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Abstract

A new global optimization algorithm for solving Bi-
linear Matrix Inequalities (BMI) problems is developed.
It is based on a dual Lagrange formulation for comput-
ing lower bounds that are used in a branching proce-
dure to eliminate partition sets in the space of noncon-
vex variables. The advantage of the proposed method
is twofold. First, lower bound computations reduce
to solving easily tractable Linear Matrix Inequality
(LMI) problems. Secondly, the lower bounding pro-
cedure guarantees global convergence of the algorithm
when combined with an exhaustive partitioning of the
space of nonconvex variables. Another important fea-
ture is that the branching phase takes place in the space
of nonconvex variables only, hence limiting the overall
cost of the algorithm. Also, an important point in the
method is that separated LMI constraints are encapsu-
lated into an augmented BMI for improving the lower
bound computations. Applications of the algorithm to
robust structure/controller design are considered.

1 Introduction
A general BMI problem can be formulated as follows

min {(¢,z) + (d,y) : (1)
zeX =" ¢"ICR" (2

Go+Y 4Gy <0, (3)

j=1
n m n m

Lo+ Z ziLio + Z YyjLoj + ZZ ziy;jLij <0, (4)
i=1 j=1 i=1j=1

where Go, G}, Lo, Los, Ljo, L;; are symmetric matrices
of appropriate sizes and x and y are the decision vari-
ables.

It is widely recognized that such BMI problems arises
frequently in the study of control problems and thus
they constitute a very important class of optimization
problems with a vast array of potential applications.
Unfortunately, in contrast to linear matrix inequality
(LMI) problems which are convex and can be solved by
polynomial-time interior-point methods, BMI problems
(1)-(4) are nonconvex and known to be NP-hard [19].
The hardness comes from the BMI constraint (4).
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Alternatively, the BMI (4) can be rewritten as

Lo+ Zl’iLiO + ZijOj + ZzwijLij <0, (5)
i=1 j=1

i=1j=1
Wij = TiYj, ]: 1521 <oy T J = 172’ e MM, (6)

where (5) is now a convex LMI constraint in (z,y, w)
and (6) is a nonconvex indefinite quadratic constraint.
Therefore techniques which can efficiently handle the
quadratic constraint (6) are of special interest for solv-
ing (1)-(4).

Obviously, the LMI constraint (3) includes as a par-
ticular case the box constraint

y€l[r,s]C R™ (7)

and other linear constraints for y.

Goh et al. [10] proposed a simple branch and bound
(BB) algorithm for problem (1), (4), (7) with branching
in the (z,y)-space of all variables hence of dimension
n + m, and bounding based upon a relaxation of the
nonconvex constraint (6) for (z;,y;) € [ps, ¢] % [rj, 5]
by a coarse approximated constraint

w;; € [piry, qisj] - (8)

It can be assumed without loss of generality that p; > 0
and r; > 0. Note that the nonconvex quadratic con-
straint (6) has been well studied in global optimization
and it is classically known that a much tighter relaxed
constraint than (8) for (6) (see e.g. [15, 2, 12, 18]) is

given as

max{r;¥; + piyj — Pitj, ;T + GY; — 6Sj} < wij <
min{s;; + piy; — pisj, vj%i + ay; — G}
(9)
In [3, 22] it is further shown that functions max and min
in (9) are in fact concave and involves convex envelopes
of the bilinear function z; y; in (6). The constraint (9)
is nothing else than the following constraint

convex hull  {(p;,r;,pirj), (s, s5,pi8;), (10)
(Qi;rj;Qirj);(Qizsj;Qisj)}

which is used in [11] to compute a lower bound of (1)-
(4). However, the form (9) which is an explicit descrip-
tion of (10), is more convenient for computational im-
plementation. Both (9) and (10) have been essentially
established in [15].



On the other hand, the most fundamental convexity
property of the BMI problem (1)-(4) is that it becomes
convex when either y or z is fixed. Therefore, regarding
only z (when n < m) or y (when m < n) as ”complicat-
ing variables”, BB algorithms with branching only on
the space of complicating variables (instead of the whole
space of all variables as done in [10, 11]) have been pro-
posed in [20, 5, 6]. Such branching techniques are really
important as the global search procedure is restricted
to operate in the low dimensional space of dimension
min{n, m} compared with the dimension n + m of the
space of all variables and thus bring to a more reason-
able extent the difficulties of "the curse of dimension-
ality” inherent to most nonconvex problems. An im-
proved algorithm to that of [10, 11] has been proposed
in [13]. It requires computing a local optimal solution
of problem (1)-(4) at every iteration. Note that even
this local optimization problem is itself NP-hard and
therefore time consuming. The algorithm of [20] uses
the relaxed constraint (9) for obtaining a lower bound
and the d.c. (difference of convex functions) structure
(see e.g [14, 22]) of the nonconvex constraint (6) to per-
form the decomposition. In [5, 6], the authors proposed
lower bounds based upon 2™™{%™} LMI relazed convex
problems of the Lagrange dual problem of (1)-(4) by
fixing the complicating variables followed by a general-
ized Bender decomposition. While the convergence (to
a global optimal solution) of algorithm [20] has been
shown, it remains a very delicate issue in the algorithm

of [5, 6].

In this paper, we first convert the BMI problem (1)-
(4) into a BMI problem with special structure. Exploit-
ing this structure, the Lagrange dual problem is shown
to be an LMI problem and is used to compute a new
lower bound. This lower bound is then encapsulated in
a general rectangular partitioning scheme to constitute
the proposed global algorithm. With the proposed de-
composition technique, we provide a rigorous proof of
global convergence of our algorithm.

The organization of the paper is as follows. Section
2 investigates the dual BMI problem which is used in
Section 3 to compute cheap lower bounds. The new BB
algorithm is also established in this section. Finally,
an application of the proposed algorithm to a robust
structure/control design problem is given in Section 4.
The notation in the paper is standard. {.,.) is the scalar
product in a finite dimensional linear space. A < 0
(A <0, resp.) for a symmetric matrix A, means that A
is negative definite (semi-definite, resp.). Accordingly,
A < B for symmetric matrices A and B means that
A — B is negative definite. Also, Tr(A) stands for the
trace of A. To save a description space we shall use

Bl e o)

Finally, z > p for vectors in R™ indicates component-
wise inequalities z; > p; with ¢ = 1,2, ... n.

2 The BMI Problem and its
dual

Without loss of generality, we assume throughout that
n < min (1)-(4). By translation if necessary, we can
assume that y € RJ. For fixed x problem (1)-(4) is
a convex LMI problem, so = can be considered as the
complicating variable[14, 22]. Based on this observa-
tion, our target is to develop a BB method for solving
(15) with branching performed upon z. For this pur-
pose, for M = [p,q] C X, we are interested in the
subproblem

min (c,z) + (d,y) : =€ M =Ip,q],

(3) = (4)

which can be rewritten as

min t : z€ M =[p,q], (11)
Aoo(x) + D yiAjo(x) <tQoo  (12)
ji=1
with
_ Gy
Aoo(l‘) = LO + Z miLiO s
i=1
- (:L‘,C) d
- G
- . (13)
Ajo(aj) = LO]’ + ZmZLZ] ,7=1,..m;
i=1
. d; d
01
QOO = 0 .
1- d

Note that the LMI structure of (3) is hidden in (12).
It is possible to exploit this substructure and the box
constraint z € M to augment the BMI constraint by
additional BMI constraints which leaves the optimal
value of the program (11)-(12) unchanged but leads to
improved lower bounds.

Proposition 1 LMI (3) with the boz constraint (11)
wn force infer the additional set of BMI constraints

(2i = pi)Go+ Y _yi(z:i —pi)G; < 0;

ji=1
SN , (14)
(¢ —2)Go+ Y _yilei —z)G; < 0,
j=1
i=12 ..n.

Thus we can convert (11)-(12) into the following BMI
problem

fir=min 1 Ag(z,p,q)+ >y Aj(x,p,q) < 1Q,
j=1
y>0, 2z €M,

(15)



Aj(l‘)=[ Ajo() ]d

4j1(z, p,q) ’
p1)G;
(41 —1‘1)(
Ajl(ﬂ?,p,q): ) ]—Oala y
(#n = pn)Gj
(qn—rn)GJ d

The Lagrange dual of (15) is then described as

g =
{t + Tr[Z(Ao(z,p, q) +

max min
Z>0 tER,y>0,0€M

Zyy (z,p,9) —tQ)]} =

r;g.())({mln Tr(ZAo(a: p,q)): Tr(ZQ) =1,

Tr(ZAj(z,p,q)) >0, Ve e M, j=1,2,...,m} (16)

We note that generally gy < fj,, since there is a du-
ality gap in nonconvex problems. However, when M is
just a singleton then (15) is convex and gy = fj; un-
der the standard constraint qualification in semidefinite
programming. Thus as shown in the next sections, we
can reduce the duality gap f3; — gy by partitioning X .
As shown hereafter, problem (16) actually is an easily
tractable LMI optimization problem. This is in sharp
contrast with the generalized Bender’s decomposition
for (15) in [5, 6] where a nonconvex dual problem has
to be considered.

3 A Branch and Bound Method
and its convergence

For every rectangle A/ C X denote by (Q(M)) problem
(16). Since A;(z,p,q) is affine in z, we infer

min Tr(ZAo(:lz p,¢)) = min

Tr(ZAo(z,p,q)),
reEM rvevert(m) (Z4o(2,p,0))

and

Tr(ZAj(x,p,q)) >0, Ve e M &
Tr(ZAj(z,p,q)) > 0, Yz € vert(M),

where vert(Af) stand for the set of vertices of M.
We deduce that (Q(M)) is equivalent to
max{ min

Tr(Z Ag(z, p, :
Z20 "pevert(M) (Z4o(2,p,9))

T(7Q) = 1, Te(ZA;(z,p,q) 20 (17
Ve € vert(M), j=1,2,...m

which is actually an LMI program, alternatively rewrit-
ten as

Yy = max{t: Tr( Ao(z p,q)) >,
Tr(ZAj(z,p,q)) > 0, z € vert(M),
Jj=1, 2 ) ey MY,
Te(ZQ) = 1, Z > 0}

Clearly, ¥3, < fir, 1.e. ) is a lower bound for fj,.
Using this lower bound, we can conceive the following
BB algorithm for solving the BMI problem.

Algorithm

o Initialization. Let (z',y',#1) be an initial feasible
solution with #' = Amax [Aoo(il)—i—zgnzl Q}Aj (z1)].
Set My = X,8 = Py = {Mo}. Set k = 1.

o Step 1. For each rectangle M = [p, q] € Py, solve

rélg%({mlﬂr} Tr(ZAo(z,p,q)): Tr(ZQ) =1,
r€
Tr(ZAj(z,p,q)) > 0, Vo € vert(M)}

to obtain #},.

e Step 2. Delete every rectangle M € &, such that
Ui > tF —¢. Let Ry, be the collection of remaining
rectangles.

o Step 3. If Ry, = 0 then terminate: (z*, y* #*) is an
g-optimal solution.

o Step 4. Let My € argmin{¢},| M € Ry}

Compute a new feasible solution by local
search from the center of M (or by solving
an LMI program, see Remark below).  TLet
g+l yh+l #8+1) be the new incumbent with
41 2 Ao+ 7, 1 A ()

o Step 5. Bisect My upon its longest edge. Let Ppyy
be the partition of My.

o Step 6. Set Sp41 = (Rk \ {]\'f}c}) UPrt1, kb —k+1
and go back to Step 1.

An important question concerns the convergence
properties of the proposed BB algorithm. The answer
turns out to be positive under the following standard
regularity assumption [21].

’I\I‘(ZlAJO($)) > 0, ] = 1,2, ,m

Note that (R) simply means that that whenever z € X
is fixed there is no duality gap between (1)-(4) and its
dual [16]. Such assumption is present in every primal-
dual algorithms of semi-definite programming. Alter-
natively, we can replace this assumption by the strict
feasibility of (3)-(4) for every fixed z € X.

In step 4 of the algorithm a new incumbent is easily
generated as follows. Let z* be any point of M}, then
an optimal solution (y*,#*) of the LMI program

min{¢ : Agg + Z yjAjo(iEk) <tQ,y >0}

j=1

yields a feasible solution (z*, y* #*) of the primal prob-
lem.



4 Application to a robust con-
trol problem

In this section, we provide a simple illustration of the
proposed method for solving BMI problems which can
serve as our preliminary computational result. The
best illustration for this is a a problem which can be
reduced to the form (1)-(4) with n small compared
with m. Thus, we consider an H control problem in
which both the controller and some plant’s coefficients
or structure can be designed simultaneously.

In this example, the plant type is given beforehand,
but parameter values are adjusted off-line to improve
the performance of the overall system. Our aim is to at-
tenuate the effect of disturbances on the mass in a mass-
spring arrangement. The controlled system is shown in
Figure 1, where z is the position of mass, u is the control
force input, w is the disturbance force, m is the mass
(m = 4), k and ¢ are the spring and damping coeffi-
cients which are allowed to take values in a parameter
box H,

pi=(k,c)€ H=[4,12] x [0.5,1.5].

u
%w
k
J\/W
— m
1

c O

Ly
Figure 1: The mass-spring-damper system
The controlled output z and measurement output y are

c=[oul, y==.

Considering [z, Z]" as the state vector, the generalized
plant is given as

0 1 010

PN R P ey 4

P(.S): Cl 0 D12 = 1 0 0 0
Cy| Doy O 0 0 |01

1 0 010

Now, the problem can be stated as to find an internally
stabilizing proper controller K(s) and a parameter p €
H minimizing the Hy, norm ||T,4]|co, Where Ty, is the
closed-loop transfer function from w to z. It is well
known [8] that this problem has the BMI formulation

(P) minimize ¥

A(p)R+ RA(pY RC{ By ]

N CiR —~I 0 N1 <0
B! 0 —yI |
A(pYS+54(p) 5B Cf ]

N} B!S —~I 0 | MNa<(q18)
Cq 0 =1
R I
[ 13 ] =
peH,

where N7 and N> denote any bases of the null spaces
of [B), D},0] and [Cy, D2y, 0], respectively.

It is important to note that the dimension of the
complicating variable p in (18) is just 2 and compares
favorably with the dimension 9 of the all decision vari-
ables (v, R, S,p) in (18). Thus, our BB algorithm with
branching performed in a subset of space R? is really
advantageous compared with BB algorithms operating
in R°. The optimal solution is

(kopt, copt) = (11.969,1.469),

0.1351 —0.0248

Ropt =1 _0.0248 04043 |
o [ 928827  1.4606e7"
Pt = | 1.4606e=8 3.2739¢7

From Table 1, we can see how the duality gap is reduced
along iterations. The benefit of the structure design is
clear by looking at Table 2, where the performance of
the plant with the optimal structure has been improved
compared with the nominal plant. The step responses
of given in Fig. 2 confirms that tracking performance
of the optimal structure systems is much better than
that of the nominal plant.

5 Concluding remarks

A new convergent BB algorithm of global optimization
for solving BMI problems is proposed. First of all, the
original problem is reduced to a convenient form such
that its Lagrangian dual problem is just a convex LMI
optimization problem which is used for computing lower
bounds. Exploiting the most useful characterization of
BMI that it becomes convex when a certain number
of so called ”complicating” are held fixed, the duality
ﬁap is reduced by an exhaustive partitioning on a re-
uced space of tﬁese variables which favorably limits
the overall cost of the algorithm. The viability of the
proposed algorithms is confirmed by solving a robust
structure/control design and other computational ex-
amples.
Acknowledgments. We are greatly grateful to Pro-
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Figure 2: The tracking performance of the optimal
structure plant (solid) and the nominal plant (dot) un-
der the step disturbance

iteration | lower bound | current best value
1 0.240 0.579
2 0.293 0.536
3 0.321 0.518
4 0.323 0.518
5 0.339 0.509
6 0.336 0.428
7 0.344 0.424
8 0.347 0.424
9 0.347 0.392
10 0.351 0.391
11 0.347 0.391
12 0.353 0.391
13 0.353 0.391
14 0.353 0.376
15 0.354 0.376
16 0.356 0.375
17 0.357 0.375
18 0.357 0.369
19 0.357 0.369
20 0.359 0.368

Table 1: Performance of the algorithm. Total cputime
1s 598 sec.

parameter (k, c) performance level yop¢
(11.969,1.469) (optimal) 0.3681
(8,1) (nominal) 0.5791

Table 2: comparison with nominal case



