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Abstract. Many challenging problems in automatic control may be cast as optimization pro-
grams subject to matrix inequality constraints. Here we investigate an approach which converts
such problems into non-convex eigenvalue optimization programs and makes them amenable to non-
smooth analysis techniques like bundle or cutting plane methods. We prove global convergence of a
first order bundle method for programs with non-convex maximum eigenvalue functions.
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1. Introduction. The importance of linear matrix inequalities (LMIs) and bi-
linear matrix inequalities (BMIs) for applications in automatic control has been rec-
ognized during the past decade. Semidefinite programming (SDP) used to solve LMI
problems has found a widespread interest due to its large spectrum of applications
[8]. But many challenging engineering design problems lead to BMI feasibility or op-
timization programs no longer amenable to convex methods. Some prominent BMI
problems are parametric robust feedback control [60, 61], static and reduced-order
controller design [1, 16], design of structured controllers [15], decentralized synthesis,
or synthesis with finite precision controllers [70]. These problems are in fact known
to be NP-hard (see e.g. [48]).

Due to their significance for industrial applications, many solution strategies for
BMI problems have been proposed. The most ambitious ones use ideas from global
optimization such as branch-and-bound methods [21, 9, 23] or concave programming
[5, 6] in order to address the presence of multiple local minima. On the other hand, in
many situations, semidefinite programming relaxations, or heuristic approaches like
coordinate descent schemes or alternating techniques (analysis versus synthesis) have
been used with considerable success; see [11, 69, 29, 22, 32].

The general nature of BMI problems, which include for instance quadratic con-
straint quadratic (QCQP) programming, all polynomial problems and mixed binary
programming, makes it evident that a general strategy may hardly be expected. We
have observed that BMIs in control applications may usually be solved by local meth-
ods. This is significant, since global methods have a prohibitive computational load
and are therefore of very limited applicability. We have contributed several local
nonlinear programming approaches, which are capable to deal with matrix inequality
constraints [1, 2, 16, 17, 50]; see [31] for another approach. Here we investigate a strat-
egy which converts BMI problems into non-convex eigenvalue optimization programs,
which are then solved by non-smooth analysis tools.

1.1. BMIs and eigenvalue programs. We consider affine A : Rn → Sm and
bilinear operators B : Rn → Sm into the space Sm of symmetric m × m matrices,

A(x) = A0 +

n∑

i=1

Aixi, B(x) = A(x) +
∑

1≤i<j≤n

Bijxixj .(1.1)
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Then a BMI-optimization program is of the form

minimize c⊤x, x ∈ Rn

subject to B(x) � 0
(1.2)

where � means negative semidefinite. Semidefinite programming is a special case
where an affine operator A is used. The simpler BMI-feasibility problem seeks x ∈ Rn

satisfying B(x) � 0. This is a special case of (1.2) if solved as min{t : B(x) � tIm}.
These problems are clearly related to eigenvalue optimization. We consider the

unconstrained

minimize λ1 (B(x)) , x ∈ R
n,(1.3)

and the constrained eigenvalue optimization program

minimize c⊤x, x ∈ Rn

subject to λ1 (B(x)) ≤ 0.
(1.4)

Here λ1 : Sm → R is the maximum eigenvalue function, which is convex but non-
smooth in general. The non-convexity of (1.3) and (1.4) is induced by the operator B.
Clearly (1.2) is equivalent to (1.4), while the BMI-feasibility problem may be solved
using (1.3). Programs of the form (1.4) may be transformed into (1.3) via exact
penalization, even though it may be preferable to use the structure of (1.4) explicitly.

Eigenvalue optimization has an interest of its own even outside control applica-
tions. Much pioneering work has been contributed by M. Overton in a series of papers
[51, 52, 53, 54, 55] beginning in the 1980s, where Newton type methods for (1.3) are
considered. Further to be mentioned among the earliest contributions are J. Cullum
et al. [13], R. Fletcher [18], A. Shapiro [63, 64] and A. Shapiro and M.K.H. Fan [65].

Bundle methods have been invented by C. Lemaréchal [40] and Wolfe [71] and de-
veloped mostly in the 1980s by numerous contributions, in particular from Lemaréchal
[41, 43] and K. Kiwiel (see e.g. [34, 37, 36]). A survey is [42], see also [30, 34, 62].
Bundle methods have recently been revived in the context of semidefinite program-
ming; see [58, 44, 26, 46, 47, 39, 59]. Early contributions to non-convex programs are
Kiwiel [37, 35, 38], a recent non-convex bundle algorithm is presented in Fuduli et al.
[20], a convex filter bundle method is given in [19].

1.2. Purpose. As a rule, bundle methods maintain a finite set of affine esti-
mates of the objective function f at the current iterate. This set is used to predict a
descent step. This trial step is either accepted (serious step) if the actual descent is
sufficient, or it is used to improve the local model (null step) by adding another affine
approximation of f . It has been observed in [13] (and used in [57, 58, 26, 44] and
also [24, 27, 28, 25]) that maximum eigenvalue functions f allow for specific bundling
strategies, where infinite sets of affine estimates of f are manageable. Here we develop
a similar strategy for non-convex eigenvalue functions. Compared to the convex case,
the main difficulty is that approximate subgradients of f do no longer provide global
information. This complicates the analysis of the bundling procedure. In section 3
we develop a first-order algorithm for (1.3), which extends the approach of [13] and
[58] to the non-convex case. We then solve (1.4) using an improvement function as
proposed in [34].

2. Preparation and preliminary results. We recall some general notions and
definitions and prepare the setting for the analysis of eigenvalue functions.
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2.1. General definitions. Along with the operators A, B of (1.1) we consider
more general matrix-valued operators F : Rn → Sm of class C2. For such F let
F ′(x) : Rn → Sm denote its derivative, whose adjoint F ′(x)∗ maps Sm into Rn. For
affine A we write A := A′, which is the linear part of A, defined as Ax =

∑n
i=1 Aixi.

Its adjoint is A∗ : S
m → R

n, defined as A∗Z = (A1 • Z, . . . , An • Z). The scalar
product in Sm is X • Z = tr(XZ). The second derivative F ′′(x) of F is a linear
operator Rn → L(Rn, Sm). For bilinear B it is independent of x and defined via the
tensor [d,B′′d] = 2

∑
1≤i<j≤n Bijdidj ∈ Sm. With these preparations we are ready to

consider the class of (generally non-convex) maximum eigenvalue functions f of the
form f = λ1 ◦ F . Only in the case of an affine operator A is f = λ1 ◦ A convex and
has been analyzed by many authors; see in particular [13, 57, 58].

We use notions from convexity and non-smooth analysis as in [30] or [12]. Given
ǫ ≥ 0 and a convex function φ on some Euclidean space E, following [30, ch. XI] the
ǫ-subdifferential of φ at x is

∂ǫφ(x) = {y ∈ E∗ : 〈y, h〉 ≤ φ(x + h) − φ(x) − ǫ for all h ∈ E}.

For ǫ = 0 this is the usual subdifferential in convex analysis. The ǫ-subdifferential
gives rise to the ǫ-directional derivative, (cf. [30, ch. XI])

φ′
ǫ(x; d) = max{〈y, d〉 : y ∈ ∂ǫφ(x)} = inf

t>0

φ(x + td) − φ(x) − ǫ

t
,

where again ǫ = 0 reproduces the usual directional derivative φ′(x; d) of convex anal-
ysis. Notice that the ǫ-subdifferential of the maximum eigenvalue function λ1 is (cf.
[30, Example XI.1.2.5]):

(2.1) ∂ǫλ1(X) = {G ∈ S
m : G � 0, tr(G) = 1, G • X ≥ λ1(X) − ǫ},

which is a consequence of the well-known fact that λ1 is the support function of the
set Cm = {X ∈ Sm : X � 0, tr(X) = 1}.

2.2. Concepts relating to f = λ1 ◦ F . Let us introduce a notation which we
will use systematically. Given x, d ∈ Rn, let X = F(x) ∈ Sm and D = F ′(x)d ∈ Sm.
If xk, dk arise in an algorithm, we use Xk and Dk accordingly.

Let us now extend ǫ-subgradients and ǫ-directional derivatives to functions f =
λ1 ◦ F . Let

∂ǫf(x) = F ′(x)∗[∂ǫλ1 (F(x))] = F ′(x)∗[∂ǫλ1(X)].

Then the ǫ-directional derivative is defined as

f ′
ǫ(x; d) = max{g⊤d : g ∈ ∂ǫf(x)}

= max{G • D : G ∈ ∂ǫλ1(X)}
= (λ1)

′
ǫ(X ; D).

It is well-known that the ǫ-directional derivative is difficult to compute in practice.
Following Cullum et al. [13] and Oustry [58], we consider the so-called ǫ-enlargement
δǫλ1(X) of the subdifferential of the maximum eigenvalue function, which is some-
where in between the purely local subdifferential ∂λ1(X) and the global ∂ǫλ1(X) and
turns out a good estimate of the latter.

Following [13] and in particular [58, Def. 1], fix ǫ > 0 and let r(ǫ) be the largest
index i such that λi(X) > λ1(X) − ǫ, called the ǫ-multiplicity of λ1(X). Notice that
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r(ǫ) is always at the end of a block of equal eigenvalues, that is, λ1(X) ≥ · · · ≥
λt−1(X) > λt(X) = · · · = λr(ǫ)(X) > λr(ǫ)+1(X) ≥ · · · ≥ λm(X), where of course
t = 1 and t = r(ǫ) are admitted. We therefore define the spectral separation of ǫ as

∆ǫ(X) = λr(ǫ)(X) − λr(ǫ)+1(X) > 0.(2.2)

Let Qǫ be a m×r(ǫ) matrix whose columns form an orthonormal basis of the invariant
subspace of X spanned by the eigenvectors of the first r(ǫ) eigenvalues of X . Now
define

δǫλ1(X) = {G : G = QǫY Q⊤
ǫ , Y � 0, tr(Y ) = 1, Y ∈ S

r(ǫ)},

then δǫλ1(X) ⊂ ∂ǫλ1(X). We extend this concept to the class of functions f = λ1 ◦F
by setting

δǫf(x) = F ′(x)∗[δǫλ1(X)],

so ∂f(x) ⊂ δǫf(x) ⊂ ∂ǫf(x), and the ǫ-enlarged subdifferential δǫf(x) may be consid-
ered as an inner approximation of the ǫ-subdifferential ∂ǫf(x).

There is a natural analogue of the ǫ-directional derivative based on the new set
δǫf(x). Indeed, following [13, 58], define the ǫ-enlarged directional derivative of λ1 by

(λ̃1)
′
ǫ(X ; D) = max{G • D : D ∈ δǫλ1(X)} = σδǫλ1(X)(D),

where σK denotes the support function of a convex set K. Extend this to functions
f = λ1 ◦ F by setting

f̃ ′
ǫ(x; d) = max{g⊤d : g ∈ δǫf(x)}

= max{G • D : G ∈ δǫλ1(X)}
= (λ̃1)

′
ǫ(X ; D)

The advantage of δǫf(x) over the larger ǫ-subdifferential ∂ǫf(x) is that an explicit
formula is available (cf. [13], [58, Prop. 3]):

f̃ ′
ǫ(x; d) = σδǫf(x)(d) = λ1

(
Q⊤

ǫ (F ′(x)d)Qǫ

)
= λ1

(
Q⊤

ǫ DQǫ

)
.

One of the main contributions from the work [58] is the following
Theorem 2.1. [58, Thm. 4] Let ǫ ≥ 0, η ≥ 0 and X ∈ Sm and define

ρ(ǫ, η) =

(
2η

∆ǫ(X)

)1/2

+
2η

∆ǫ(X)
.(2.3)

Then

∂ηλ1(X) ⊂ δǫλ1(X) + ρ(ǫ, η)B,(2.4)

where B is the unit ball in Sm.
An immediate consequence of this theorem is the estimate:

f ′
η(x; d) ≤ f̃ ′

ǫ(x; d) + ρ(ǫ, η)‖D‖.(2.5)
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2.3. Steepest descent. The direction of steepest descent plays an important
role in the analysis of smooth functions. In the case of a non-smooth function it may
be obtained by solving the program

min
‖d‖≤1

f ′(x; d).

Fenchel duality shows that

min
‖d‖≤1

f ′(x; d) = min
‖d‖≤1

max
g∈∂f(x)

g⊤d

= max
g∈∂f(x)

min
‖d‖≤1

g⊤d

= max
g∈∂f(x)

−g⊤
g

‖g‖ ,

so the direction d of steepest descent is obtained as the solution of a convex program:

d = − g

‖g‖ , g = argmin{‖g‖ : g ∈ ∂f(x)}.

As in the classical case, d will be a direction of descent if there is any, and in that
case the relation

f ′(x; d) = −‖g‖ = −dist(0, ∂f(x)) < 0

is satisfied. What is important is that the very same conclusions hold for the ǫ-
subdifferential and the ǫ-enlarged subdifferential.

Definition 2.2. If 0 6∈ ∂ǫf(x), the direction of steepest ǫ-descent d is

d = − g

‖g‖ , g = argmin{‖g‖ : g ∈ ∂ǫf(x)}

and satisfies f ′
ǫ(x; d) = −dist(0, ∂ǫf(x)) < 0. Similarly, if 0 6∈ δǫf(x), then the direc-

tion of steepest ǫ-enlarged descent is

d = − g

‖g‖ , g = argmin{‖g‖ : g ∈ δǫf(x)}(2.6)

and satisfies f̃ ′
ǫ(x; d) = −dist(0, δǫf(x)) < 0.

For a practical implementation it will be convenient to accept approximate solu-
tions of program (2.6). We have the following

Lemma 2.3. Let 0 < ω ≤ 1 and 0 6∈ δǫf(x), and consider a direction d which
solves (2.6) approximately in the sense that

d = − g

‖g‖ , f̃ ′
ǫ(x; d) ≤ −ω‖g‖.(2.7)

Then

−dist(0, δǫf(x)) ≤ f̃ ′
ǫ(x; d) ≤ −ω dist(0, δǫf(x)).(2.8)

Proof. Let d̃ = −g̃/‖g̃‖ be the solution of (2.6), then ‖g̃‖ = dist(0, δǫf(x))
and f̃ ′

ǫ(x; d̃) = −‖g̃‖. As g ∈ δǫf(x), we have ‖g̃‖ ≤ ‖g‖. Therefore (2.7) gives
f̃ ′

ǫ(x; d) ≤ −ω‖g‖ ≤ −ω‖g̃‖ = −ω dist(0, δǫf(x)) < 0. The left hand estimate follows
from f̃ ′

ǫ(x; d) = max{g⊤d : g ∈ δǫf(x)} ≥ g̃⊤d ≥ −‖g̃‖ = −dist(0, δǫf(x)).
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3. First-order analysis. In this chapter we derive and analyze a first order
bundle algorithm for minimizing non-convex maximum eigenvalue functions f = λ1◦F
for C2-operators F . Occasionally we will specify F to a bilinear B or even to an affine
A.

3.1. Optimality conditions. It is well-known that the ǫ-subdifferential may
be used to obtain approximate optimality conditions, which lead to finite termina-
tion criteria in a convex minimization algorithm. See [30, 42, 43, 34] on how this is
done. How about the meaning of an approximate optimality condition like 0 ∈ ∂ǫf(x)
for non-convex maximum eigenvalue function f? It is not surprising that without
convexity, the consequences of 0 ∈ ∂ǫf(x) are weaker:

Lemma 3.1. Let f = λ1 ◦ B with B bilinear. Let

c := max
‖d‖=1

max
Z∈Cm

∣∣∣∣∣∣

∑

i<j

Z • Bijdidj

∣∣∣∣∣∣
,

where Cm = {Z ∈ Sm : Z � 0, trZ = 1}. Let θ > 0, ǫ ≥ 0, σ ≥ 0 and define
r = r(ǫ, σ, θ, c) as

r =
−σ +

√
σ2 + 4θcǫ

2c
.

Then every x such that dist(0, ∂ǫf(x)) ≤ σ is (1+θ)ǫ-optimal within the ball B(x, r) :=
{x′ ∈ R

n : ‖x′ − x‖ ≤ r}. That means, f(x) ≤ minx′∈B(x,r) f(x′) + (1 + θ)ǫ.
Proof. Let X = B(x). By assumption there exists G ∈ ∂ǫλ1(X) such that

g = B′(x)∗G satisfies ‖g‖ ≤ σ. Now let x′ ∈ B(x, r) be written as x′ = x + td
with ‖d‖ = 1, t = ‖x − x′‖. Put X ′ = B(x′). By definition of the ǫ-subdifferential,
G • X ′ ≤ λ1(X

′) and G • X ≥ λ1(X) − ǫ = f(x) − ǫ. Therefore

f(x) ≤ G • X + ǫ

= G • X ′ + G • (X − X ′) + ǫ

≤ λ1(X
′) + G • (B(x) − B(x′)) + ǫ

= f(x′) + G •
(
tB′(x)d + t2[d,B′′d]

)
+ ǫ

≤ f(x′) + σ‖x − x′‖ + c‖x − x′‖2 + ǫ

≤ f(x′) + σr + cr2 + ǫ = f(x′) + (1 + θ)ǫ

by the definition of r. This proves the claim.
The result includes several limiting cases. Clearly σ = 0 is interesting, where we

get r(ǫ, 0, θ, c) =
(
θǫc−1

)1/2
. The case c = 0 is also possible. It corresponds to an affine

operator A, where the second derivative B′′ vanishes. We obtain r(ǫ, 0, θ, 0) = +∞,
meaning that the estimate is a global one. A third limiting case is when σ > 0 and
c = 0. Here r(ǫ, σ, θ, 0) = θǫσ−1. Notice however that in the case c < ∞ the look-
ahead character of this result is limited. Even while it is true that for σ = 0 the
radius r ∼ ǫ1/2 decreases slower than the discrepancy in the values, which behaves
like ∼ ǫ, we have no way to know whether a local minimum is within the horizon r of
our current iterate x.

Lemma 3.2. Let f = λ1 ◦F . Suppose dist(0, ∂ǫk
f(xk)) → 0, xk → x̄ and ǫk → 0.

Then 0 ∈ ∂f(x̄).
Proof. The proof is straightforward. By the definitions we have Gk ∈ ∂ǫk

λ1(Xk)
for some Gk such that F ′(xk)∗Gk = gk → 0. In particular, Gk • X ≤ λ1(X) for
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every X ∈ Sm and Gk • Xk ≥ λ1(Xk) − ǫk. Passing to the limit in every convergent
subsequence of Gk, say Gk → Ḡ, gives Ḡ•X ≤ λ1(X) for every X and Ḡ•X̄ = λ1(X̄),
so Ḡ ∈ ∂λ1(X̄). By the continuity of F ′ we have F ′(x̄)∗Ḡ = 0. That means 0 ∈ ∂f(x̄).

Taken together these two Lemmas justify a stopping test based on the smallness
of dist(0, ∂ǫf(x)) in tandem with the smallness of ǫ. Such a test is used e.g. in the
non-convex bundle method [20], where the Goldstein ǫ-subdifferential is used.

Let us fix x and ǫ and see what happens when 0 6∈ δǫf(x). Choose 0 < ω ≤ 1 and
suppose d is an approximate direction of steepest ǫ-enlarged descent satisfying (2.7).
The function η → ρ(ǫ, η) in (2.3) is unbounded and monotonically increasing on [0,∞).
Therefore if F ′(x)d 6= 0, there exists a unique η = η(ǫ) such that ρ(ǫ, η(ǫ)) ‖F ′(x)d‖ =
− 1

2 f̃ ′
ǫ(x; d) > 0. Using (2.5) gives the following consequence of Theorem 2.1:

f ′
η(ǫ)(x; d) ≤ 1

2
f̃ ′

ǫ(x; d) < 0.(3.1)

The same estimate also holds in the case F ′(x)d = 0. Straightforward calculus with
(2.3) now shows that in the case F ′(x)d 6= 0

η(ǫ) =
∆ǫ(X)

8



−1 +

√

1 − 2 f̃ ′
ǫ(x; d)

‖F ′(x)d‖




2

.(3.2)

We summarize these observations in the following
Lemma 3.3. Suppose 0 6∈ δǫf(x) for some ǫ > 0. Let 0 < ω ≤ 1 and let d be

a direction of approximate steepest ǫ-enlarged descent satisfying (2.7), (2.8). Then
choosing η = η(ǫ) as in (3.2) gives f ′

η(x; d) ≤ 1
2 f̃ ′

ǫ(x; d) < 0, i.e., d is a direction of
η-descent. Moreover, η(ǫ) satisfies the estimate

η(ǫ) ≥






∆ǫ(X)ω2

18‖F ′(x)d‖2
dist(0, δǫf(x))2, for 0 > f̃ ′

ǫ(x; d) ≥ −3/2‖F ′(x)d‖
∆ǫ(X)ω

16‖F ′(x)d‖ dist(0, δǫf(x)), for f̃ ′
ǫ(x; d) ≤ −3/2‖F ′(x)d‖

(3.3)

3.2. Actual and predicted decrease. Our approach to (1.3) is to estimate
the decrease of f in direction d with the help of the convex model t 7→ λ1(X + tD).
The following definition will be helpful.

Definition 3.4. Let f = λ1 ◦ F , and fix x, d ∈ Rn. Then αt = f(x + td) − f(x)
is called the actual decrease of f at x in direction d with step t, while πt = λ1(X +
tD) − f(x) is called the predicted decrease at x in direction d with step t.

Naturally, a true decrease of f in direction d with step t only occurs when αt < 0,
and similarly for πt. During the following, we will use the interplay between πt and
αt in order to find suitable steps t which allow us to quantify αt. We have the formula

αt = f(x + td) − f(x)

= f(x + td) − λ1(X + tD) + λ1(X + tD) − f(x)

= f(x + td) − λ1(X + tD) + πt

so for non-convex f we will have to estimate the mismatch αt − πt = f(x + td) −
λ1(X + tD).
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Expanding the C2 operator F in a neighborhood of x gives F(x + td) = X +
tD + t2H + t2Kt, where Kt → 0 as t → 0. In the case of a bilinear B, Kt = 0 and
H = [d,B′′d] is independent of x. Then f(x + td) = λ1(X + tD + t2(H + Kt)) and by
Weyl’s theorem we obtain

t2λm(H + Kt) ≤ λ1(X + tD + t2(H + Kt)) − λ1(X + tD) ≤ t2λ1(H + Kt).

Altogether, |f(x + td) − λ1(X + tD)| ≤ t2‖H + Kt‖. This motivates the following
Definition 3.5. Let x, d ∈ Rn, ‖d‖ = 1 and 0 < t < +∞ and expand F as

above. Then Lx,d,t := sup{‖H + Kτ‖ : 0 ≤ τ ≤ t} < +∞. When F is of class C2
b ,

then t = +∞ is allowed and the Lx,d,∞ are uniformly bounded on every bounded set
of x. For bilinear B, Lx,d,t = Ld = ‖H‖ = ‖[d,B′′d]‖ is independent of x and t > 0
and therefore uniformly bounded.

We summarize our finding by the following
Lemma 3.6. Let 0 < T ≤ ∞ such that Lx,d,T < ∞. Then for every t ≤ T the

actual decrease αt satisfies

αt = ℓ t2 + πt for some |ℓ| ≤ Lx,d,T .(3.4)

If F is of class C2
b , we may choose T = ∞. In the bilinear case Lx,d,T = Ld =

‖[d,B′′d]‖, and in the affine case, Lx,d,T = Ld = 0.
Our next step is to quantify the predicted decrease πt of the convex model t 7→

λ1(X + tD). This is done in the next section.

3.3. Directional analysis. Let x be the current iterate in a tentative algorithm,
and let d with ‖d‖ = 1 be a direction such that for some η > 0, f ′

η(x; d) < 0, i.e., d is
a direction of η-descent at x. This could happen with η = η(ǫ) and d an approximate
direction of steepest ǫ-enlarged descent as in (2.7). Then 0 6∈ ∂ηf(x). As usual let X =
F(x) and D = F ′(x)d, then by definition, f ′

η(x; d) = (λ1)
′
η(X ; D), so (λ1)

′
η(X ; D) < 0.

Following [30, XI.1], there exists a hyperplane supporting the epigraph of λ1, which
passes through the point (X, λ1(X) − η) and touches the epigraph of λ1 at a point
(X + tηD, λ1(X + tηD)), except when t 7→ λ1(X + tD) is affine on [0,∞), or has
an asymptote with slope f ′

η(x; d). In those cases let tη = ∞ for consistency. If
there are several steps with this property, then for definiteness let tη be the smallest
one. We shall say that the step tη realizes the η-directional derivative. Notice that
λ′

1(X + tηD; D) ≤ (λ1)
′
η(X ; D) ≤ −λ′

1(X + tηD;−D), so for almost all tη we have
equality (λ1)

′
ǫ(X ; D) = λ′

1(X + tηD; D). In general there exists at least a subgradient
G ∈ ∂λ1(X + tηD) such that (λ1)

′
η(X ; D) = G • D.

All this being a purely directional situation, we could also describe the case by
introducing the function φ(t) = λ1(X+tD). Then the line passing through (0, φ(0)−η)
touches the epigraph of φ at (tη, φ(tη)). The reader may want to inspect Figure 2.1.2
on page 105 of [30] for some illustration of these on-goings.

For the following assume that φ is not affine on [0,∞). The case tη = ∞ with an
asymptote is allowed. Suppose we backtrack and consider all lines passing through
(0, φ(0) − η′) for some 0 ≤ η′ ≤ η, touching the epigraph of φ at the corresponding
points (tη′ , φ(tη′ )), where again tη′ is the smallest step if there are several. Then we
introduce a function η′ → tη′ with the following properties: t0 = 0, and tη = tη′ at
η′ = η. It is monotonically increasing by convexity of φ. (Notice that its inverse,
t → η(t), is not a function in the strict sense unless φ is differentiable. But we can
introduce the notation to indicate any choice such that η(t(η)) = η.)

Recall that we assume f ′
η(x; d) < 0. Then the decrease of φ on [0, tη] is

φ(tη) − φ(0) = −η + tηf ′
η(x; d) < −η < 0.(3.5)
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Therefore the secant joining the points (0, φ(0)) and (tη, φ(tη)) has slope −σ, where

σ =
η − tηf ′

η(x; d)

tη
=

η

tη
− f ′

η(x; d) > 0.(3.6)

We can then get a pessimistic estimate of πt by using the weaker decrease of the
secant, which for a step t ≤ tη decreases by −σt. Therefore αt = ℓt2 + πt ≤ Lt2 − σt
for every t ≤ tη, where L := Lx,d,tη

. (If tη = ∞ and Lx,d,∞ = ∞, then this estimate
will only be true for some finite T , L := Lx,d,T and all t ≤ T .) The minimum of the
term Lt2 − σt on [0, tη] is attained either at t = σ/2L if σ/2L ≤ tη, or at t = tη.
Substituting into αt gives the following

Lemma 3.7. Suppose tη < ∞. Let d be an approximate direction of steepest
ǫ-enlarged descent satisfying (2.7) and let η = η(ǫ) be as in (3.2), so f ′

η(x; d) < 0.
(a) If σ defined by (3.6) satisfies σ ≤ 2Lx,d,tη

tη, then the step tσ := σ/2Lx,d,tη
gives

a guaranteed decrease

αtσ
≤ − σ2

4Lx,d,tη

= − 1

4Lx,d,tη

(
η

tη
− f ′

η(x; d)

)2

(3.7)

≤ − 1

4Lx,d,tη

(
η

tη
− 1

2
f̃ ′

ǫ(x; d)

)2

< 0.

(b) If on the other hand σ > 2Lx,d,tη
tη, then the step tη guarantees the decrease

αtη
≤ −σtη

2
=

1

2
πtη

= −1

2

(
η − tηf ′

η(x; d)
)

< 0.(3.8)

At first sight we would probably prefer case (b) over case (a), as it seems to
give a better rate of decrease O(η) versus O(η2). Moreover, the constant L is likely
to be large, so αtσ

is expected to be small. In the same vein, tη could be large,
so the main contribution in αtσ

probably comes from the term f ′
η(x; d) respectively

f̃ ′
ǫk

(xk; dk), which also occurs with order 2, as opposed to the second branch in (3.2).
But (a) has a surprising advantage over (b). Namely, when later on our algorithm
will take steps tk which force the terms αtk

to tend to zero, tk = tσ in case (a) will
imply f̃ ′

ǫk
(xk; dk) → 0. On the other hand, tk = tη in case (b) will only lead to

∆ǫk
(Xk) f̃ ′

ǫk
(xk; dk) → 0. Dealing with the term ∆ǫk

(Xk) will cause some trouble.
Notice, however, that as a rule we have to expect case (b). In particular, for convex
f = λ1 ◦ A we have L = 0, so case (b) is always on (compare the discussion in [58]).

Let us catch up with the case where tη = ∞. This may happen if φ : t 7→
λ1(X + tD) is affine on [0,∞) or has an asymptote with slope f ′

η(x; d) < 0. Then φ
is below the line with slope −σ = f ′

η(x; d) passing through the point (0, φ(0)), and
we may use this line to estimate πt. The result is the same as in Lemma 3.7, with
tη = ∞ and η/tη = 0.

Lemma 3.8. Suppose f ′
η(x; d) < 0 and tη = ∞. Fix T > 0 such that L :=

Lx,d,T < ∞. Then the largest possible decrease of f in direction d amongst steps of
length t ≤ T is obtained at tσ = σ/2L with αtσ

≤ −σ2/4L if tσ ≤ T , otherwise at
t = T with αt ≤ LT 2 − σT ≤ − 1

2Tσ.
For F of class C2

b we let T = ∞. In particular, this works for bilinear B, so there
is no restriction on the steplength tσ. For general C2 operators the result seems to
pose a little problem, as we need to know T to compute L = Lx,d,T , and L in order
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to check whether tσ ≤ T . Notice, however, that Lx,d,TT increases as T → ∞, while
tσ > T for all T meant Lx,d,T T remained bounded by σ/2. This is only possible when
Lx,d,T = 0. So there is always the possibility to escape this dilemma. But section 3.8
will show an even simpler way to deal with general C2 operators.

3.4. Decrease of the order O(η). Let us look more systematically at those
cases where a quantifiable decrease of the order O(η) is possible. This requires a
sufficiently small trial step tη. We have the following

Lemma 3.9. Let 0 < ρ0 < 1. Then the trial step tη gives a decrease αtη
≤

−(1 − ρ0) η provided tη ≤ ϑ, where ϑ is the critical stepsize

ϑ :=
−f ′

η(x; d) +
√

f ′
η(x; d)2 + 4Lρ0η

2L
.(3.9)

Here L = Lx,d,tη
, and the limiting case Lx,d,tη

= 0 is allowed and gives ϑ = ∞.
Proof. Since |ℓ| ≤ L, the inequality αtη

= ℓt2η − η + tηf ′
η(x; d) ≤ −(1 − ρ0) η

is satisfied as soon as the stronger quadratic inequality Lt2η + tηf ′
η(x; d) − ρ0η ≤ 0

holds. The corresponding quadratic equation has two real solutions, and the positive
solution is ϑ in (3.9). Therefore the quadratic inequality holds as soon as tη ≤ ϑ.

3.5. The ǫ-management. The dependence of the estimate (3.2) on the gap
∆ǫ(X) suggests that we choose ∆ǫ(X) as large as possible. This strategy is indeed
best when we aim at a finite termination theorem (see [13], [58]). If we want to prove
convergence, the situation is, as we shall see, more subtle. Here we want ∆ǫ(X) large,
but with the proviso that ǫ → 0.

Lemma 3.10. Let ǭ > 0. Then there exists ǫ ≤ ǭ such that ∆ǫ(X) ≥ ǭ/m.
Proof. By definition of r(ǭ) we have λ1(X) ≥ · · · ≥ λr(ǭ)(X) ≥ λ1(X) − ǭ >

λr(ǭ)+1(X). That means the r(ǭ) gaps λi(X) − λi+1(X), i = 1, . . . , r(ǭ), add up to
λ1(X) − λr(ǭ)+1(X), which exceeds ǭ. So at least one of these gaps is larger than
ǭ/r(ǭ), hence larger than ǭ/m. Suppose a gap exceeding ǭ/m is λi(X) − λi+1(X).
Then we put ǫ = λ1(X) − λi(X).

In practice we could either choose i smallest possible with λi(X)−λi+1(X) ≥ ǭ/m,
or we could pick i so that λi(X)−λi+1(X) is largest possible. In the first case we get
a small ǫ, which reduces the numerical burden to compute Qǫ. In the second case we
render (3.2) the most efficient, possibly with a larger ǫ.

Definition 3.11. The maximum eigenvalue function f = λ1◦F is called linearly
bounded below if for every x ∈ Rn, the mapping e 7→ λ1 (F(x) + F ′(x)e) is bounded
below.

The significance of this definition is in the following
Lemma 3.12. Suppose f = λ1 ◦ F is linearly bounded below. Let x ∈ Rn be such

that 0 6∈ ∂f(x). Then there exists ǭ > 0 such that 0 ∈ δǭf(x) but 0 6∈ δǫf(x) for all
0 ≤ ǫ < ǭ.

Proof. Let ǭ = λ1(X)−λm(X), then δǭf(x) = F ′(x)∗ (Cm). By [58, Lemma 6] we
have 0 ∈ F ′(x)∗ (Cm) because e 7→ λ1 (F(x) + F ′(x)e) is bounded below. So we have
proved 0 ∈ δǭf(x). On the other hand, 0 6∈ δǫf(x) if ǫ is sufficiently small. Take for
instance ǫ so small that r(ǫ) equals the multiplicity of λ1(X). Then δǫf(x) = ∂f(x),
hence 0 6∈ δǫf(x) by our hypothesis. By reducing ǭ we can make it smallest possible
with 0 ∈ δǭf(x).

It is easy to force a maximum eigenvalue function to be linearly bounded below
on a bounded set C. More generally, if f is bounded below by γ ∈ R on a set C,
then define F̃(x) = diag(γ,F(x)) ∈ Sm+1. Clearly f̃ = λ1 ◦ F̃ agrees with f on C
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and is linearly bounded below. During the following we will assume that f is linearly
bounded below on the level set {x ∈ Rn : f(x) ≤ f(x0)}.

3.6. Line search. We need one more element before our first-order bundle al-
gorithm may be presented in detail. The analysis so far suggests several steps t which
give a quantifiable decrease αt. But we have to make sure that such a step is found
by a finite procedure.

Suppose the parameter ǫ has been chosen, f̃ ′
ǫ(x; d) < 0 has been computed and

η = η(ǫ) has been found as in (3.2). Then we need to find tη realizing f ′
η(x; d). If

done in a precise way, this search is likely to be very costly. We therefore choose a
relaxation.

Fix a tolerance parameter 0 < θ0 < 1 and seek t > 0 such that λ′
1(X + tD; D) <

1
4 f̃ ′

ǫ(x; d) < 0 and η(t) > θ0η. The set of these t is nonempty and contains tη as
an interior point. This means a line search procedure like bisection can find t > 0
with these properties in a finite number of steps. So altogether replacing the original
η by θ0η still gives the same order of decrease, but has the benefit to locate an
approximation of the realizing abscissa in a finite procedure. This relaxation means
that some of the estimates in previous Lemmas will get an extra factor θ0 or θ2

0.
Naturally, while trying to locate tη, we should not forget our original purpose of

reducing f . After all, tη relates only to t 7→ λ1(X + tD), and not directly to f . We
should therefore evaluate αt at each intermediate step t visited during the search for
tη. Using the parameter ρ0 ∈ (0, 1) from section 3.4, we may accept an intermediate
t immediately if αt ≤ −(1 − ρ0)η, because this is the best order of decrease we can
hope to achieve in general.

Suppose tη respectively its substitute has been found. Keep among the interme-
diate steps the one with maximum decrease αt and call it ζ. If necessary continue
and compute the decrease αtσ

at tσ, where σ is as in (3.6) and compare αtσ
to αζ .

This covers all possible cases. For instance, if tη < ϑ with ϑ as in (3.9), we will get a
decrease of the order O(η).

Except in the bilinear case, we need to estimate Lx,d,t for various stepsizes t.
Strictly speaking this could not be done in a finite procedure. However, t and therefore
‖Kt‖ are expected to be small, so Lx,d,t ∼ ‖H‖ for sufficiently small t, meaning
that good estimates are available. In any case, the constants Lx,d,t need not be
known exactly. An upper bound L for all the Lx,d,t with x ranging over the level set
{x : f(x) ≤ f(x0)} is all that is needed to prove convergence.

3.7. First order algorithm. In this section we present our first order bundle
algorithm for the unconstrained minimization of f = λ1 ◦F (see Figure 1, next page)
and prove convergence.

Let us consider sequences xk, dk and ǫ♯
k, ǭk, ǫk generated by the bundle algorithm.

Suppose the sequence xk is bounded, the f(xk) are bounded below, and that F is of

class C2
b . Then f(xj) − f(x0) =

∑j−1
k=0 f(xk+1) − f(xk) =

∑j−1
k=0 αtk

is bounded, and
since each coefficient αtk

is negative, the series
∑∞

k=0 αtk
converges. By boundedness

of F ′′ and the xk, the constants Lxk,dk,tηk
are uniformly bounded. Then Lemma 3.7

and the choice of tk in step 8 give

αtk
≤ −K max

{(
ηk/tηk

− f̃ ′
ǫk

(xk; dk)
)2

, ηk

}
< 0

for some K > 0 independent of k. This implies either f̃ ′
ǫk

(xk; dk) → 0 or ∆ǫk
(Xk) f̃ ′

ǫk
(xk; dk) →

0, depending on which of the cases in Lemma 3.7 occurs. Therefore, by (2.8), and
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since δǫk
f(xk) ⊂ ∂ǫk

f(xk), this implies dist(0, ∂ǫk
f(xk)) → 0 in the first case, and

∆ǫk
(Xk) dist(0, ∂ǫk

f(xk)) → 0 in the second.
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Spectral bundle Algorithm for (1.3)

1. Choose an initial iterate x0 and fix 0 < θ0, ρ0 < 1 and 0 < ω ≤ 1.

Let γk > 0 be a sequence converging slowly to 0. Fix ǫ♯
0 = ρ0. Initialize

S0 = ∅, F0 = ∅ and let slope ∈ {steep,flat} be a binary variable.
2. Given the current iterate xk, stop if 0 ∈ ∂f(xk). Otherwise let ǭk > 0

such that 0 ∈ δǭk
f(xk) but such that 0 6∈ δǫf(xk) for ǫ < ǭk. Choose

ǫk ≤ min{ǭk, ǫ♯
k} such that ∆ǫk

(Xk) ≥ min{ǭk/m, ǫ♯
k/m}.

3. compute a direction dk of approximate steepest ǫk-enlarged descent

dk = − gk

‖gk‖
, f̃ ′

ǫk
(xk; dk) ≤ −ω‖gk‖.

4. If |f̃ ′
ǫk

(xk; dk)| ≤ ǫ♯
k put slope = flat, otherwise put slope = steep.

5. compute ηk = η(ǫk) according to (3.2).
6. Search for tηk

using a backtracking line search. If during the search t
satisfying αt ≤ −(1 − ρ0) ηk is found, put tk = t and goto 9. Otherwise

stop as soon as t satisfying λ′
1(Xk + tDk; Dk) < 1

4 f̃ ′
ǫk

(xk; dk) and
η(t) ≥ θ0ηk is found. Replace ηk by η(t) and tηk

by t. Let ζk be the
step which gave the best αζk

during the search.
7. compute L = Lxk,dk,tηk

, the trial step tσk
in (3.7) and αtσk

.

8. compute ϑk by (3.9) and αϑk
. Let tk ∈ {ζk, ϑk, tηk

} the step which
gives the best decrease.

9. Put xk+1 = xk + tkdk. If slope == steep let Fk+1 = Fk, ǫ♯
k+1 = ǫ♯

k

Sk+1 = Sk ∪ {k}. If slope == flat, let Fk+1 = Fk ∪ {k}, Sk+1 = Sk

and put ǫ♯
k+1 = γℓ, where ℓ = card(Fk+1). Replace k by k + 1 and go

back to step 2.

Figure 1.
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Let F =
⋃

k Fk and S =
⋃

k Sk be the flat respectively steep iterates. There are
two cases. Suppose first that there is an infinite number of flat iterates k ∈ F . Then
ǫ♯
k → 0 by step 9, because ǫ♯

k = γℓk
, with ℓk the number of flat steps that occurred

among the first k+1 steps, so ℓk → ∞. Therefore also ǫk → 0. On the other hand, the
flat steps k ∈ F satisfy |f̃ ′

ǫk
(xk; dk)| ≤ ǫ♯

k → 0. Then dist(0, ∂ǫk
f(xk)) → 0 because of

(2.8). Therefore if x̄ is an accumulation point of the flat subsequence xk, k ∈ F , we
conclude with Lemma 3.2 that 0 ∈ ∂f(x̄).

Let us next assume that all but a finite number of steps are steep, i.e., k ∈ S
for all k ≥ k0. By step 4, |f̃ ′

ǫk
(xk; dk)| > ǫ♯

k, k ≥ k0, and by step 9 the algorithm

stops driving ǫ♯
k to 0. That means f̃ ′

ǫk
(xk; dk) stays away from 0. Then we must

have ∆ǫk
(Xk) → 0. (In particular, this rules out case (a) in Lemma 3.7.) Now

min{ǭk, ǫ♯
k} = ǭk eventually, because by step 2 this minimum tends to 0, while ǫ♯

k

stays away from 0. Hence ǭk → 0, and since 0 ∈ δǭk
f(xk) ⊂ ∂ǭk

f(xk), Lemma 3.2
implies 0 ∈ ∂f(x̄) for every accumulation point of the entire sequence of iterates xk.
Altogether we have proved the following

Theorem 3.13. Let f = λ1 ◦F be a (non-convex) maximum eigenvalue function
with F of class C2

b . Let x0 be fixed so that the level set {x ∈ Rn : f(x) ≤ f(x0)} is
compact. Suppose the sequence xk, starting with x0, is generated by the first-order
bundle algorithm. Then xk is bounded and the f(xk) decrease monotonically. If all
but finitely many iterates are steep, (k ∈ S, k ≥ k0,) then every accumulation point
of xk is a critical point. If F is infinite, then every accumulation point of the flat
subsequence xk, k ∈ F , is a critical point of f .

In [58] the author considers the convex case f = λ1 ◦ A and aims at finite termi-
nation. The following is therefore a complement to [13] and [58, Thm. 7]:

Corollary 3.14. Suppose f = λ1 ◦ A is convex. Let x0 be such that the level
set {x ∈ Rn : f(x) ≤ f(x0)} is compact. Then every accumulation point of the
sequence of iterates xk generated by the first-order bundle algorithm starting with x0

is a minimum of f .
Proof. By convexity every critical point x̄ of f is a (global) minimum. Therefore,

if all but finitely many k are steep, the Theorem tells us that we are done. Suppose
then that the subsequence k ∈ F is infinite. Then by the above xk, k ∈ F , has an
accumulation point, x̄, which is a minimum of f . Since the algorithm is of decent
type, potential other accumulation points x̃ of the steep subsequence k ∈ S satisfy
f(x̃) = f(x̄), hence by convexity are also minima. That proves the claim.

Clearly this argument also applies when f is non-convex and the accumulation
point x̄ above is a global minimum of f .

Remark. In the convex case the bundle algorithm essentially agrees with that
of Cullum et al. [13] and Oustry [58], except that we force ǫk → 0 in certain cases in
order to assure convergence. In [27] Helmberg and Rendl propose an alternative way

to maintain an approximation Ŵ of ∂ǫλ1(X), using an orthogonal matrix P other
than Qǫ. Moreover, they include the possibility to remember previous steps via an
aggregate subgradient. Both approaches are compared in [26], and some merits of Ŵ
are observed. In [27] the authors prove convergence of their method and in 3.1 claim
that convergence based on δǫf(x) requires partial knowledge of the multiplicity r̄ of
λ1(X̄) at the limit X̄ . More precisely, they claim that r(ǫk) ≥ r̄ at iterates Xk near
X̄ is needed. While this is true if the ǫ-management from [13, 58] is used, Corollary
3.14 shows that our way of choosing ǫk gives at least subsequence convergence without
guessing r̄ correctly. (Naturally, if f = λ1 ◦A has a strict minimum, our method gives
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convergence. Helmberg and Rendls’ method converges without this hypothesis.)

Remark. The reader will have understood already that we intend the covering
sequence γk to converge so slowly that the flat case almost never occurs. Nonethe-
less, it may seem a little puzzling that when F and S are both infinite, it is the
flat subsequence which gets the merit of (subsequence) convergence, while the steep
subsequence, seemingly doing all the work on the way, does not get rewarded by sub-
sequence convergence. Indeed, the estimates suggest that steps where |f̃ ′

ǫk
(xk; dk)| is

large give the best decrease in the cost, and those are the ones in S.
Let us therefore examine the case where both F and S are infinite more closely.

As we shall see, in most cases the subsequence S will still have many convergent
subsequences. Notice first that it is possible that f̃ ′

ǫk
(xk; dk) → 0, for a subsequence

k ∈ S′ ⊂ S, even though the speed is necessarily slower than that of ǫ♯
k → 0. Since

ǫk → 0, a consequence of the fact that F is infinite, we conclude in that case (via
Lemma 3.2) that every accumulation point x̃ of S′ is critical. Altogether, subsequences
like S′ are welcome.

Let us next examine a subsequence S′′ ⊂ S where f̃ ′
ǫk

(xk; dk) ≤ τ < 0, k ∈ S′′.
In that case we know that ∆ǫk

(Xk) → 0, k ∈ S′′. In particular, this may not happen
if case (a) in Lemma 3.7 is on. Assuming that we are in case (b) of that Lemma,
suppose we have ǭk → 0, k ∈ S′′. Then we are again done, ending up with another
good subsequence S′′ exhibiting subsequence convergence.

So finally the bad case is when ǭk, k ∈ S′′, stay away from 0. Then by step 2 of
the algorithm, we will eventually have ǫ♯

k < ǭk, k ∈ S′′. Now we have to remember
that

∑
k αtk

is even summable, a fact we have never exploited so far. From estimate

(3.2) we deduce that
∑

k∈S′′ ∆ǫk
(Xk)2 < ∞, hence

∑
k∈S′′(ǫ

♯
k)2 < ∞ by the above.

Put differently, a subsequence S′′ of this last type must be extremely sparse, because
as we agreed, γk tends to 0 very slowly. We may for instance decide that it converges
so slowly that

∑
k γ2

k = ∞. Then also
∑

k(ǫ♯
k)2 = ∞.

This observation at least partially resolves the following dilemma caused by our
algorithm. Suppose our method proposes iterates xk with k ∈ F and k ∈ S fairly
mixed. Then in order to be on the safe side, we would probably stop the process
when k ∈ F . But what to do when all the iterates are in S? In practice this will
be satisfactory, as we are probably in the case where F is finite. But of course we
can never be sure, having to stop after a finite number of steps. It will then be
reassuring to know that the probability to be in a subsequence S′′ of the last type,
where subsequence convergence may fail, is in some sense very low. For instance,
the probability to meet an element of S′′ in an interval of fixed length ℓ, say in
In = [n, n + ℓ], will tend to 0, which makes it very likely that stopping the algorithm
in In gives an iterate belonging to some of the ”good” subsequences of S.

3.8. Bounding tη. For general C2 operators F our algorithm has to be mildly
modified. Here we encounter the problem that the constants Lx,d,tη

may become
arbitrarily large due to the fact that the trial steps tη may become arbitrarily large.
In particular, we then cannot allow cases where tη = ∞. As we have seen, this does
not occur for bilinear B, so we might regard this case as of minor importance for the
applications we have in mind. But eigenvalue programs with general C2 operators F
have frequently been treated in the literature; for applications in automatic control
see for instance [3], [4]. We therefore include a discussion of this case here. The way
it is handled is by brute force. We oblige the steps tη to be uniformly bounded by a
constant T > 0.
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In order to understand the difficulty, consider the known case of an affine operator
A. If the minimization of f = λ1 ◦ A is to be well-defined, i.e., if f is to be bounded
below, then the linear part A of A needs to satisfy λ1(Ad) ≥ 0 for every d. That is,
Ad is not negative definite for any d. Moreover, if the set of minimizers of f = λ1 ◦A
is to be bounded, we even require coercivity of f , which means λ1(Ad) > 0 for every
d 6= 0.

What happens for general non-convex C2 operators? Here we notice a difference
with the affine case. Even when f = λ1 ◦ F is nicely bounded below and coercive,
that is f(x) → +∞ as ‖x‖ → ∞, there is no reason why its linearizations about a
point x, that is, e 7→ λ1 (F(x) + F ′(x)e), should share this property. In fact some of
the linearizations may fail to be coercive, and this may lead to arbitrarily large values
tη as above. This effect motivates the following

Definition 3.15. A representation f = λ1 ◦ F of f is called linearly coercive if
e 7→ λ1 (F(x) + F ′(x)e) is coercive for every x.

The meaning of this definition becomes clear with the following
Lemma 3.16. Suppose f = λ1 ◦ F is linearly coercive. Then for every R > 0

there exists T = T (R) such that for every ‖x‖ ≤ R, every direction ‖d‖ = 1 and every
η > 0 having f ′

η(x; d) < 0, the abscissa tη realizing f ′
η(x; d) satisfies tη ≤ T .

Proof. Suppose on the contrary that there exist ‖xk‖ ≤ R, ‖dk‖ = 1 and ηk > 0
such that −λ′

1 (Xk + tηk
Dk;−Dk) ≤ f ′

ηk
(xk; dk) < 0 is satisfied, where tηk

realize
f ′

ηk
(xk; dk) and tηk

→ ∞. Then each of the functions φk : t 7→ λ1(Xk + tDk) decreases
on the interval [0, tηk

]. In particular, for every intermediate 0 < t < tηk
we have

λ′
1(Xk + tDk; Dk) < 0 and λ1(Xk) > λ1(Xk + tDk).

Passing to subsequences, we may assume xk → x, dk → d, hence Xk → X ,
Dk → D. Now consider an arbitrary t > 0. Then tηk

> t for k large enough, hence
λ1(Xk) > λ1(Xk + tDk) for k large enough. Then in the limit, λ1(X) ≥ λ1(X + tD).
Since t > 0 was arbitrary, t 7→ λ1(X + tD) is bounded above by λ1(X) on [0,∞).
That contradicts linear coercivity.

The proof is not constructive, so it is not clear at the moment how T should be
computed. However, as we shall see, T will not be required explicitly in the algorithm
and rather serves as a theoretical parameter to obtain convergence. Let us now see
how a given maximum eigenvalue function f = λ1 ◦ F could be forced to linear
coercivity.

Lemma 3.17. Let f = λ1 ◦ F be given. For R > 0 and ǫ0 > 0, there exists a
linearly coercive maximum eigenvalue function f̃ = λ1 ◦ F̃ such that

(i) f(x) = f̃(x) for every ‖x‖ ≤ R.
(ii) For every 0 ≤ ǫ ≤ ǫ0 and ‖x‖ ≤ R, the ǫ-enlarged subdifferentials δǫf(x) and

δǫf̃(x) coincide.
(iii) If f is coercive, so is f̃ .
Proof. Recall that F : Rn → Sm by our standing notation. Now let A : Rn → Sp

be any affine matrix function such that λ1 ◦ A is coercive, and consider the following
augmented functions

F̃ν(x) =

(
A(x) − νIp 0

0 F(x)

)
∈ S

m+p(3.10)

with ν ∈ N a parameter to be chosen. Define open sets Ων := {x ∈ Rn : λ1(A(x))−ν <
λ1(F(x))}, then the entire sequence satisfies ∪∞

ν=1Ων = Rn. For ν large enough, let’s
say for ν ≥ ν0, the ball ‖x‖ ≤ R is contained in Ων . By construction

λ1

(
F̃ν(x)

)
= λ1 (F(x)) for every x ∈ Ων ,
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hence every fν = λ1 ◦ F̃ν with ν ≥ ν0 is now running as a candidate to becoming the
function f̃ we are looking for.

Indeed, consider the linearization of fν = λ1 ◦ F̃ν about some fixed x. This is

e 7→ λ1

(
F̃ν(x) + F̃ ′

ν(x) e
)

= max{λ1 (F(x) + F ′(x) e) ; λ1 (A(x + e)) − ν},

because A is its own linearization. As A is coercive, so is e 7→ A(x + e) − νIp, hence

the linearization of each F̃ν is now coercive, i.e., fν is linearly coercive.
Let ν ≥ max{ν0, ǫ0}, then for every 0 ≤ ǫ ≤ ǫ0 and ‖x‖ ≤ R we have

λ1 (A(x)) − 2ν ≤ λ1 (A(x)) − ν − ǫ < λ1 (F(x)) − ǫ < λr(ǫ) (F(x))

by the definition of r(ǫ) and since x ∈ Ων . Therefore the first r(ǫ) eigenvalues of
F̃2ν(x) and of F(x) are the same. The corresponding r(ǫ) × (m + p) matrix Q̃ǫ is
simply Q̃ǫ = [0p×r(ǫ); Q

⊤
ǫ ]⊤.

The conclusion is that for 0 ≤ ǫ ≤ ǫ0, the ǫ-enlarged subdifferential of f2ν =
λ1 ◦ F̃2ν at x ∈ Ων is the same as that of f = λ1 ◦ F . In consequence, also steepest
ǫ-enlarged descent directions at x ∈ Ων are the same for both representations of f .

This is in contrast with the η-subdifferentials ∂ηf and ∂ηf2ν , which are global
concepts in the sense that they change even when the function is modified far away
from the current position x. The conclusion is that changing ∂ηf(x) into ∂(f2ν)η(x)
without affecting δǫf(x) allows to bound the abscissae tη. The situations is explained
by the following

Example. Consider B(x) = x2 ∈ S1, then f(x) = λ1 (B(x)) = x2 is coercive,
but the linearizations e → λ1 (B(x) + B′(x)e) = x2 + 2ex are not. Now consider the

following construction. Let B̃(x) = diag(−1+x,−1−x, x2) ∈ S
3, then λ1

(
B̃(x)

)
= x2,

so f is represented as λ1 ◦ B̃, now on S3. In the terminology above we have chosen
A(x) = diag(x,−x) and ν = 1 with Ων = R. The linearization of B̃ about a point x is

now B̃(x) + B̃′(x)e = diag(−1 + x + e,−1− x− e, x2 + 2ex), so λ1

(
B̃(x) + B̃′(x)e

)
=

max{−1 + |x + e|, x2 + 2xe} → ∞ as |e| → ∞. In other words, the representation
f = λ1 ◦ B̃ is now linearly coercive. �

The first-order bundle algorithm for (1.3) with general C2 operators is now ob-
tained as follows. We follow the same steps, but use a linearly coercive representation
f̃ of f on the compact set {x : f(x) ≤ f(x0)} in step 2 and during the search for tη in
step 6. The rest of the procedure remains unchanged, and the convergence or finite
termination properties are the same.

3.9. Comments and extensions. ¿From a practical point of view it may
be attractive to modify the bundle method by allowing larger sets of subgradients
δǫk

f(xk) ⊂ Gk ⊂ ∂ǫk
f(xk), as proposed in [26]. For instance, some of the elements

gk−j = F ′(xk−j)
∗Gk−j from previous steps may be recycled at the step xk. As op-

posed to the convex case [26], there are two ways how this could be arranged. We
could either keep the old gk−j , or we could keep only the old Gk−j and create new

g♯
k−j = F ′(xk)∗Gk−j at the actual point xk. We would then accept as trial subgradi-

ents g any convex combination g =
∑

j αjgk−j + αg′, αj , α ≥ 0,
∑

j αj + α = 1, with
g′ ∈ δǫk

f(xk), such that g ∈ ∂ǫk
f(xk). At any rate, the sets Gk so obtained are finite

extensions of δǫk
f(xk). Notice that our convergence theory covers this case as well,

even though the estimates based on δǫk
f(xk) get the more conservative, the larger

the gap between δǫk
f(xk) and Gk. Moreover, in each case we have to specify in which

way the minimum norm element analogous to (2.7) is computed.
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A question of practical importance is whether we can expect a decrease of the
order O(η) as in the convex case (see [58]), or whether we will frequently have to be
content with the order O(η2). The following result gives some indication. Concerning
terminology, recall that if the maximum eigenvalue λ1(X) has multiplicity r, we call
sep(X) = λr(X) − λr+1(X) > 0 the separation of X .

Lemma 3.18. Let R > 0 be fixed. There exist constants K > 0 and α > 0
such that for every x with ‖x‖ ≤ R, every d with ‖d‖ = 1 and every η > 0 with
f ′

η(x; d) = λ′
1(X + tηD; D), the following expansion is valid

η

t2η
=

1

2
λ′′

1(X ; D) + κ tη

for some |κ| ≤ K and all 0 < tη ≤ α sep(X).
Proof. According to Torki [68, Thm. 1.5], the maximum eigenvalue function is

twice directionally differentiable and admits an expansion

λ1(X + tD) = λ1(X) + tλ′
1(X ; D) +

t2

2
λ′′

1 (X ; D) + O(t3).

Inspecting [66, Thm. 2.8] on which the result is built shows that the O(t3) term may
more accurately be written as O(t3) = κ1t

3, where |κ1| ≤ K1 for a constant K1 which
is uniform for a bounded set of X and D, and for 0 ≤ t ≤ α sep(X), where α is
independent of t.

A similar directional expansion holds at the second order level. We have

λ′
1(X + tD; D) − λ′

1(X ; D) = t λ′′
1 (X ; D) + κ2t

2

where |κ2| ≤ K2 with K2 uniform on a bounded set of X and D, but for t only in
0 ≤ t ≤ α sep(X).

Substituting these two estimates with t = tη into (3.5) gives the relationship

η =
1

2
t2ηλ′′

1 (X ; D) + κt3η

for |κ| ≤ K and some constant K which is the same for a bounded set of X and D,
and for all tη ≤ α sep(X).

Let us substitute this estimate into (3.9) and check whether tη < ϑ, i.e., whether
a decrease of the order O(η) may be expected. Taking squares this is equivalent to

t2η ≤
|f ′

η(x; d)|
(
|f ′

η(x; d)| +
√

f ′
η(x; d)2 + 4Lρ0η

)

2L2
+

ρ0λ
′′
1 (X ; D)

2L
t2η + Kt3η

where the first term on the right hand side is positive, and the third term is negligeable.
Concerning the second term, Torki shows,

λ′′
1(X ; D) = λ1

(
2U⊤Q⊤D (λ1(X)Ir − X)

†
DQU

)
,

where Q is a r × m matrix whose columns span the eigenspace of λ1(X), and U
is a similar matrix for the eigenspace of λ1(Q

⊤DQ). This means that λ′′
1 (X ; D)

behaves roughly like sep(X)−1 = (λr(X) − λr+1(X))−1, the order of magnitude of
the pseudo-inverse. This term is expected to explode as the iterates Xk approach a
limit X̄ with λ1(X̄) of multiplicity greater than 1. At least this will happen when the
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λ1(Xk) have smaller multiplicity than λ1(X̄), as is usually the case. In other terms,
ρ0λ

′′
1 (X ; D)/2L is expected to be (way) larger than 1, so tη ≤ ϑ is expected to be

satisfied asymptotically.

Remark. Unfortunately this argument remains heuristic, since Torki’s expansion
at each step k is only valid on a neighborhood t ≤ α sep(Xk) (for the same fixed α > 0
which depends neither on k, nor on t). But it is to be expected that sep(Xk) → 0,
so we cannot a priori render these estimates uniform over k. In fact, we could do so
provided sep(Xk) → 0 converged slower than ‖Xk − X̄‖ → 0. This meant that the
Xk approached X̄ transversally to the smooth manifold Mr = {X ∈ Sm : λ1(X) =
· · · = λr(X) > λr+1(X)}. Only iterates Xk approaching Mr tangentially cause
problems. Ironically, the situation is also o.k. for iterates which are exactly on the
manifold Mr. Then sep(Xk) stays away from 0 and Torki’s local estimates again
hold uniformly over k. This strange behavior highlights the non-smooth character of
the maximum eigenvalue function. In the past, similar phenomena have motivated
approaches, where in order to avoid the tangential zone, iterates have been forced to
lie on the manifold Mr. We will re-examine this idea in part 2 [49] of this paper.

3.10. Constrained program. Let us now address the constrained eigenvalue
program (1.4). A first idea, often used in non-smooth optimization, is exact penaliza-
tion. While this has been reported to induce irregular numerical behavior of bundle
methods due to inconveniently large penalty constants (cf. [36]), we believe that
the situation is less dramatic for (1.4) with its single scalar constraint. We have the
following

Proposition 3.19. Let x̄ be a local minimum of (1.4) such that x̄ is not a critical
point of f = λ1 ◦ F alone. Then x̄ is a KKT-point of (1.4). If at least one of the
associated Lagrange multipliers ρ̄ ≥ 0 is known to satisfy ρ̄ ≤ β, then x̄ is a critical
point of the following unconstrained program of the form (1.3):

min{c⊤x + β λ1 (diag (01×1,F(x))) : x ∈ R
n}.

Proof. Since c⊤x and f = λ1 ◦ F are locally Lipschitz functions, the F. John
necessary optimality conditions are satisfied at x̄ (see [12, Thm. 6.1.1]). That is,
there exist σ̄ ≥ 0, ρ̄ ≥ 0, not both zero, such that

σ̄ c + ρ̄F ′(x̄)∗Ḡ = 0, Ḡ ∈ ∂λ1 (F(x̄)) , ρ̄ λ1 (F(x̄)) = 0, λ1 (F(x̄)) ≤ 0.

Clearly ρ̄ = 0 is impossible, while σ̄ = 0 would imply that x̄ was a KKT point for
λ1 ◦F alone, which was excluded by hypothesis. Therefore x̄ is a KKT-point for (1.4).
In other terms, we may assume σ̄ = 1, ρ̄ > 0 above.

Now we show that the set of ρ̄ above is bounded. Indeed, suppose on the contrary
that we have KKT-conditions with σ̄ = 1, ρn → ∞ and Gn ∈ ∂λ1 (F(x̄)). By
compactness of the subdifferential, we may assume Gn → G∞ ∈ ∂λ1 (F(x̄)) for a
subsequence. Dividing by ρn and passing to the limit then implies F ′(x̄)∗G∞ = 0,
which means that x̄ is a KKT-point for λ1 ◦ F alone, contradicting our hypothesis.
Hence the set of ρ̄ is bounded.

What we have shown is that program (1.4) is calm at x̄ in the sense of Clarke [12,
6.4]. Hence it may be solved by exact penalization. That is, we find β > 0 such that

min c⊤x + β max{0, λ1 (F(x̄))}
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is equivalent to (1.4). But observe that max{0, λ1 (F(x̄))} = λ1 (diag(01×1,F(x)), so
the exact penalty program is of the form (1.3). The fact that every β ≥ ρ̄ will do is
standard.

Let us now look at a second way to address (1.4), which builds on Kiwiel’s im-
provement function [34]. In the convex case f = λ1 ◦ A, this has more recently been
used by Miller et al. [46, 47], where ideas from [27] have been amalgamated with
those of [34]. The emerging numerical method is reported to perform nicely.

Given the current iterate xk in a minimization algorithm for (1.4), consider the
improvement function

φ(x, xk) = max
{
c⊤(x − xk), λ1 (F(x))

}
= λ1

([
c⊤(x − xk) 0

0 F(x)

])
.(3.11)

The following algorithm essentially follows the line of the unconstrained case,
where at each instance k the new search direction is computed with respect to the
improvement function φ(xk; ·) instead of f .

Spectral bundle algorithm for program (1.4)

1. Let ω, ρ0, θ0, ǫ
♯
0, x0, γk, S, F ⊂ N and slope ∈ {steep,flat} be as in

the unconstrained algorithm.
2. Given the current xk, stop if 0 ∈ ∂φ(xk; xk). Otherwise let ǭk such

that 0 ∈ δǭk
φ(xk; xk), but 0 6∈ δǫφ(xk; xk) for ǫ < ǭk. Choose ǫk ≤ ǫ♯

k

such that ∆ǫk
(Xk) ≥ min{ǭk/m, ǫ♯

k/m}.
3. compute a direction dk of approximate steepest ǫk-enlarged descent

at xk with respect to the function φ(xk; ·).
4. If |φ̃′(xk; ·)ǫk

(xk; dk)| ≤ ǫ♯
k put slope =flat, otherwise put slope =

steep.
5. compute ηk as in (3.2) using φ(xk ; ·).
6. Search for tηk

as in the unconstrained algorithm using φ(xk; ·) and
the corresponding Fk = diag{c⊤(x − xk),F} in lieu of f and F .

7.-9. In analogy with the unconstrained case.

Then we have the following
Theorem 3.20. Consider program (1.4). Let x0 be fixed and suppose F is of

class C2
b . Suppose c⊤x is bounded below on the feasible set {x ∈ Rn : f(x) ≤ 0}.

Let the sequence xk starting with x0 be generated by the spectral bundle algorithm for
(1.4). Then the following cases may occur:

1. All iterates are infeasible, i.e., f(xk) > 0 for all k. If x̄ is an accumulation
point of the entire sequence xk (when F is finite) and of the flat subsequence
xk, k ∈ F (when F is infinite), then x̄ is a critical point of f .

2. The iterates xk are strictly feasible, i.e., f(xk) < 0, for some k0 and all
k ≥ k0. If x̄ is an accumulation point of the entire sequence xk (if F is finite)
and of the flat subsequence xk, k ∈ F otherwise, then x̄ satisfies the F. John
necessary optimality conditions for program (1.4).

Proof. 1) Let us first examine the situation where the initial point x0 is infeasible,
f(x0) > 0. Then there are two possibilities. Either feasibility is reached in finite time,
i.e., f(xk) ≤ 0 at some stage k. Or f(xk) > 0 for all k, so that feasibility is never
reached. In the second case φ(xk, x) = f(x) around xk, and the algorithm essentially
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behaves like the unconstrained bundle algorithm, that is, it reduces f . Since the f(xk)
are bounded below by 0, the same conclusions are obtained. More precisely, every
accumulation point x̄ of xk is a critical point of f if the set F is finite, and so is every
accumulation point of the flat subsequence if F is infinite. Such an accumulation
point may or may not be feasible.

2) Let us now suppose that some iterate k is feasible, f(xk) ≤ 0. Then φ(xk; xk) =
0. Unless the algorithm halts with 0 ∈ ∂φ(xk; xk), the new dk is a direction of
descent of φ(xk; ·) at xk, so the line search will give a descent step with φ(xk; xk+1) <
φ(xk; xk) = 0. Then f(xk+1) ≤ φ(xk; xk+1) < 0. Therefore iterate xk+1 is even
strictly feasible.

3) Suppose next that f(xk) < 0 for some k. Then by repeating the argument
in 2), all iterates xj , j ≥ k stay strictly feasible. What is more, c⊤(xk+1 − xk)) ≤
φ(xk; xk+1) < φ(xk; xk) = 0, so the algorithm now reduces the objective function at
each step and continues to do so during the following steps.

Altogether iterates now decrease in value and remain strictly feasible. Since by
hypothesis the problem is bounded below, the series

∑
k αtk

converges. By construc-
tion, this yields then the same cases as discussed in the unconstrained algorithm.

4) Suppose for instance that some subsequence k ∈ N has ǭk → 0, where 0 ∈
δǭk

φ(xk; xk). Let x̄ be one of its accumulation points, then the argument of Lemma
3.2 shows 0 ∈ ∂φ(x̄; x̄). In that case x̄ satisfies the F. John necessary optimality
conditions, so it must be either a KKT-point, or a critical point of f alone.

Feasibility f(x̄) ≤ 0 is clear. But f(x̄) < 0 is not possible, for in that case we
would have ∂φ(x̄; x̄) = {c}, a contradiction. So f(x̄) = 0. Then both c⊤(x − xk) and
F(x) are active at xk, hence 0 = αc + (1 − α)g for some 0 ≤ α ≤ 1 and g ∈ ∂f(x̄).
If α > 0 we have a KKT point. If α = 0, then x̄ is a critical point of f alone, whose
value is 0.

5) Suppose next that φ̃′
ǫk

(xk; ·)(xk; dk) → 0 in tandem with ǫk → 0 for a sub-
sequence k ∈ N . Here the argument of Lemma 3.2 shows that every accumulation
point x̄ of xk, k ∈ N , has 0 ∈ ∂φ(x̄; x̄), so the conclusion is the same.

6) Finally suppose 0 ∈ ∂φ(xk; xk) at some k, in which case the algorithm halts.
Here if f(xk) > 0, we must have a critical point of f alone. If f(xk) ≤ 0, the discussion
is the same as in 4) above. This completes the proof.

Remark. Clearly when 0 ∈ ∂f(x̄) with f(x̄) > 0, the algorithm fails. While this
always happens when the problem is infeasible, it is clear that even in the feasible
case we may create situations, where a first order method like the proposed one must
fail. For instance, we could arrange that feasible points can only be reached from x0

by increasing the improvement function, which the method never does. Nonetheless,
Theorem 3.20 seems practically useful, as local minima or critical points of f alone
are not expected to occur frequently in practice.

Notice that for a convex constraint, f(x) = λ1 (A(x)) ≤ 0, the algorithm never
fails. We have the following

Corollary 3.21. Suppose f = λ1 ◦ A is convex and program (1.4) is bounded
below and has a strictly feasible point. Then every accumulation point of the sequence
xk generated by the constraint bundle algorithm is a minimum of (1.4).

Proof. Suppose we had f(xk) > 0 for all k. Then some accumulation point x̄ of
the xk is critical for f alone, which by convexity means x̄ is a minimum of f . Suppose
f(x̄) > 0, then the program has no feasible points, a contradiction. But f(x̄) = 0
is also impossible, because no point is strictly feasible. This means f(xk) become
strictly feasible after a finite number of iterations. Now Theorem 3.20 shows that
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every accumulation point x̄ of the xk satisfies the F. John optimality condition. If
x̄ is a KKT-point, then it is a minimum by convexity, so we are done. The other
possibility is that x̄ is a minimum of f . But the proof of Theorem 3.20 shows that
f(x̄) = 0, while a minimum of f (if any) must have strictly negative value. So this is
impossible. This completes the proof.

4. Conclusion. We have proved a global convergence result for constrained and
unconstrained optimization problem using non-convex maximum eigenvalue functions,
which assures subsequence convergence of the sequence of iterates towards critical
points under mild assumptions. The proposed method computes qualified descent
steps using an inner approximation of ǫ-subdifferentials proposed in [13] and [58].
Recent numerical tests, to be published in [3, 4], seem to indicate that the method
performs fairly well in practice. An extension to second order methods will be pre-
sented in part 2 [49] of this work.
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