the

o ¢J should not be increased too fast to a point where the
sub-problem (17) becomes ill-conditioned.

e ¢/ should not be increased too slowly, at least in the
early steps,

A good practical scheme is to choose a moderate value
c®, and then during an initial phase increase ¢/ by a factor
p > 1 only if the constraint violation measured by ||PP—I||r
is not decreased by a factor 0 < g < 1 over the previous
minimization as in (18). Typical values are p = 4 and p =
0.2.

3.3 Modified Newton method

We have not specified in which way the minimization of
®,;(x,A7) in step 1 of the algorithm should be achieved.

As a first option, we propose to use a Newton type method
which minimizes the second order Taylor polynomial

Y(8) = B;(x) + VO, (z)6 + %JTVQQJ-(@")(S (19)

of ®;(z) about the current iterate z and subject to the con-
straint set  +¢& € X in order to obtain the next iterate z.
When combined with a line search, this provides the new
iterate T = x + td with an appropriate ¢ > 0.

A difficulty with Newton’s method occurs when the Hes-
sian V2®;(z) is not positive definite. In this case, modify-
ing the inertia of V?®;(z) may be advised, for instance by
adding a diagonal correction matrix ¥ rendering the matrix
V2®;(z) + ¥ positive definite and reasonably well condi-
tioned. Different techniques have been proposed in the liter-
ature [?]. In most schemes, a modified Cholesky algorithm
is used and pivot entries are sequentially introduced to meet
the positive definiteness condition.

4 NUMERICAL EXPERIMENTS

This section provides two applications of the techniques
just discussed. As compared to previously developed
techniques like Frank & Wolfe [1], our approach is in many
respects superior. Firstly, the Frank & Wolfe algorithm
is not guaranteed to find a local optimal solution and
might be subject to zigzagging in the final steps. When
well implemented, however, the augmented Lagrangian
method is characterized by good convergence properties.
Convergence to a local solution with linear rate for any
feasible starting point. Furthermore, the approach here
is more general since a best 7 level is computed whereas
the Frank & Wolfe technique will require a less efficient
dichotomy scheme to minimize . Through examples, we
shall also discuss the efficiency of the approach as compared
to the classical D — K iteration method which does not
enjoy good convergence properties.

4.1 Autopilot robust control of missile

Z

Figure 1: Aerodynamic model for air to air missile



Consider the missile-airframe control problem illustrated
in Figure 1. when the vehicle is flying with an angle of at-
tack (a). The control problem requires that the autopilot
generate the required tail deflection (6) to produce an angle
of attack. corresponding to a maneuver called by the guid-
ance law. Sensor measurements for feedback include missile
rotational rates ¢ (rate gyros) and «. For the problem con-
sidered here. it is desired to track step input commands a.
with a steady state accuracy of 1% and to achieve a rise
time less than 0.2 second, and limit overshoot to be 2% over
a wide range of angles of attack £20 deg and variations in
Mach number 2.5 to 3.5.

The numerical data subject to the LFT model (4) are given
in appendix A. The optimization technique discussed in this
paper is then immediately applicable and results are shown
in Table 1. We note that good value of « is achieved after a
few iterations with fast rate of convergence.

4.2 Comparison with  — K iteration

In this section, we provide a brief comparison with D — K-
iteration method. The general scheme is as follows.

Step 1. Find an initial controller that stabilizes the closed-
loop system.

Step 2. Analysis phase : for fixed controller, find the opti-
mal v subject to the LMI constraints (7)-(8).

Step 3. Compute the scaling @, S and R so that the non-
linear constraints (13) holds.

Step 4. Synthesis phase : for fixed scaling, minimize «y sub-
ject to LMI the constraints (9)-(11).

Step 5. Compute the new controller and return to Step 2.

We observe that this coordinate descent technique fails to
achieve an adequate value of v, Table (2) as compared to
the Lagrangian method in Table 1. Also, the convergence is
fairly slow and exhibits a typical gradient behavior.

5 CONCLUDING REMARKS

In this paper, we have developed an Augmented Lagrangian
technique for finding local solutions of robust control prob-
lems. The proposed technique is an extension of classi-
cal Augmented Lagrangian ideas where LMI constraints are
handled explicitly in the course of the algorithm. There-
fore, it is easily implemented with available SDP codes. The
overall method is highly reliable as demonstrated on a set
examples, and has sound convergence properties. Finally, it
provides remarkable advantages in terms of efficiency and re-
duced conservatism over customary D — K-iteration schemes.

A Missile state-space data

The LFT model for missile autopilot example are given as

—0.876 1 —0.1209 0 0.273 0.201 1.185 0 0|0 O 0
8.9117 0 —130.75 0 23.46 86.32 0 3 1|10 O 0
0 0 —150 0 0 0 0 0 0|0 O |150

—1 0 0 —0.05| 0 0 0 0 0|0 1 0

1 0 0 0 0 0 0 0 0|0 O 0
0.5 0 0 0 0 0 0 0 0|0 O 0
—0.123 0 —0.017 0 0.038 0.028 0 0 0|0 O 0
0.495 0 —7.264 0 1.303 4.796 0 0 0|0 O 0
1.485 0 —21.79 0 3.91 14.38 0 5 0|0 O 0
—0.25 0 0 3.487 0 0 0 0 0|0 25| 0
0 0 -3 0 0 0 0 0 0|0 O 3
-1 0 0 0 0 0 0 0 0|0 1 0

0 -1 0 0 0 0 0 0 0].01 O 0

The vector z is chosen consist of two components, z, corre-
sponds to a frequency weighted sensitivity design goal, and
25 to limit the tail-fin actuator rate 6 . The vector w content
the commande a, and the pitch rate sensor noise n.

Constrained Newton

step o4 |PP —I|| c step o] |PP —I| c
0 5 8.037 e-04 0.125 7 0.912 1.235 e-02 0.5
1 3.172 7.127 e-00 8 0.914 7.742 e-04 2
2 1.875 9.512 e-00 9 4.595 e-04
3 0.987 5.652 e-00 10 0.915 9.215 e-05 8
4 0.941 2.751 e-00 11 0.915 5.247 e-06 32
5 0.915 2.974 e-01 12 1.542 e-07 128
6 0.907 7.892 e-02

Table 1: Behavior of Algorithm 3.1 for Missile autopilot
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Classical © — R iteration Approach
step | phase v step | phase vy
1 A 4.871 8 S 2.280
2 S 3237 9 A 2.252
: : : 10 S fail

Table 2: Behavior of the classical ® — R iteration approach



