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Abstract

A new Branch and Bound (BB) algorithm for solving a general class of Bilinear
Matrix Inequality (BMI) problem is proposed. First, Linear Matrix Inequality (LMI)
constraints are incorporated into BMI constraints in a special way to take advantage of
useful informations on nonconvex terms. Then, the nonconvexity of BMI is centralized
in coupling constraints so that when the latter are omitted, we get a relaxed LMI
problem for computing lower bounds. As in our previous developments, the branching
is performed in a reduced dimensional space of complicating variables. This makes
the approach practical even with a large dimension of overall variables. Applications
of the algorithm to several test problems of robust control are discussed.

1 Introduction

In this paper, we shall focus on the following BMI optimization problem

min (¢, ) + (d,y) - &
N1 Na N1 N2
Foo+ > ziFio+ Y _yiFoj + Y. Y wiy;Fyj <0, (2)
i=1 j=1 i=1j=1
N2
Go+ )Y y;G; <0, 3)
7j=1
z € [a,b], [a,b] C R, a >0, (4)

where Fj;, G; are symmetric matrices, ¢ € RN',d € R™?, and the interval inclusion (4)
must be understood componentwise, that is, a; < z; < b;, 1 =1,..., N;. Here (2) is BMI
in (z,y), while (3) is an LMI in y. From a practical point of view, we can assume that the
set of feasible solutions to the LMI (3) is compact.
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Clearly, the constraint
y € [c,d] C RN, ¢ >0 (5)

is a particular case of LMI constraint (3). The simpler feasibility problem (BFP) compris-
ing (2), (4) and (5) has been first considered in [8], using general-purpose BB procedures.
It has been later improved in [5] with a tighter relaxation inspired by indefinite quadratic
programming results [12, 13, 1, 9]. The branching in [8, 5] and most related works is
performed in the space of all variables (z,y) of dimension N; + Ny. This entails seri-
ous limitations for the practicability of these results in the control field. Indeed, BMIs
arising from control problems have large N1 + N even in the simplest applications. This
fact is also well recognized in global optimization. The efficiency of a global optimization
algorithm critically depends on the used branching space and this motivates the devel-
opment of recent decomposition methods in global optimization (see e.g. [10, 21]). This
idea is natural since in general the iteration number of a BB algorithm is mainly sensitive
to the branching space dimension. In [18] the following fundamental features of BFP (2),
(4)-(5) has been used: it becomes just convex LMI feasibility problem when either variable
x or variable y is held fixed. Thus, assuming N; < Ny (when N7 > N» we just exchange
the roles of z and y) only z can be regarded as the complicating variables responsible for
the hardness/nonconvexity of BFP and hence N; is regarded as the nonconvex rank of
BFP (2), (4) and (5) [10]. As a result, the branching in [18] is performed only in the space
of complicating variables x that makes the algorithm practical even for the case of large
N; + Ns, providing the nonconvex rank of BFP (min{Nj, N»}) is low. The algorithm of
[18] has been used successfully in [16] for solving BMIs arising from robust constrained
nonlinear control problems.

On the other hand, one can see that forms like (2), (4) and (5) are not the best
way for expressing BMIs arising from control problems. Instead, form (2)-(4) is more
natural and preferable. Of course, one may argue that LMI (3) is a particular case of BMI
(2) meaning that (2)-(4) can be equivalently recast as (4 and (3). This transformation,
however, obliterate the useful LMI structure of (3). On the other hand, the well-known
bounding techniques of global optimization [12, 13, 1, 9] used in [5, 18] exploit the box
structure of constraints (4) and (5) to handle the nonconvex constraint (2). Alternatively,
in [20], BFP (2)-(3) is transformed into a special form, whose dual Lagrangian is an LMI
optimization program used for computing lower bounds. The idea of [20] is that as the
space of complicating variables is iteratively partitioned, the resulting nonconvex duality
gap is reduced and this constitutes the basis for the convergence of the algorithm.

In this paper, similarly to [18, 20] the branching is performed only in the z-space of
complicating variables instead of the entire space of (z,y). With a new direct bounding
technique, we propose a novel BB algorithm solving problem (1)-(4), which is practical
even for large dimension of y provided that the dimension of z is relatively small. Our
idea here is to exploit maximally LMI constraints (3) to draw useful informations on the
nonconvex terms z;y; causing the nonconvexity of (2). Then, the nonconvexity of BMI
is reflected in these coupling constraints. When they are omitted, we get a relaxed LMI
problem, useful for lower bound computations.

The organization of the paper is as follows. Section 2 gives some BMI characterizations
of LMI constraints which serve as the basic tool for developing the BB method in Section 3.
BMI feasibility problems are discussed in Section 4. Finally, Section 5 provides numerical



examples illustrating the viability of our method.

2 BMI unification for LMI constraints

Set
wij:miyj,izl,...,Nl,jzl,...,Ng (6)

then (1)-(4) is equivalent to

min (c,z) + (d,y) : (3),(4), (6),

Z,Y,Wij

N1 Ny N1 N» (7)
o 3o+ 3ouRy + 33wy <0

i=1 j=1 i=1j=1

Thus the difficulty of problem (7) is concentrated in the nonconvex constraint (6). For
bounding, we have to compute a lower bound of (7) for

T €M = [p,q], q>p, (8)

with a given box or hyper-rectangle M = [p,q] C [a, b].

Our new idea here is to recast LMI constraints (3) and (8) independent of z;y; into new
LMI constraints involving the coupling x;y;. Thus, by setting w;; = z;y; we will get a
tight relaxed problem for computing a lower bound of (7) over z € [p, q].

Proposition 1 LMI constraints (8) and (8) are equivalent to the BMI constraints

Ng N2
(zi = pi)[Go+ D_yiGj] <05 (g — 2:)[Go+ Y _y;Gj] <O0. 9)
Jj=1 j=1

Proof Since the implication (3), (8) = (9) is obvious, let us prove the reverse implication.
By (9),

No No N2
(¢ — pi)[Go + D_y;Gy] = (@i — 7:)[Go + D>_ y; Gyl + (zi — pi)[Go + D_y;G4;]1 < 0
7j=1 7j=1 Jj=1
and since ¢; > p;, we have (3). Then (3) and (9) imply (8). O
Using (6), we can rewrite (9) as (6) with
Ny Ny
2;Go — pilGo + > y;Gjl + > wi;Gj < 05
]:]1\]2 ]:]1\[2 (10)
—2iGo + ¢i[Go + ) y;Gj] — Y w;iG; < 0.
j=1 j=1

Hereafter,we shall use the definitions:

rj = min{y;[(3)}, s; = max{y;[(3)}. (11)

The following proposition is central in the proposed approach.



Proposition 2 With the definitions (11), the constraints (10) implies

Piy; — wij — pirj + iz <0, (12)
pisj — xisj — piyj + wij <0, (13)
Tisj — ¢isj — wij + ¢iy; < 0, (14)
Wij — qiY; — Tirj +qir; < 0. (15)

Proof Let e denote the jth unit vector in RV2. By the Duality Theorem of Semi-Definite
Programming, there are matrices Z and Z; such that

Trace(ZGo) =rj, Z >0,
(Trace(ZG1), Trace(ZGs), ..., Trace(ZGy,))' = —¢€7,

Trace(ZlGo) = —S8y, Zl > O,
(Trace(Z,G1), Trace(Z1G), ..., Trace(Z1Gx,))" = ¢’.

(16)
(17)

Using (16) and the first LMI in (10) we have

N2 N2
0 > Trace[Z(z:Go — pi(Go+ > y;Gy) + > wiGy)]
=1 =1
j g .
= z;Trace(ZGy) — pi[Trace(ZGy) + Z y;jTrace(ZG;)] + Z Trace(ZG;)
j=1 j=1

= ZiTj — Pty + PiYj — Wiy,

which leads (12).
Analogously, (15) is a consequence of (16) and the second LMI in (10), while (13)

((14), resp.) follows from (17) and the first (the second, resp.) LMI in (10). .

The main result in this section is the following theorem.

Theorem 1 (i) (z,y) is feasible for the constraints (3) and (8) if and only if there exists
a symmetric matrizc W = [w;;] such that (z,y, W) satisfies (10).
(1) If (z,y, W) is feasible for (10) with x; € {p;,q;} then (z,y, W) is feasible for (6).

Proof 1t is obvious that if (z,y) is feasible for (3) and (8) then (z,y, W) with W = [z;y;]
is feasible for (10). Now, suppose (z,y, W) is feasible for (10). Then add the first and the
second LMIs of (10). We get (3) since ¢; > p;. Moreover, by (12)-(13),

piyj — piTj + 1% < wij < —pisj + xisj + Py (18)
= rj(®i —pi) < s5(7i — pi)
& (rj—sj)(zi—pi) <0
= T;2>2p;

Analogously, (14)-(15) imply z; < ¢;. Hence (8) is proved. Thus, the part (i) of the above
Theorem has been proved.

To prove the part (ii), note that when z; = p; then (18) implies w;; = piy; = 2y,
i.e. (z;,y;) satisfies (6). Analogously, with z; = ¢; then (14)-(15) gives w;; = qiy; = z;y;-
The proof is thus complete.
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The equivalence between (3), (8) and (10) in Theorem 1 will be very important for com-
puting upper bounds and in the subdivision strategy of our method.

Before closing this section, let us mention the following useful consequence of Theorem
1.

Corollary 1 A matriz P and scalar X\ satisfies conditions
A € [A1, A2, ||P — Bl <v, (19)

if and only if there is a matriz W of the same size of P such that (W, P, \) is feasible for
the LMIs

()\—/\1)1/1 W—)\lp— ()\—Al)PO >0
W' — AP — (A — AP, (A — Al = (20)
()\2 — /\)l/I )\2P —-W - ()\2 - )\)Po >0
XoP' — W' — (s — NP} (2 — Al =0
Moreover, if (W, P, X) is feasible for (20) with XA € {1, A2} then
W = \P. (21)

Thus, instead of separately handling each element of matrix variables W and P in
(19), which may destroy their useful structures and results in many linear constraints,
the result in Corollary 1 maximally exploits the matrix structures of variables and is very
convenient in the LMI-based setting. Interestingly enough, the well-known techniques
of indefinite quadratic program (see e.g. [12, 21]) used in [5, 20] are unable to handle
nonconvex constraints like (21).

3 BB Algorithm

Returning back to (7), by considering = as the complicating variables, we shall solve BFP
by a BB method in which branching is upon z.

Bounding

With a given M = [p,q] € [a,b], we have to compute a lower bound of problem (7) for
z € M. By Theorem 1, the ezact optimal value (M) of (7) for z € M is computed by
the nonconvex program

min (c,z) +(d,y) : (8),(6),(10),

Z,Y,Wij

cQ(M) ai Sz MERELE (22)
Foo+ Y ziFyo+ > _yiFoj + > > wyFy <O.
i—1 j=1 =1 j=1

Thus, by merely omitting the nonconvex constraint (6) in CQ(M), we get the following
LMI optimization problem which trivially provides a lower bound §(M) for (22),

LB(M) min (c,z)+(d,y): (22),(8),(10). (23)

Z,Y,Wij



Let (z(M),y(M),W(M)) be an optimal solution of LB(M) (23), then an upper bound of
(7) is provided by the following LMI program

min (c,z(M)) +(d,y) : (3),

Z,Y,Wij
UB(M) Ny N> N1 N2 (24)
i=1 j=1 i=175=1
Branching

Let M = [p,q] be the candidate for further subdivision at a given iteration and let
(z(M),y(M), W(M)) be an optimal solution of LB(M) as before. In view of Theorem 1,
if z;(M) € {pi,qi}.i = 1,2,..., Ny, then (z(M),y(M), W(M)) satisfies (6), i.e. S(M) is
the exact minimum of CP(M) and thus provides the global minimum value of (7) in our
BB process. Thus, to speed up the algorithm, we provide the following subdivision rule.

Subdivision rule. Define

wi = min{z;(M) — pi,qi —zi(M)}, i =1,2,..., Ny,

tp = ar¢g max ;
gi:l,Z,...,N1 Hi

(25)

Subdivide M by the line z;,, = ;,,(M).

We are now in a position to state our algorithm for solving the global optimal value of
problem (1)-(4) with a given tolerance € > 0.

BMI optimization Algorithm

Initialization. Start with My = [a,b] and 4° = +00 and any feasible solution (z°,°)
of (3)-(4) Set 81 == N1 == {M()} Set k = 1.

Step 1. For each M € N, solve LB(M) to obtain the optimal value (M) and an
optimal solution (z(M),y(M), W (M)). Solve UB(M) to update the best current value y*
with the corresponding current best solution (z*,y").

Step 2. In Sy delete all M such that S(M) > % — e. Let R, be the set of remaining
rectangles. If R, = ), terminate: ¥* is the e—suboptimal value with the corresponding
solution (z*,y").

Step 3. Choose My, € argmin{3(M)| M € R} and divide it into two smaller rectangles
M1, My, 2 according to the above subdivision rule. Let N1 = {My 1, My 2}, Sey1 =
(Ri \ My) UNiq1-

Set  <— x+ 1 and go back to Step 1.

The (global) convergence of the above algorithm is proved in the following theorem.



Theorem 2 The above algorithm will terminate after a finitely many iterations, yielding
the e—suboptimal value of problem (7).

Proof Suppose that the algorithm is infinite. Then by [21, Th. 5.5], the above subdivision
rules guarantees that the algorithm generates a nested of rectangles M, = [p”,¢"] - M* =
[p*,q*] such that z(M,) — z* with z} € {p},q¢'},i = 1,2,...,N;. Thus, as mentioned
before B(M*) = v(M*) > ~*, where v* is the global minimal value of (1)-(4). But by
construction procedure in Step 2, we have §(M,,) < v*—e by which we infer S(M*) < v*—e¢,

a contradiction. -

4 Remarks on the feasibility problems

An important particular case of BMI optimization problem (1)-(4) is the problem of check-
ing the feasibility of system (2)-(4). This can be reduced to the form

N1 Ny
min t: Fyy+ Z.’L‘Z i0 + Z yJF()j + Z szyjﬂj < tl, (26)
i=1 j=1 =1 j=1

(3), (4)

Obviously, the system (2)-(4) is feasible if and only if the optimal value t* of (26) is
negative. However, in contrast to the optimization problem (1)-(4), we can stop our
search as soon as we can draw the conclusion t* < 0 or t* > 0, without reaching the exact
value of t*. Also, the following features can be exploited. For every M, LB(M) is adjusted

to
N1 Ny

min ¢t: Fy + Z:IIZ i0 + Zy]FOJ + Z ZwZ]F’Z] <tl, (27)
i=1j=1
(8), (10)
Set

N1 Ny
f(z, y)—/\maxF00+237z zO+Zy]FOJ+ZZ$zyJ z]

i=1j=1

where Apax[-] stands for the maximal eigenvalue of a symmetric matrix. It is obvious that
the optimal solution (z(M),y(M)) of (27) is feasible for (3), (4) and by Proposition 2,
(#(M),y(M)) with &;(M) = w;;(M)/y;(M) is feasible for (3) and (4) too. Thus we can
use both f(z(M),y(M)) and f(Z(M),y(M)) for updating the upper bound for BB process
solving (26) instead of solving a LMI optimization problem like U B(M).

5 Numerical examples

5.1 Linear Parameter-Varying system analysis

Consider the linear time-varying system

& = A(t), A(t) € convex hull{A4;, Ay} (28)



with given matrices A1, As of dimension n X n. In the last few years, linear time-varying as
well as gain-scheduling systems have motivated new interests for developing tools (see e.g.
[2] and references therein). The main issue here is how to choose an appropriate Lyapunov
function for checking the stability of the system (28). It is known that fixed quadratic
Lyapunov functions V(z) = 2/ Pz with some positive definite matrix P may lead to very
conservative answers. In [3, 19] parameter-dependent Lyapunov functions have been used.
This way, the stability analysis problem is recast as the feasibility problem of parameterized
LMIs. An alternative method for the stability problem of (28) has been considered in [23]
by means of piecewise quadratic Lyapunov functions of the forms

V(z) = max{z'Piz,2' Pyx}, P, >0, P, >0 (29)
or V(z)=min{z'Piz,z' Pz}, P, >0, P, > 0. (30)

Using so called S-procedure with a variable reduction technique, it is shown [23] that
system (28) is stable if and only if the following matrix inequality conditions with decision
variables Py, P, 1,09 are feasible

(1—82) (AL P2 + PyA1) + 0a(P2 — P1) <0 (31)

(1 —61)(AyP1 + PLAy) — 01(P, — P1) <0, (32)

AP+ PA; <0, AAP,+ P As <0, 0<P <I, 0<P<I, (33)
0<4;<1,i=1,2 (34)

Now it is clear that (31)-(34) has the exact form of (2)-(4) where (41, d2) are the com-
plicating variables. Thus the nonconvexity rank of (31)-(34) is just 2 while the overall
problem dimension is n(n + 1) 4+ 2, thus much larger. Hence our BB algorithm is readily
applied to solve (31)-(34) independently of the dimension n of matrices in (28), whereas
most earlier algorithms of [8, 11, 5] have a trouble even for the smallest dimension n = 2
since they require branching performed in the space of dimension n(n + 1) +2 =8. It is
also clear that rewriting (31)-(34) in form (2)-(5) for applying the results of [8, 11, 5] will
destroy some useful LMI structure of (33).
Take the following data from [23]

Al:[—% —11] AQ:[—;)—;: —11] (35)

In [23], the authors used an heuristic gridding method with sampling interval 0.1 for (d1, d2)
to solve (31)-(34) and found the largest k£ > 0 such that the corresponding conditions (31)-
(34) are feasible. k = 4.7 has been obtained this way with (d1,d2) = (0.9, 0.8). It is obvious
that such a method requires solving not only many LMI problems but also is likely to miss
the optimal solutions. In contrast, our BB algorithm found, after a few iterations, that
the maximal value of k is k = 4.75. For this k, a solution to (31)-(34) is

1 = 0.85775, 8y = 0.79578,
~ [0.93375 0.16119 ~ [0.99311 0.07355
1= 1016119 0.23355|° “2 7~ |0.07355 0.21465

Note that we have used the Matlab LMI Control Toolbox [7] for all LMI-related compu-
tations.



5.2 Structure/controller design examples

BMIs like (31)-(34) also arise naturally from the robust structure/controller design [20, 15]
where the structure parameters (stiffness, spring and damping coefficients etc.) play the
role of complicating variables. Consider the mass-spring-damper system described by
Figure 1, where x is the position of mass, u is the control force input, w is the disturbance
force, m, k and c are the mass, spring and damping coefficients satisfying

0.125k 4+ ¢ > 2, 0.125k + ¢ < 2.5, (k—8.5)m+1<0, (¢c— 1.5)m <0,

(k,c,m) € H = [4,12] x [0.5,1.5] x [3, 5] (36)

Our aim is to attenuate the effect of disturbances on the mass in a mass-spring-damper
arrangement. Note that (36) prevents increasing k, ¢ while decreasing m simultaneously.

With the controlled output z = [z,u]’, the measurement output y = z, and the state
vector [z, %]" the generalized plant is described as

M~tA(k,c) | M~*B; M~'B

P(S): Cl 0 D12 ,
Cg ‘ D21 0
where

0 1 10]0
1 0 A(k,c)‘ Bl BQ -k —c|1]1
M:[O m] Ci ‘ 0 D |=| 1 01]0]0
Cy Dy 0 0 0 0|1
1 0100

Now, the problem can be stated as to find an internally stabilizing proper controller K (s)
and parameter h € H minimizing the Hy, norm of the closed-loop transfer function 7,
from w to z. Note that this problem is harder than that in [15, 20] as it additionally
includes the mass optimization requirement. From the main results in [6], this problem
has the nonlinear matrix inequality formulation

min_ v: (36)
,Yimik!ciRVS
A(k,c)RM + MRA(k,c)) MRC, B
N CiRM —~I 0 N1 <0
B, (I
Ak, c))M™'S + SM~'A(k,c) SM~'B, C, .
N BIM-1S AT 0 |[M<o BT
Ch 0 -1 |
R I
>
E

where N7 and N> denote any bases of the null spaces of [Bj, D},,0] and [Ca, D21,0],
respectively. The form (37) is not yet convenient for optimization purpose, so we perform
the congruence transformation diag[ M I] in the third inequality in (37) and the changes
of variables

R=MRM, m=1/m



to transform (37) to the problem

(P) min  v: (k,¢,m) € H =[4,12] x [0.5,1.5] x [0.2,1/3]
¥,m,k,c,R,S

0.125k + ¢ > 2, 0.125k +¢c< 2.5, k+m <85, c+m < 1.5
A (’ﬁl, k, C)R + RAll (m, k, C) RC{ B

N Ci1R —I 0 | M <O,
Bj 0 —I
Ag(m, k,c)'S + SAy(m, k,c) SBi(m) C -
N B(m).S T 0 |[My<o 39
Cy 0 -1
R M(1/m)
[ mimy s | =0
_ 0 m - 0 1
Al(mak’c) - [—k —cm] ’ AQ(ma k,C) - |:_km —cm] ’

sim=[2]. som=[} 5]

Obviously, the complicating variables of the above problem are (m, k,c), while the non-
linear terms arising in nonlinear matrix inequality (38) are

Ry = kR, Ry = mR, Re, = ¢cmR, Sz =mS, Sem = cmS, Sgm = kmS,t =1/m
(39)
For a sub-rectangle H = [k;, ko] X [c1,¢2] X [f1, 2], we have to relax the nonconvex
constraints caused by nonlinear terms (39) for computing a lower bound of (P) over H.
The nonlinear constraint ¢ = 1/m can be relaxed according to [18] as

|:t }:| > 0, mymot +m < My + mo. (40)
1 m

On the other hand, without loss of generality, we can assume that the optimal solution
R, S of (P) with (k,c,m) € H satisfies the “trust region” condition

l|[R—Rgl|| <vg, [|IS—Szll <vg (41)

with vy chosen depending on the size of H. Here Ry, Sy is the solution of (P) corres-
ponding to (m, k,c) = (m1 + mg, k1 + k2,¢1 + ¢2)/2 which can be used for updating the
current best value (upper bound) in our BB algorithm if they satisfies the constraint (36).
Then nonconvex terms Ry, Ry, R. = ¢R, Sy = kS, Sy = mS, S = ¢S arising in (39) are
relaxed using Corollary 1, while R,z according to Theorem 1 is relaxed to

Rep — iR —miR.+cymiR >0
R.m — coRz — moR:. + comaR >0
—Rem + a1 Rm + moR, — cimoR >0
—Rem + 2Ry + M1 Re — comiR >0

(42)

and it is analogous for Sz, Skm- The computational result for an optimal solution with
tolerance € = 0.01 is given in Table 1. One can see the benefit of both spring-damper
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problem optimal (k, ¢, m) opt. perform. v | # of iter.
nominal plant (8,1,4) 0.5791 1
spring-damper optimiz. (8.2510,1.2510,4) 0.4885 15
mass-spring-damper optimiz. | (8.1595,1.1779,3.0953) 0.4659 29

Table 1: Computational results for mass-spring-damper system

(m = 4 is fixed) and mass-spring-damper optimization. Note that the performance of our
algorithm is much worse (i.e. requiring many more iterations) if the standard bisection
rule is used instead of the subdivision rule (25).

Finally, let’s consider another widely used system of two masses connected by a spring
[22]

T 0 0 1 0 T 0

j)g 0 0 0 1 x9 0

) = + u + agqd),

I3 —k/m1 k/m; 0 0] |=z3 1/my ( ad) (43)
5.64 k/mg —k/mg 0 0 T4 0

z = [azzo u]',

Yy = 2 + Qyv,

with the designed parameters (k, m1, mo) satisfying the constraints

(k—0.5)mq1 —1<0,(k—3.5)m2+1<0, (k,mi,me) € [0.5,1.5] x [0.5,1.5] x [0.25,0.75].

(44)
Here m; and mgo are masses with position z1,z2, while k is the spring constant, w is the
control force input, d is the plant disturbance, v is the process and sensor noises and y
is the sensor measurement. The constants «, and a4 represent the noise to signal ratios,
while o is a constant weight. In contrast to the ACC benchmark problem considering
k,m1, mo as uncertainties [17], our problem is to find optimal parameters (k,m,m2) in
the set (44) and a stabilizing control K (s) to regulate the position zo with minimal control
energy, i.e. find (k, m1, mo) and K(s) minimizing the Hy, norm of T},,(s), transfer function
from w to z. By a similar argument, this problem can be transformed to the form like (P)
containing the nonlinear terms

mlR, kR, kng, kml.S‘, kaS,

which can be handled as in the previous mass-spring-damper example. Note that (44)
prevents either increasing k,m; simultaneously or increasing k,m; while decreasing mo
simultaneously. The computational results with (g, a,,aq) = (1,0.1,0.1) are given in
Table 2. In the problem of optimizing (k,m1) the value mo = 0.5 is held fixed. From
Table 1 and 2 one can see that the number of iterations is sensitive only to the number of
complicating variables (i.e. the dimension of the branching space).
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problem optimal (k,mi,mo) | opt. perform. v | # of iter.

nominal (1,1,0.5) 0.3907 1
optimiz. k,mq (1.4251,1.0785,0.5) 0.3440 21

(43)-(44) | (1.4635,1.0390,0.7642) 0.3396 34

Table 2: Computational results for two mass systems

6 Concluding remarks

A new BB algorithm for solving a general class of BMI problems is developed. A key
idea has been to incorporate LMI constraints into BMI constraint in a special way to
take advantage of useful informations on nonconvex terms. Moreover, the nonconvexity
of BMI is concentrated in coupling constraints so when the latter are omitted, we get the
relaxed LMI problem for computing lower bounds. As in the our previous developments,
the branching is performed in the space of complicating variables only to guarantee the
practicability of the algorithm even with a large dimension of overall variables. The vi-
ability of the proposed algorithm is confirmed by its applications to several problems of
robust control.
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Figure 1: mass-spring-damper system
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