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Abstract

A new global optimization algorithm for solving Bilinear Matrix Inequalities (BMI)
problems is developed. It is based on a dual Lagrange formulation for computing lower
bounds that are used in a branching procedure to eliminate partition sets in the space
of complicating variables. The advantage of the proposed method is twofold. First,
lower bound computations reduce to solving easily tractable Linear Matrix Inequality
(LMI) problems. Secondly, the lower bounding procedure guarantees global conver-
gence of the algorithm when combined with an exhaustive partitioning of the space of
complicating variables. A rigorous proof of this fact is provided. Another important
feature is that the branching phase takes place in the space of complicating variables
only, hence limiting the overall cost of the algorithm. Also, an important point in the
method is that separated LMI constraints are encapsulated into an augmented BMI
for improving the lower bound computations. Applications of the algorithm to robust
structure/controller design are considered.

1 Introduction

A general BMI problem can be formulated as follows

min (c,z) + (d,y) : z€ X :=[p’¢"] C R", (1)
m
Go+ Y y;G; <0, (2)
7j=1
Lo+ Y xiLio+ Y _yjLoj+ > xiy;Lij <0, (3)
i—1 =1 i1 =1

where Gy, G, Lo, Lo;, Ljo, L;; are symmetric matrices of appropriate sizes, p’ € R",q° €
R™ and z and y are the decision variables.

It is widely recognized that such BMI problems arises frequently in the study of control
problems and thus they constitute a very important class of optimization problems with a
vast array of potential applications. Unfortunately, in contrast to linear matrix inequality
(LMI) problems which are convex and can be solved by polynomial-time interior-point
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methods, BMI problems (1)-(3) are nonconvex and known to be NP-hard [19]. The hard-
ness comes from the BMI constraint (3).
Alternatively, the BMI (3) can be rewritten as

n m n m

Lo+ miLi+ Y yiLoj+ Y Y wiLy <0, (4)
i=1 j=1 i=1 j=1
Wij = T3Yj, .7 = 1725"'777'; .7 = 1323"'am7 (5)

where (4) is now a convex LMI constraint in (z,y,w) and (5) is a nonconvex indefinite
quadratic constraint. Therefore techniques which can efficiently handle the quadratic
constraint (5) are of special interest for solving (1)-(3).

Obviously, the LMI constraint (2) includes as a particular case the box constraint

y €[r,s] CR™ (6)

and other linear constraints for y.

Goh et al. [10] proposed a simple branch and bound (BB) algorithm for problem
(1), (3), (6) with branching in the (z,y)-space of all variables hence of dimension n + m,
and bounding based upon a relaxation of the nonconvex constraint (5) for (z;,y;) €
[pi, ;] x [rj,s;] by a coarse approximated constraint

w;j € [pﬂ"j, qz'Sj] . (7)

It can be assumed without loss of generality that p; > 0 and r; > 0. Note that the
nonconvex quadratic constraint (5) has been well studied in global optimization and it is
classically known that a much tighter relaxed constraint than (7) for (5) (see e.g. [15, 2,
12, 18]) is given as

max{r;z; +piy; —PiTj, $;Ti+¢iY; — ¢:s;} < wij < min{s;z; +piy; — pisj, i Ti+ qiy; — s}

(8)
In [3, 21] it is further shown that functions max and min in (8) are in fact convex and
concave envelopes of the bilinear function z;y; on the rectangles [p;,¢;] % [rj,s;]. The
constraint (8) is nothing else than the following constraint

(z4,y5,wi;) € convex hull{(p;,rj,pir;), (Pi> $5,Pis5), (75, 475), (Gir 85, 95)}  (9)

which is used in [11] to compute a lower bound of (1)-(3). However, the form (8) which is
an explicit description of (9), is more convenient for computational implementation. Both
(8) and (9) have been essentially established in [15].

On the other hand, the most fundamental convexity property of the BMI problem
(1)-(3) is that it becomes convex when either y or z is fixed. Therefore, regarding only
z (when n < m) or y (when m < n) as ”complicating variables”, BB algorithms with
branching only on the space of complicating variables (instead of the whole space of all
variables as done in [10, 11]) have been proposed in [20, 5, 6]. Such branching techniques
are really important as the global search procedure is restricted to operate in the low
dimensional space of dimension min{n,m} compared with the dimension n + m of the
space of all variables and thus bring to a more reasonable extent the difficulties of ”the
curse of dimensionality” inherent to most nonconvex problems. Let us remember here



that in general the number of iterations of a BB algorithm is an exponential function of
the branching space dimension. Therefore, in cases when min{n,m} is not excessively
large but max{n,m} may be large, the algorithms of [20, 5, 6] can work well whereas
those of [10, 11] are still handicapped by branching operations performed in a space of
dimension n + m. An improved algorithm to that of [10, 11] has been proposed in [13].
It requires computing a local optimal solution of problem (1)-(3) at every iteration. Note
that even this local optimization problem is itself NP-hard and therefore time consuming.
The algorithm of [20] uses the relaxed constraint (8) for obtaining a lower bound and
the d.c. (difference of convex functions) structure (see e.g [14, 21]) of the nonconvex
constraint (5) to perform the decomposition. In [5, 6], the authors proposed lower bounds
based upon 2™™{"™} [, MI relazed convex problems of the Lagrange dual problem of (1)-
(3) by fixing the complicating variables followed by a generalized Bender decomposition.
While the convergence (to a global optimal solution) of algorithm [20] has been shown, it
remains a very delicate issue in the algorithm of [5, 6]. This again demonstrates that the
convergence of global optimization algorithms is a difficult question that deserves careful
attention since contrarily to what is often believed, not all relaxations produce globally
convergent BB algorithms.

In this paper, we first convert the BMI problem (1)-(3) into a BMI problem with
special structure. Exploiting this structure, the Lagrange dual problem is shown to be
an LMI problem and is used to compute a new lower bound. This lower bound is then
encapsulated in a general rectangular partitioning scheme to constitute the proposed global
algorithm. With the proposed decomposition technique, we provide a rigorous proof of
global convergence of our algorithm.

The organization of the paper is as follows. Section 2 investigates the dual BMI problem
which is used in Section 3 to compute cheap lower bounds. The new BB algorithm is also
established in this section and its global convergence is proved in Section 4. Finally, an
application of the proposed algorithm to a robust structure/control design problem is given
in Section 5. The notation in the paper is standard. (.,.) is the scalar product in a finite
dimensional linear space. A < 0 (A < 0, resp.) for a symmetric matrix A, means that A
is negative definite (semi-definite, resp.). Accordingly, A < B for symmetric matrices A
and B means that A — B is negative definite. Also, T'r(A) stands for the trace of A. To
save a description space we shall use

A for A 0

Bl, 0 BJ
Finally, z > p for vectors in R" indicates component-wise inequalities z; > p; with i =
1,2,...,n.

2 The BMI Problem and its dual

Without loss of generality, we assume throughout that n < m in (1)-(3). The generalized
Bender’s decomposition method of [5, 6] is based on the following projection method. Let
f(z) be the optimal value of (1)-(3) with z € X fixed. Then (1)-(3) can be recast as the
projected problem

min f(z): z € X,



which is a minimization of the nonconvex function f(z) over the convex box constraint
z € X. Thus a BB algorithm involves at each iteration the lower bound computation for

min f(z): z € M, (10)

where M is some rectangle M = [p,q] C X. For every fixed z € M, a lower bound of
f(z) over M is the optimal value of the dual Lagrange problem of (1)-(3) (with z fixed)
which reduces to an LMI problem. Therefore, in this context, infinitely many LMI dual
Lagrange problems are required to compute a lower bound of (10). In [5, 6], 2" relazed
problems are used to replace this infinite number of dual Lagrange problems. Thus a
lower bounding step requires the solution of 2" LMI problems. Such relaxations for the
lower bound computation seems also to cause the main difficulty for the convergence of
the corresponding BB algorithm (see Remark in Section 3 below). Here, we shall present a
new technique using a special Lagrange dual problem which both bypasses the projection
and numerous relaxation operations but also requires only one LMI problem to determine
a new lower bound.

First, by translation if necessary, we can assume that y € R". For fixed = problem (1)-
(3) is a convex LMI problem, so z can be considered as the complicating variable[14, 21].
Based on this observation, our target is to develop a BB method for solving (15) with
branching performed upon z. For this purpose, for M = [p,q] C X, we are interested in
the subproblem

min (c,z) + (d,y) : z € M = [p,q|,
(2)-3)

which can be rewritten as

min t : z €M =[p,q|, (11)
m
Ago(z) + Y yiAj0(z) < Qoo (12)
j=1
with
Go G
n n 0
Ago(z) = | Lo+ _ziLio | , Ajo(z) = | Lo +> xilij | ,j=1,..n; Qo= 0] .
i=1 i=1 11,
<$,C> d d] d
(13)

Note that the LMI structure of (2) is hidden in (12). It is possible to exploit this
substructure and the box constraint x+ € M to augment the BMI constraint by additional
BMI constraints which leaves the optimal value of the program (11)-(12) unchanged but
leads to improved lower bounds. This comes from the fact that lower bounds are trivially
increased when constraints are added. This procedure appears to have a significant impact
on the efficiency of the global technique which is described in the sequel. The following
proposition whose proof is immediate, clarifies this point.



Proposition 1 LMI (2) with the box constraint (11) in force infer the additional set of
BMI constraints

n
(z: — pi)Go + Y _ yj(wi —pi)G; < 0;

j=1
" 14
(¢i — z:)Go + > yjlei —=:)G; < 0, (14)
7j=1
1=1,2,..,n
Thus we can convert (11)-(12) into the following BMI problem
fir==min t: Ag(z,p,q +Zyg i(z,p,q) <1Q, y >0, z €M, (15)
where
Ajo() [Qoo]
Aj z,p,q) = |: / )
]( P q) Ajl(w7p7Q) d Q Q QOI
(z1 —pl)Gj
(g1 — 21)Gj
Aji(z,p,q) = ,j=0,1,...,n (16)
(zn — Pn)Gj
(Qn - 33n)Gj d

The Lagrange dual of (15) is then described as

Yio=max omin {4 TrZ(Ao(z,p,q) + Zyg (z,p,q) —tQ)]} (17

The following alternate formulation turns out to be useful throughout this section.

Lemma 1 The Lagrange dual problem (17) can be equivalently formulated as follows.

max{min Tr(ZAo(z,p,q)) : Tr(ZQ) =1, Tr(ZA;(z,p,q)) >0, Vz € M, j =1,2,...,m}
Z>0 ‘zeM

(18)
Proof: For every Z > 0, we have
min{t + Tr[Z(Ao(z, p,q +Zy] i(z,p,q) —tQ)]: teR, y>0, xe M} =
min{t — tTr(ZQ) + Tr(Z Ay (z,p, q) +Zy] Aj(z,p,q)): teER, y>0, z€ M} =
min (1 —Tr(ZQ)) + min [Tr(ZAo(z,p,q)) + Zyg (z,p,q))]- (19)

teR y>0, zeM

We note also that

. o if Tr(ZQ) =1
Itrélfrzlt(l TT(ZQ))—{ —oo otherwise,

5



while

ggggél]&[’l‘f(ZAo z,p,q + Zy] :I,‘ » Dy Q))] =
min I;l;n[TI‘(ZAO .0, q)) + Zyj z,p,9))] =

zeM

mlnTr(ZAo(w p,q)) if Tr(ZAj(:v,p, q9)>0j=1,2,..m, Yz e M
—00 otherwise

Substituting the latter expressions into (19) yields (18). -
We note that generally 13, < f},, since there is a duality gap in nonconvex problems.
However, when M is just a singleton then (15) is convex and gar = f;; under the standard
constraint qualification in semidefinite programming. Thus as shown in the next sections,
we can reduce the duality gap fi, — ga by partitioning X. As shown hereafter, problem
(18) actually is an easily tractable LMI optimization problem. Efficient interior-point
algorithms [1, 9, 22] can thus be utilized to compute the lower bound (18). This is in
sharp contrast with the generalized Bender’s decomposition for (15) in [5, 6] where a
nonconvex dual problem has to be considered.

3 A Branch and Bound Method

For every rectangle M C X denote by (Q(M)) problem (18). Since A;(z,p,q) is affine in
x, we infer

min ’I‘I‘(ZAO(.’E P, Q)) = min Tr(ZAo(l‘,p, Q)),
TEM zevert(M)

and
Tr(ZAj(z,p,q)) >0, Ve € M & Tr(ZAj(z,p,q)) > 0, Vz € vert(M),

where vert(M) stand for the set of vertices of M.
We deduce that (Q(M)) is equivalent to

max{ min Tr(ZA¢(z,p,q)): Tr(ZQ) =1, Te(ZA;(x,p,q)) >0
Z>0 gevert(M) (20)
Vz € vert(M), j=1,2,...,m}

which is actually an LMI program, alternatively rewritten as

iy =max{t: Tr(ZAo(z,p,q)) >t, Tr(ZA;(z,p,q)) >0, Vz €vert(M), j=1,2,...m
Tr(ZQ) =1, Z > 0}

Clearly, ¥y, < fis, i.e. 1}, is a lower bound for f;,. Using this lower bound, we can
conceive the following BB algorithm for solving the BMI problem.

Algorithm

e Initialization. Let (z',7',#') be an initial feasible solution with #! = Apac[Ago(Z!) +
E;nlyA( )] SetM()—X,Sl— —{M()}. Set k= 1.



e Step 1. For each rectangle M = [p, q] € Py, solve

max{min Te(7 4o(z,p, q)) - Tr(2Q) =1, Te(Z4;(z,p,q)) 20, Vu € vert(M)}
T

to obtain },.

e Step 2. Delete every rectangle M € S such that 1%, > #* — e. Let Ry be the
collection of remaining rectangles.

e Step 3. If Ry, = 0 then terminate: (Z*,7*,#*) is an e-optimal solution.

e Step 4. Let My, € argmin{v},| M € Ry}.

Compute a new feasible solution by local search from the center of M (or by solving
an LMI program, see Remark below). Let (zF!,F*1 #*+1) be the new incumbent
with ##+1 = max[AOO( k+1 + Z_] |7 1+1A ( k—|—1)]_

e Step 5. Bisect My upon its longest edge. Let Pr1 be the partition of M.
e Step 6. Set Sg+1 = (R \ {Mg}) U P41,k < k+ 1 and go back to Step 1.

4 Global convergence

An important question concerns the convergence properties of the proposed BB algorithm.
The answer turns out to be positive as shown below.
From now on, the following standard regularity assumption is assumed.

(R) (ViL‘ € X) (321 > O) rPI(ZlQO()) =1, rPI(ZlAjo(.’E)) >0,7=1,2,...,m.

Note that (R) simply means that the convex dual problem of (1)-(3) for fixed z € X
is strictly feasible. It is just a standard technical assumption to ensure that whenever
z € X is fixed there is no duality gap between (1)-(3) and its dual [16]. Such assumption
is present in every primal-dual algorithms of semi-definite programming. When such
assumption does not hold, there are many ways to reduce any original problem to another
one which satisfies this assumption (see e.g. [7, section 2.5]). Alternatively, we can replace
this assumption by the strict feasibility of (2)-(3) for every fixed z € X.

Now, let {M}} = with M} = [p¥, ¢*] be a nested sequence of subrectangles of X such
that N2, M}, = {z}. For convenience, we shall write f}, 9}, 1% for Tang s Via, o @bz‘i}. Clearly,

i < fx (21)
Using (16) we can write

Yr =max{t : Tr(Z1Ao(z)) + Tr(Z2 A0 (7, P .q") >

Tr(Z1Ajo(z)) +Tr(Z2AJ1($ p*,d") > 0

Vi € vert(My), j=1,2,.

Tr(Z1Quo) = 1, Z1 > 0, 22 > 0} (22)

i =max{t : Tr(Z;Aw(z )) >t, Tr(Z1Aj(Z)) >0, j=1,2,...,m,
) =

Tr(Z1Qoo Zy > 0} (23)

EN|



Since x € My, Vk, we have
m
i <min{t: Ag(z) + ZyjAjo(f) < tQoo,y > 0}.
=1
By virtue of the duality theorem for semidefinite programming (see e.g. [16, section 4.2])

min{t : Ago(Z) + > yjAjo(Z) < tQoo,y > 0} (24)
j=1

= max{Tr(Zleo(:E)) : 'I‘I‘(ZlQo()) = 1, 'I‘I‘(ZlAJ()(.’Z')) > 0, j = 1, e,y Zl > 0}
= 1 (from the definition (23) of 9%).

Hence,
fi <3 (25)
Also, setting
L = {Zl > 0: r-PI'(Z1Q200) = ]-a rI‘r(Zlfél]O(j)) > Oa .7: 1325"'am}a
Ly = {Z1>0: Tr(Z1Qu) =1, Tr(Z14j0(z)) > 0Vz € My, j=1,2,..m},
and 3
¥ = max{ min Tr(Z1Ao(z)) : Z1 € Ly}, (26)
wEMk
Obviously, B
i =Yz = max{Tr(ZAy(Z) : Z € L},
and

L1C...CLyC...CL, 9;<...<#p}<...<oi=1.

k
Finally, since every Z; € Ly results (Z1,0) feasible to (22) we have also
b < i (27)

The next proposition is our main result which allows us to conclude global convergence
of the BB algorithm.

Proposition 2 If {M}} is any nested sequence of subrectangles of X such that N3, My, =
{z}, then
f& =k —0. (28)

Proof: For all k we have, by (21), (25), 1;2 <p < fx < fi <%, so it suffices to show
that

b Sy (k= +o00).
Denote a;(Z1,z) = Tr(Z1Ajo(z)) and a(Zi,z) = min ;(Z1,z). Observe that if

7j=1,2,....m
Z1 € L and a(Z1,z) > 0 then by continuity of a(Z1,x), one must have a(Z;,z) > 0 for all
z in a sufficiently small ball around Z, hence for all x € M), with sufficiently large k (since
maxgzen, ||z — || = 0 as k = +o00). Thus, if Z; € L with a(Z;,z) > 0 then Z; € Ly, for
all sufficiently large k. Keeping this in mind let € > 0 be an arbitrary positive scalar and



Z, an arbitrary element of L. Take any Z; corresponding to Z according to Assumption
(R) and for 6 € [0,1) define Z? := (1 — 0)Z; + 6Z;. Then Z{ € L, Tr(Z{A;o(z)) =
(1 —0)Tr(Z14;0(7)) +0Tx(Z1A4;0(Z)) > 0, i = 1,...,m and since limy_,; ||Z{ — Z1|| = 0,
for 0 sufficiently near to 1, we have Tr(Z¢ Ago(Z)) > Tr(Z1 Ago(Z)) — €. Furthermore, since
7! € L with a(Z?,Z) > 0, it follows by the above that Z? € L, for all sufficiently large
k and, consequently, minge s, Tr(Z Ago(z)) < 1]),*; In view of N2, My = z, we thus have
1/;7; > Tr(Z0 Ago(Z)) — € > Tr(Zleo(:E)) — 2¢ for all sufficiently large k. Since £ > 0 and

Zy1 € L are arbitrary, this shows that 1);; — 13, hence completing the proof. O

Theorem 1 The above algorithm can be infinite only if € = 0. In the latter case, the
sequence Py tends to the global minimum of (15), and any cluster point T of the sequence
{z*} yields an optimal solution (z,7,t) where (§,t) is an optimal solution of (24).

Proof: By the selection rule of My, we have 95, < f* for all k. Since the subdivision is
exhaustive if the procedure is infinite it generates at least one nested sequence of rectangles
{Mjy,} collapsing to a singleton {Z}. The conclusion then follows from Proposition 2. -
Remarks. It is important to note that the subdivision process is exhaustive when the
diameter of the sequence of rectangles (the length of their longest edge) tends to zero as k
tends to infinity. This is indeed the case when a bisection rule is used. That is, rectangles
are splitted through the middle point of their longest edge. Relation (28) is the consistency
condition which ensures convergence of most BB algorithms, since it guarantees that the
smallest lower bound at iteration k tends to the sought global minimum of the overall
problem. An difficulty for the convergence of the generalized Bender’s decomposition
algorithm of [5, 6] is clearly connected with such consistency condition. This also explains
why not all relaxation can be used for producing a globally convergent BB algorithm.

In step 4 of the algorithm a new incumbent is easily generated as follows. Let z* be
any point of My, then an optimal solution (y*,t¥) of the LMI program

m
min{t : Ago + Z’yjAjO(xk) <tQ,y > 0}
7j=1

yields a feasible solution (z¥,y*,t¥) of the primal problem.

Incidentally, we have shown that our algorithm remains convergent if 1/;M defined by
(26) is used for computing the lower bound at Step 1 instead of ;. Clearly, 9y is the
optimal value of the Lagrangian dual problem for (11)-(12). However, by (27), we can
see that the lower bound 1y is tighter than zﬁM and thus speeds up the convergence of
the algorithm. Thus, the additional BMI constraint (14) is very useful for improving the
performance of the algorithm.

In the previous works [10, 11, 20] the lower bound computings are based on the primal
like forms of LMIs while (20) is dual like one, i.e. they are complementary each either.
Thus, with efficient primal-dual interior algorithms like SDPPACK]1] used, they seemly
require the same computational effort.

For simplicity of descriptions, we have assumed that X in (1) is a box in R™. Obviously,
the algorithm remains valid when X is a simplex in R™ and the simplicial subdivision
is accordingly used instead of the rectangular one together with an adequate bisection



subdivision rule. With such simplicial partition, the number of the inequality constraint
in (22) is proportional to (n + 1) instead of 2" for the rectangular subdivision. Thus,
even for the box constraint (1) with n larger it is recommended to partition X first into
simplices and then solve (1)-(3) by the simplicial partition. When M in (12)-(13) is a
simplex described by a linear inequality system

(at,2) > ap, i=1,2,....h (29)

then the following BMI constraint should be incorporated to (12)-(13)

m
((a%,2) —a)Go + D y;({a,z) — a)G; <0, £=1,2,...,h, (30)
j=1

instead of (14). Accordingly, A;; in (16) is changed to

((a;,:v) —a1)Gj
Ajy (z, M) = (0%, 2) — 02)G; . j=0,1,..,m. (31)

({a",2) — an)G; ]

5 Application to a robust control problem

In this section, we provide a simple illustration of the proposed method for solving BMI
problems which can serve as our preliminary computational result. As claimed previously,
the advantage of our BB algorithms for solving (1)-(3) is that the branching is performed
in the reduced space R™ instead of the whole space R"™™ that make it practical for a
small m though n+m is large. Therefore, the best illustration for this is a a problem which
can be reduced to the form (1)-(3) with n small compared with m. Thus, we consider an
Hoo control problem in which both the controller and some plant’s coefficients or structure
can be designed simultaneously. The design of the system structure consists, for example,
in deciding what devices are used, where these are located, what values must be taken by
some physical quantities. Classically, for a given plant the structure is determined first
and the controller is designed afterwards. However, the simultaneous design of controller
and structure, certainly constitutes a better policy to find answers to the overall control
problem.

In this example, the plant type is given beforehand, but parameter values are adjusted
off-line to improve the performance of the overall system. Our aim is to attenuate the
effect of disturbances on the mass in a mass-spring arrangement. The controlled system
is shown in Figure 1, where z is the position of mass, u is the control force input, w is the
disturbance force, m is the mass (m = 4), k and ¢ are the spring and damping coefficients
which are allowed to take values in a parameter box H,

p:=(k,¢) € H=[4,12] x [0.5,1.5].

The controlled output z and measurement output y are

Z= [‘T’u]la Yy=2x.

10



Considering [z, z] as the state vector, the generalized plant is given as

0 1 100

A| B B “m “m|m|m

P(S): Cl 0 D12 = 1 0 0 0
Cy| Dy O 0 0 |0 |1

1 0 100

Now, the problem can be stated as to find an internally stabilizing proper controller K (s)
and a parameter p € H minimizing the Hy, norm ||T,y||c0, where T, is the closed-loop
transfer function from w to z. It is well known [8] that this problem has the BMI formu-
lation

(P) minimize v

A(p)R+RA(p) RC; B ]

N{ ClR —’yI 0 Nl < 0
Bj 0 —~I |
A(p)'S+SA(p) 8By Cf ]

N BiS —~I 0 |MN2<0 (32)
Ci 0 —I
R I
~ | >0
EHE
peH,

where N7 and N, denote any bases of the null spaces of [Bj, D5,0] and [Cs, Doy,0],
respectively.

It is important to note that the dimension of the complicating variable p in (32) is just
2 and compares favorably with the dimension 9 of the all decision variables (v, R, S, p) in
(32). Thus, our BB algorithm with branching performed in a subset of space R? is really
advantageous compared with BB algorithms operating in R°.

In order to transform problem (32) into the form (15), we use the change of variables

2 2
i<j i<j
where I;; is the symmetric 2 x 2 matrix with all zero entries but I;;(i,j) = L;;(j,1) = 1,
and Ry, Sy are constant matrices of the form

0 —fR] 0 —Es]
—€r 0 —&g 0
with £ and &g chosen large enough positive scalars, so that all entries of R and S can be
assumed nonnegative.

Thus, (32) is rewritten in the form (15) as

Ry = [ = —¢rl2, So = [ = —¢s1ha,

Lo(p) 2 Lij(p) 2 0 Q1
[Mo(p) +> R(i,j)| 0 + > 8(i,9) [Mij(p)] <7 le] , o (33)
Ny PR Nh'j 4 <i NQij d 0 d

11



where

A(p)Ro—i—RoA(p)l R()C{ By

Lo(p) = M CiRy 0 0 | M,
I B! 0 0
[ A(p)Lij + LjA(p)  I;;C7 0

Lij(p) = Nll CIIij 0 0 Nl,
0 0 0

[0
Ql = N—ll I Nla
I

d
[ A(p)'So + SoA(p) SoB1 Cf

My(p) = N B1Sy 0 0 [N,
_ ¢y 0 0
A(p)'Lij + IjA(p) IijBy 0

Mij(p) = N; B1 I 0 0 |NMNg,
0 0 0

[0
QZ = NQI I NQ,

| 1],

_ Ry I | i 0 [0 0
NO—_lI SQ]aNIZ]_[ 0 0 aNQZJ— O_Iij .

The dual problem on a rectangle M C H then becomes

(D) maximize t:
Z12>20,22>0, Z3>0
TrZ1Q1 + TrZoQo = 1
T‘I‘ZlLo(p) + T‘IZQMO (p) - T‘IZE’,NO Z i
TerLij(p) —TrZ3Ny;; > 0
TrZyM;j(p) — TrZ3zNy;; > 0
1<1<j<2, Vpé€ vert(M).

For practical computations, the selection of appropriate £z and &g is difficult since if
they are unnecessarily too large, the dual problem (D) may yield a poor lower bound.
Hence we find a lower bound of M = [p1,q1] X [p2,g2], based on the idea that optimal
solution of (P) for M, R*(M), $*(M) will be near to that of (P) at p., R*(pc), S* (p.) with

=

De = (I%, ’%). For this, first, we solve (P) at p. to obtain an optimal solution R* and
S*. Then set MpR = Min;<; }Ai*(z,j) If mp > 0 then £g = 0, otherwise égp = —n X mpg,
where n = 1.5 ~ 3. The scalar {g is handled similarly. With these values of £ and &g, we
can obtain better lower bounds on M.

Note in this example, the optimal solution S seems to have negative elements with large
absolute value, which causes large value of £5. To overcome this difficulty, we treat two
distinguished problems with S (1,2) > 0 and S (1,2) < 0, respectively. We have used the
LMI toolbox [9] for solving the primal (P) while the solver SDPPACK [1] has been used
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for the dual (D). All computations were performed on a PC with with CPU Pentium-II
333 MHz. The computational results with tolerance ¢ = 0.01 for both cases are the fol-
lowing.

Case 1. 5(1,2) = §(2,1) > 0 which corresponds to setting £ = 0. The performance of
the BB algorithm at every iteration is displayed in Table 1. The optimal solution in this
case is

(kopta Copt) = (11969, 1469),

0.1351 —0.0248] [9.288267 1.4606¢~8
) Sopt:

Ropt =1 _0.0248  0.4043 1.4606e 8  3.2739¢ 7

Case 2. 5(1,2) = §(2,1) < 0. Compared with case 1, we only change § = S(1,1)I;; —
S(1,2)I12 + S(2,2)I5,. Again the performance of our algorithm at every iteration is given
in Table 2.

The optimal solution in this case is

(kopta Copt) = (11969, 1469),

Ropt =

0.1351 —0.0248 g 7.3723¢7  —1.1381¢72
—0.0248 0.4044 |’ ot = [ _1.1381e 2  2.7994¢>

From Table 1 and Table 2, we can see how the duality gap is reduced along iterations.
Observe that due some computational instabilities/inaccuracies, the lower bound in case
2 are only slightly decreasing at some few iterations 3, 8 and 12.

The benefit of the structure design is clear by looking at Table 3, where the performance
of the plant with the optimal structure has been improved compared with the nominal
plant. The step responses of given in Figure 2 confirms that tracking performance of the
optimal structure systems is much better than that of the nominal plant.

The H,, performance level as a functions of the parameters k and c is described in
Figure 3. One can easily verified that the global optimal solution has been obtained.

Before closing this section let us mention some our computational experiences. We have
tested up to 100 randomly generated examples for problems like (32) with different sizes of
IA%, S and the size of p ranged from 2 to 4. As expected, the number of iterations needed for
solving every problem is not sensitive to the size of R, S and only sensitive to the size of p
(i.e. the size of the branching space), i.e. our algorithm may work well for problems with
a small dimension of the complicating variables. Particularly, the iteration performance
given in Tab.1 and Tab.2 is quite typical for case m = 2 in (1)-(3). For m = 3 and m =4
the averaged iteration number is increasing to 92.5 and 210.3, respectively, while of course
the execution time also depends strongly on the efficiency of the LMI solvers that are used
at every iteration. This again confirms the well-known fact in global optimization that the
performance of an algorithm heavily depends on the performed branching space and it is
a main motivation for developing BB algorithm with branching performed in a reduced
space. Note that we solve the optimization problem under the BMI constraints which
is much harder than the BMI feasibility problems in the context of global optimization.
This is due to the fact that like many other global optimization algorithms, our algorithm
could find a value close to the optimal value at an early computational stage and the main
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effort is to confirm its optimality or to refine its level of optimality. Clearly, such an issue
is completely absent in the BMI feasibility problem since in such a case the algorithm can
stop earlier when constraints hold.

6 Concluding remarks

A new convergent BB algorithm of global optimization for solving BMI problems is pro-
posed. First of all, the original problem is reduced to a convenient form such that its
Lagrangian dual problem is just a convex LMI optimization problem which is used for
computing lower bounds. Exploiting the most useful characterization of BMI that it be-
comes convex when a certain number of so called ” complicating” are held fixed, the duality
gap is reduced by an exhaustive partitioning on a reduced space of these variables which fa-
vorably limits the overall cost of the algorithm. The viability of the proposed algorithms is
confirmed by solving a robust structure/control design and other computational examples.
Acknowledgments. We are greatly grateful to Professor Hoang Tuy for his frequent
support and corrections during this work.
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Figure 1: The mass-spring-damper system
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Figure 2: The tracking performance of the optimal structure plant (solid) and the nominal
plant (dot) under the step disturbance
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iteration | lower bound | current best value | # of remaining rectangles
1 0.240 0.579 1
2 0.293 0.536 2
3 0.321 0.518 3
4 0.323 0.518 4
5 0.339 0.509 5
6 0.336 0.428 5
7 0.344 0.424 6
8 0.347 0.424 7
9 0.347 0.392 6
10 0.351 0.391 7
11 0.347 0.391 7
12 0.353 0.391 8
13 0.353 0.391 8
14 0.353 0.376 6
15 0.354 0.376 7
16 0.356 0.375 7
17 0.357 0.375 7
18 0.357 0.369 3
19 0.357 0.369 2
20 0.359 0.368 0

Table 1: Performance of the algorithm for case 1. Total cputime is 598 sec.

global solution

15

Figure 3: H, performance versus parameters (k, c)
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iteration | lower bound | current best value | #remaining rectangles
1 0.236 0.579 1
2 0.292 0.536 2
3 (0.026) 0.517 3
4 0.320 0.517 4
5 (0.034) 0.517 5
6 0.323 0.517 6
7 0.338 0.509 7
8 (0.336) 0.428 5
9 0.347 0.424 6
10 0.347 0.392 6
11 0.350 0.391 7
12 (0.347) 0.391 7
13 0.352 0.391 8
14 0.353 0.376 8
15 0.353 0.376 6
16 0.354 0.375 7
17 0.356 0.375 7
18 0.357 0.368 7
19 0.357 0.368 3
20 0.357 0.368 2
21 0.359 0.368 0

Table 2: Performance of the algorithm for case 2. Total cputime is 891 sec.

parameter (k, c) performance level 7,
(11.969,1.469) (optimal) 0.3681
(8,1) (nominal) 0.5791

Table 3: comparison with nominal case
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