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Abstract

This paper is concerned with the robust control problem of LFT
(Linear Fractional Representation) uncertain systems depending on a
time-varying parameter uncertainty. Our main result exploits an LMI
(Linear Matrix Inequality) characterization involving scalings and
Lyapunov variables subject to an additional essentially non-convex
algebraic constraint. The non-convexity enters the problem in the
form of a rank deficiency condition or matrix inverse relation on the
scalings only. It is shown that such problems and many others can
be formulated as the concave minimization of a nonlinear functional
subject to Linear Matrix Inequalities constraints. First of all, a local
Frank and Wolfe feasible direction algorithm is introduced in this con-
text to tackle this hard optimization problem. Exploiting the attract-
ive concavity structure of the problem, several efficient global concave
minimization programming methods are then introduced and com-
bined with the local feasible direction method to secure and certify
global optimality of the solutions. The implementation details of the
algorithms are covered. A special focus is put on the development
of new stopping criteria in order to reduce the overall computational
overhead.

Computational experiments indicate the viability of our algorithms,
and that in the worst case they require the solution of a few LMI
programs. Power and efficiency of the algorithms are demonstrated
through realistic and randomized numerical experiments.

1 Introduction

A number of challenging problems in robust control theory fall within
the class of rank minimization problems subject to LMI (convex) con-
straints. An important example is provided by the reduced-order Ho,
control problem. It has been shown in [28, 10, 20] that there exists a
k-th order controller solving the Ho, control problem iff one can find a
pair of symmetric matrices (X, Y) such that for some H, performance
level v the following holds.

LX,Y,y) < O, 1)
X I
Rank [I Y] < n+k, (2)

where n designates the plant’s order and (1) is an LMI in X, Y
and . The hardness of this problem stems from the rank condition
(2) which is essentially non-convex. As a byproduct of the results
in this paper, we show that this problem can be formulated as a
concave minimization program over a convex set which establishes its
NP-hardness. Different proofs of NP-hardness are also given in [33, 9].

As it plays a central role in robust control theory, many researchers
have devoted their efforts to developing adequate algorithms and
heuristics for determining solutions to this class of problems. In
[14], Grigoriadis and Skelton consider a method based on alternating
projections for iteratively finding a solution to the rank constraint
(2). In [19], Iwasaki derives an iterative scheme taking advantage of
primal and dual formulations of the fixed-order control problem and
demonstrates its practicality by extensive tests and investigations.
Non-trivial lower and upper bounds of the above problem are
obtained in [25]. These bounds can potentially be used in branch
and bound refinement schemes to locate approximate solutions. In
[12] Geromel et al. introduce a min/maz algorithm for solving
the reduced-order stabilization problem and discuss its convergence
properties. A closely related algorithm, referred to as the cone
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complementary linearization algorithm is elaborated in [13] by
El Ghaoui et al. The authors introduce a nonlinear objective
functional whose optimal value corresponds to solutions to the
lower-order stabilization problem. Following the ideas of Frank
and Wolfe (FW) in [8], each step of the algorithm utilizes a local
linearization of the functional to determine a “best” feasible descent
direction and therefore a feasible line segment in the constraint
set. In addition to convergence, it is shown that the algorithm
enforces some rank deficiency at each step. In [34], the second
author developed a global optimization technique based upon
d.c. (difference of convex functions/sets) optimization techniques
exploiting the fact that the reverse convex constraints are of relatively
low-rank, which is of primary importance to ensure practicality of the
algorithm. This technique is however currently limited to the case of
symmetric scalings and hardly generalizes to more complex structures.

The contribution of this paper is threefold.

e It is first shown that several important problems in robust con-
trol theory can be recast as concave minimization problems. That is,
problems involving a concave functional subject to convex constraints
consisting of LMIs. A sample list of such problems includes robust
control and robust multi-objective problems based on any kind of scal-
ings or multipliers, robust fixed- or reduced-order control problems,
multi-objective Linear Parameter-Varying (LPV) control, reduction
of LFT representations, and more generally any combination of such
problems. Although, this is not the central object of this paper, we
reveal that BMI (Bilinear Matrix Inequality) problems and some other
generalizations can also be formulated in the same fashion, so that in
this respect, concavity appears to be the most prominent feature of a
very vast array of problems in control theory. These problems are gen-
erally difficult to deal with but exhibit some nice geometric concave
structure that makes them more attractive and painless than general
nonlinear optimization problems. Another distinguished characteristic
of the concave problems under study is that whenever feasible, optim-
ality occurs only at zeros of the concave functional. In this respect,
such problems can be reinterpreted as zero finding concave programs
which significantly reduces the difficulty of the search.

e Starting from this viewpoint, the work here provides first a full gen-
eralization of the technique in [13] to handle robust control problems
for plants subject to time-varying LFT (Linear Fractional Transform-
ation) uncertainties. More precisely, we show that a FW algorithm
can be used to solve or find local solutions of robust synthesis prob-
lems involving either pairs of symmetric and skew-symmetric scalings
or full generalized scalings as discussed in [30]. We demonstrate that
these problems are equivalent to zero-seeking concave programming
problems where the convex constraints express in terms of LMIs. We
also indicate how the FW algorithm must be modified to handle other
types of problems. We shall briefly prove that the FW algorithm is
guaranteed to generate strictly decreasing sequences for the objective
functional and that the sequence of points is either infinite or reach
a local optimal solution. This follows from earlier results by Bennett
and Mangasarian in [5].

An elementary step of the FW algorithm reduces to solving an LMI
program whose cost is heavily dependent on the dimensions of the
problem at hand (number of states and uncertainties). Therefore, an
important part of the paper is dedicated to describing the implement-
ation details of the proposed algorithms, including initialization, feas-
ible descent directions and stopping criteria. A special emphasis is put
on developing accurate and non-conservative stopping criteria that do
not require modification of the LMI characterization of the problem
but use perturbation techniques on the non-convez variables. A key
idea of these stopping criteria is to limit as far as possible the zig-
zagging phenomenon which characterizes first-order descent methods
such as the FW algorithm and hence to ensure reasonable computa-
tional time.

o It is important to stress out that the FW algorithm is of local nature
and as such is not guaranteed to provide a global solution to our prob-
lems. This naturally leads us to combining recently available con-



cave programming methods with the FW algorithm to certify global
optimality of the solutions or invalidate feasibility. As concave pro-
gramming is the best studied class of problems in global optimization
[16, 17, 22, 36], one advantage of our formulation is that several effi-
cient and practical algorithms are available for its resolution. In this
paper, we have opted for a suitably built FW algorithm combined
with several alternative concave programming techniques. The FW
algorithm is much less costly but in return, is prone to non-global op-
timality. On the other hand, concave minimization techniques provide
global optimal solutions but generally require intensive computations.
Therefore, an important target of this paper is to maintain a reason-
able computational cost by taking advantage of local and global tech-
niques. Hence, the global concave programming techniques are used
either to refine a local solution issued from the FW algorithm until
global optimality is achieved or to provide a certificate of global op-
timality. We have paid special attention to the simplicial and conical
Branch and Bound concave minimization methods which respectively
divide the feasible set into simplices and cones of decreasing sizes. The
main thrust of these techniques is that they rely heavily on concav-
ity and convexity geometric concepts which make them particularly
appropriate for our problems. Each step of the proposed techniques
exploits both the convexity of the constraint set and the concavity of
the functional and also the fact that only zero optimal values are of
interest. This allows large portions of the feasible set to be eliminated
at each iteration. The most computationally demanding operation in
each step comes down to solving one LMI program, hence the prac-
ticality of the methods. On the other hand, the stopping criteria
mentioned above are again useful to further reduce the computational
burden.

As for the FW algorithm, the practical implementation of these
methods in the robust control context of this paper is thoroughly
investigated. This description is followed by a set of numerical
experiments for a realistic and randomized robust control problems.
Interestingly enough, in almost all of our computational experiments,
the local solutions found by FW algorithms are very close to optim-
ality and are either certified global or quickly improved to optimality
after a few iterations of the simplicial and conical techniques.

2 Problem presentation

We are concerned with the robust control problem of an uncertain
plant subject to LFT uncertainty. In other words, the uncertain plant
is described as

T A Ba B1 Bs T

EZN _ Ca Daa Dai Da: wA

z Ci1 Dia Di1 D2 w (3)
Y Ca  Daa D2 0 u

wA = A(t) za ,

where A(t) is a time-varying matrix-valued parameter and is usually
assumed to have a block-diagonal structure in the form

A(t) = diag (- .., 6: ()1, ..., A;(E),...) e RV (4)
and normalized such that
AWTA®) <1, t>0. (5)

Blocks denoted ;I and Aj; are generally referred to as repeated-scalar
and full blocks according to the p analysis and synthesis literature
[7, 6]. Hereafter, we are using the following notation: w for the con-
trol signal, w for exogenous inputs, z for controlled or performance
variables, and y for the measurement signal.

For the uncertain plant (3)-(5) the robust control problem consists in
seeking a Linear Time-Invariant (LTI) controller

Tx

Axzx + Bky, (6)
u

Ckzx + Dky,

such that for all parameter trajectories A(t) defined by (5)

e the closed-loop system (3)-(5) and (6) is internally stable,

e the Lo-induced gain of the operator connecting w to z is bounded
by ~.

It is now well-known that such problems can be handled via a suitable
generalization of the Bounded Real Lemma. The reader is referred to
references [27, 26, 1, 2, 15, 32] for more details and additional results.

2.1 Solvability conditions for LFT plants

The characterization of the solutions to the robust control problem
for LFT plants requires the definitions of scaling sets compatible with
the parameter structure given in (4). Denoting this structure as A,
the following scaling sets can be introduced. The set of symmetric
scalings associated with the parameter structure A is defined as

Sa = {S :§T =5, SA=AS, VA with structure A} .

Similarly, the set of skew-symmetric scalings associated with the para-
meter structure A is defined as

Ta = {T :TT = T, TA=A"T, VA with structure A} )

Solvability conditions are given in the next theorem.

Theorem 2.1 Consider the LFT plant governed by (3) and (5)
with A assuming a block-diagonal structure as in (4). Let Nx
and Ny denote any bases of the null spaces of [C2, Daa, D21,0] and
[Bg,DXQ,Dg,O], respectively. Then, there exists a controller such
that the (scaled) Bounded Real Lemma conditions hold for some
Lo gain performance v if and only if there ezist pairs of symmet-
ric matrices (X,Y), (S,X) and a pair of skew-symmetric matrices
(T, T) such that the structural constraints

S, X €8a and T, T € Ta (7)

hold and the matriz inequalities below, denoted LMI[i] , i =
1,...,4,

(8)

(9)

ATX 4+ XA * * * k]
BRX +TCa —S+TDan+ DA TT % *  *
BT x pI, T —I % x |Nx<0,
SCa SDan SDa1 —S %
C1 Dia D11 0 —nIl
AY 4+ v AT * * * K]
CAY +TBY -2 4+TDL, + Daal”? * *  x
1Y DiaT”T I * *x | Ny <O,
©BX =D A LD, - %
Bf D7, Dfy 0 —nI]
X I
—[I Y} <0, (10)
- [*g g] <0 (11)
subject to the algebraic constraints
(S+T)7 ' =(Z+1D), (12)

are feasible.

Note that due to the algebraic constraints (12), the problem under
consideration is non-convex and has been even shown to have non-
polynomial (NP) complexity. See [5] and references therein. Simpler
instances of this problem as those considered in [24] are NP complete .
This feature is in sharp contrast with the associated Linear Parameter-
Varying control problem for which the LMI constraints (8)-(11) are the
same but the nonlinear condition (12) fully disappears.

3 Concave minimization programs subject to LMI
constraints

For tractability reasons, it is interesting to find alternate formulations
that are amenable to numerical computations. A potential technique
was introduced in [13] and amounts to constructing a nonlinear func-
tional whose feasible optimal points satisfy the algebraic constraints
(12). Hereafter, we develop a suitable extension of this technique that
is applicable to structured pu-scalings S and T, but also to full-block
generalized scalings as considered in [30]. We state this more formally
in the next Lemma.

Lemma 3.1 Introduce the concave LMI-constrained minimization
program

Pb1: minimize Tr (Z1 — Z3Z5 " ZT) (13)

subject to LMIs (8)-(11) and

Z%‘ Z3 S+ T I
z3 Zy I T40

LMI [5] (S+T)T I I 0 <0.(14)
I (z+D)7T 0 I



Then, any feasible point to Pbl which further satisfies

Tr(Z1 — ZsZ5 ' ZT) =0, (15)
is optimal and is a solution to the problem described in Theorem
2.1 and conversely.

The concavity of the trace function in (13) follows by examination of
its hypograph which turns out to be convex. Note that without loss
of generality, it can be assumed that the matrix

— Zl

Z3
= 1z7 2.
has a structure conformable with that of the scalings S and T'. This

simple observation reduces the number of “nonconvex variables” and
avoid a wasteful search in an unduly large space [4].

4

One advantage of the formulation of the problem as in Lemma 3.1 is
that one completely gets rid of the hard set constraints (12) and the
non-convexity is reflected in the functional to be optimized. A disad-
vantage of the general formulation in Lemma 3.1 is that the problem
does no longer fall within the class of bilinear or cone complementary
problems for which specialized algorithms are already available. See
[5] for a survey. A central purpose of this paper is to point out and
discuss adequate algorithms for solving this class of problems.

3.1 Extended class of scalings and other problems

With only minor modifications, it is possible to formulate a concave
minimization program subject to LMI constraints for the robust con-
trol problem involving full generalized scalings, as discussed in [31].
The formulation is very close in spirit to that of Lemma 3.1 and is
omitted to save a space (see [4]). The reader is referred to [18, 31] for
thorough discussions on generalized scalings. Simple manipulations
tools to convert BMI problems and some other nonlinear problems
into concave programs are examined in [3]. See also [3] for a cata-
log of applications of the proposed techniques including robust multi-
objective, robust fixed- or reduced-order control, multi-objective LPV
and aggregation of these.

4 A local Frank and Wolfe algorithm

In this section, we discuss a Frank and Wolfe algorithm for finding
solutions to Lemma 3.1. An analogous algorithm can be derived in
the context of full generalized scalings. Such algorithms are of local
nature in the sense that they cannot guarantee global optimality but
have proven very efficient in practice [5, 13].

4.1 Basic principle

The basic principle of Frank and Wolfe (FW) algorithms is to de-
termine a segment line in the feasible set pointing towards a “best”
descent direction and then to perform a line search on this segment to
minimize the cost function [8]. Consider the minimization problem

minimize f(z)
subjectto z € X (16)
where the function f has continuous first-order partial derivatives on
X and is bounded below on the convex set X'. The algorithm of Frank
and Wolfe can be detailed as follows:

1. Find a steepest descent direction by solving the convex pro-
gramming problem

d* € argmin Vf(z*)d
subject to d € X

2. Perform a line search on the segment [z*, d*] to get

2* 1 = (1= a*)a® + b d",
where o € argmin f((1 — a)z® + ad®)
subject to 0 < a<1.

Under the above very mild assumptions Bennett and Mangasarian
have proved in [5] that for a general differentiable f the algorithm
terminates at a point that satisfies the minimum principle necessary
optimality conditions, or each accumulation point of the generated
sequence satisfies also the minimum principle. Hence, there is a risk
of cycling or jamming with such algorithms though it turns out to
be very low in practice. Interestingly, when f is moreover concave,
the algorithm generates strictly decreasing sequences that can only
terminate to a point satisfying the minimum principle local optimality
conditions [4]. The reader may also consult references [29, 23] for
refinements of the Frank and Wolfe algorithm.

G1

4.2 Implementation of FW algorithm for robust control

In this section, we reexamine the algorithm of Frank and Wolfe in
the context of the robust control problem introduced in Section 2.
The ideas of the algorithm can be rephrased for any of the control
problems mentioned earlier in Section 3. The basic ingredients of the
algorithm are as follows:

e Initialization: this step simply consists in obtaining a feasible
point of the constraints.

e Phase I - FW step: at this stage, we compute the gradients and
perform an LMI optimization to get a best feasible descent direction
in the feasible set.

e Stopping tests: we apply different stopping criteria in order to
avoid long sequences of iterates.

Hereafter, we discuss the implementation details of each step of the
general algorithm. In order to facilitate the presentation, we shall
assume that the notation LIMI[i] , i = 1,...,5 is nothing else than
the difference between the left-hand and the right-hand sides of the
corresponding LMI in (8)-(11) and (14), respectively.

Initialization: The initialization phase simply consists in de-
termining a feasible point of the constraints. In order to favor large
step sizes in the course of the algorithm and avoid stucking initially to
the boundary of the constraints, it is advisable to perform a “centering
step”. It amounts to seeking an initial point that renders the LMIs
(8)-(11) and (14) maximally negative. This is easily formulated as the
LMI program

minimize ¢

subject to LMI[i] < t, i=1,...,5

We also mention that for all LMI runs used throughout, we put a
norm constraint on the decision variables for preventing solutions at
infinity. This is easily done with currently available LMI solvers.

Phase I - FW step: In this phase, we determine a feasible
segment pointing towards a descent direction. Remarking that the
gradients of

J="Tr(Z, — Z3Z5'Z3),
at the k-th iterate are given as

aJ
8Z>

Y
=57 =

_ad
T 8Zs

=zb Zb T zhZE Y G

s =

the FW step can be described by the following LMI program:

minimize Tr (G121 + G2 Zs + G3Z3)

subject to
LMI[i] < —elI, i=1,2,3,4
LMI 5] <o,
1 Z] < p, 1=1,2,3

Note that this problem is always solvable, since we are only manip-
ulating feasible points and directions. The parameter p is only for
preventing infinite solutions and is generally fixed to a large numer-
ical value. As will be clarified later, we shall use perturbations of
the LMIs (8) and (9) in the stopping criteria. The parameter e > 0
maintains the projection conditions (LMIs (8) and (9)) in Theorem
2.1 “unsaturated”. This will ease the controller construction but also
leave room for applying our perturbation techniques in the next sec-

tion. Note that for a general function, a line search on the matrix
segment

z* Zleas

Z;e , deas ,

Z:l; Zéea.s

will be required, where Zf®*| Zfe2s and Z£2* are solutions of the FW
step above. In virtue of the concavity of the objective function (13),
the line search can be completely bypassed and one can perform a full
step size of one, hence reducing the overall computational overhead.

Stopping criteria: Given the current point of the algorithm
determined by the variables (X*,Y*), (S*, T*), (2*,T*), ZF, Zk and
Zé"‘ our goal is to verify whether this point or a closely related point is a
solution to the LMIs (8)-(11) subject to the algebraic constraint (12).
In such case the algorithm will terminate and a controller solution to

= —2zk 7' zkT



the problem in Section 2 can be constructed. In our new notation, our
test takes the form

LMI[] <0, i=1,2,3,4 (17)
(S* +TF)~' =(=* +T*). (18)

Note that in the course of the algorithm, the current point is not gen-
erally optimal so that the constraint (12) does not hold. It is, however,
possible to terminate the program without reaching optimality. Our
stopping criteria are based on the following perturbations techniques.
We assume that a current feasible point of LMIs (8)-(11) and (14)
is given. There exists a controller for which the conditions in The-
orem 2.1 hold whenever one of the following perturbation techniques
is successful.

e Compute W = (S* +T%)~! and update £* and I'* using the
substitutions

T
P WAEW e W W (19)
2

b))
Then, stop if new point passes the test (17).

e If previous test fails, then compute W = (X* 4+ I'*)~1 and
update S* and T* using the substitutions

. W w7t
- 2

oo WoWE

5 (20)

)

Then, stop if new point passes the test (17).

Note that since we do not alter the original characterization of the
solutions in Theorem 2.1, our stopping criteria are generally less con-
servative than those in [13] which necessitate a modification of the
problem.

5 Concave global optimization algorithms

Since concave minimization algorithms have been to some extent over-
looked by the control community, we present some essential elements
of this theory and examine its use in the context of this paper. The
reader is referred to the recent book of Tuy [36] for further details.

Returning to the generic program (16) where the concave function
f and convex set X satisfy f(z) > 0, Vz € X, our goal is to check
whether the optimal value of (16) is 0. In the sequel, let Z define the
minimal linear space of dimension N containing X.

A branch and bound (BB) method for solving (16) is an iterative
procedure in which the space Z is iteratively partitioned into smaller
sets (branching) and the search over each partition set M is carried
out through estimating a lower bound (M) of the value of f over
z € M N X (bounding). At each iteration k, a feasible solution z"* is
known which is the best among all feasible solutions so far obtained
(z* and the value vy := f(z*) are often referred to as the current
best solution and the current best value, resp.) Clearly, the partition
sets M with (M) > v, cannot contain any better feasible solution
than z*. They are therefore discarded from further consideration. On
the other hand, from the information so far obtained, the partition
set with smallest 3(M) can be considered the most promising one.
To concentrate further investigation on this set, we subdivide it into
more refined subsets. A lower bound is then computed for each of
these newly generated partition sets, and the procedure goes to the
next iteration. Thus, a BB method for solving (16) involves two basic
operations:

Branching: The space Z is partitioned into finitely many polyhed-
rons of the same kind (simplices, cones or hyperrectangles).
At each iteration, a partition polyhedron M is selected and
subdivided further into several subpolyhedrons according to a
specified rule.

Bounding: Given a partition set M, one has to compute a number
B(M) such that

B(M) < v(M):=inf{f(z): z€ MNX}. (21)

Let Mj, be the candidate for further partition at iteration k (as men-
tioned above, M} is the partition set with smallest lower bound at
iteration k, so B(Mj) < f(z), Vo € X). To ensure convergence, the
operations of branching and bounding must be consistent in the fol-
lowing sense: as k — 400, the difference v, — B(M}y) must tend to
zero, i.e. the smallest lower bound at iteration k£ must tend to the
sought global minimum of (16). Thus, with a given tolerance £ > 0,
the stop criterion of the BB algorithm is

vk — B(My) <e. (22)

The main features of the simplicial and conical techniques discussed
hereafter are the following.

e They take advantage of the fact that the branching operation
needs only be performed with respect to the "nonconvex vari-
ables" which evolve in a space of lower dimension than the full
decision vector.

e They exploit the concave nature of the functional as well as the
convexity of the constraint set for the computation of bounds.

e They also make use of the fact f(z) > 0, Vz € X, so that any
portion of the space of the "nonconvex variables" where f is
bounded below by a positive value is irrelevant and in addition,
the stopping criterion (22) is replaced with

P < (23)

e The branching operation is devised so that the situation (23)
is brought about likely as rapidly as possible.

As we shall see, these techniques are tailored to the particular proper-
ties of the problem to make them far more efficient than in the general
case.

5.1 Simplicial algorithm
In this subsection, we discuss in more detail the simplicial algorithm
together with its convergence properties.

Bounding operation: Recall that NV is the dimension of Z.
For every affine function ¢(z), the function f(z) — ¢(z) is still con-
cave and as a consequence, its maximum over a simplex M is at-
tained on the vertex set vert (M) of M, ie. ¢(z) < f(z), Vo €
vert (M) = ¢(z) < f(z), Ve € M. Thus in every simplex M with
vertices ul,u?,...,uN*! in Z the affine function ¢ar(z) defined for
every z = 3,y Aiu', X >0, N A =1by

N+1 N+41

dm(z) = ¢M(Z Aiut) = Z Aif(uh),

obviously matches f at all vertices of M and satisfies ¢(z) =
Ziv;'l Aif(u') < f(z) for every x € M. Thus ¢(z) is an affine minor-
ant of f in M (in fact the convex envelope of f(z) over M). We then
have that

B(M) := min{¢m(z):z€ MNX}
N+1 N

N
min{gan (D Xiu'): D Xi=1, i >0, > v’ € X}
i=1 i=1 i=1
< min{f(z): z € MNX}.

(24)
and therefore B(M) is a lower bound of f(z) over M N X. It is worth
noticing that the minimization problem in (24) is a convex program
since ¢ is affine and the constraint set A is convex by hypothesis.
Also, if f(u') > 0 for every i = 1,..., N +1 then by concavity of f(z)
it follows immediately that f(z) > 0, Vo € M, i.e. for our purpose M
can be discarded from further consideration.

Branching: Let M; be the simplex chosen for subdivision at
iteration k¥ and w(Mjy) be the optimal solution of problem (24) with
M = Mk, ie. w(Mk) € M N X and ¢Mk (w(Mk)) = ﬁ(Mk) Note
that, as w(My) is feasible, we must have v, < f(w(My)), so if it
so happens that w(My) € vert(My) then S(My) = ¢m(w(My)) =
f(w(My)) = vi and therefore 3(M;) will be the exact minimum of f
over X and according to the stop criterion (22) the algorithm will ter-
minate. This suggests that to accelerate the convergence one should
subdivide M; via w(My). Such a subdivision strategy, called the
w—subdivision strategy [36], has long been used [35] and is known
to work well in practice though its theoretical convergence is still
an open question [36]. Another subdivision strategy called the bi-
section strategy, consists in subdividing M via the midpoint of its



longest edge. This subdivision guarantees convergence but the conver-
gence speed is most often much slower than the previous one. There-
fore, the following so called normal subdivision rule which combines
w—subdivision with bisections in a mixed strategy is a recognized good
trade-off between convergence and efficiency.

Normal subdivision rule. Let M; be the candidate simplex for
subdivision at iteration k. Select an infinite increasing sequence II
of natural numbers and define the generation indez of every simplex
M by setting 7(Mp) = 0 and 7(M') = 7(M) + 1 whenever M’ is a
child of M (i.e. M' is one member of the partition of M). Then:
if 7(My) € II then bisect Mj. Otherwise w-subdivide Mjy,.

The idea of the normal rule is to use w-subdivision in most iterations
and bisection occasionally, in such a way that any infinite nested se-
quence of generated simplices involves infinitely many bisections. In
practical implementation, it suffices to do one or two bisections only
when the procedure seems to slow down. A basic property of the
normal rule ensuring its convergence is the following [36, Th. 5.1].

Lemma 5.1 Let {My}, k = 0,1,2,... be any infinite nested se-
quence of simplices generated by a given normal rule. Then at least
one accumulation point w® of the sequence {w*} = {w(My)} will
be a vertex of Moo = Npeq Mp.

Algorithm organization and convergence properties:
Keeping in mind that the algorithm will stop when the current best
value is 0 or there is evidence that the lower bound of (16) is positive
(infeasibility), we can state the simplicial algorithm as follows:

Step 0. (Initialization) In the Z-space take an N-simplex My D X
such that f is still concave on My. Let z° be an initial feasible
point (the best available), vo = f(z°), So = {Mo}, Py =
So, k=0.

Step 1. (Bounding) For each simplex M = [ul,...,uNT1] € P, if
f(u") > 0, Vi, then set 3(M) > 0; otherwise, compute

N+1 . N+1 . N+1
B(M) =min{ > Xf(u’): D Au' €X, D Ai=1, A >0}
i=1 i=1 i=1

(25)
and let w(M) = S N41 \;(M)u® be an optimal solution of this
convex program.

Step 2. (Incumbent) Let z* be the best among: z*~! and all w(M)
for M € Py. Let vy, = f(z¥). If v, = 0, then terminate (a zero
optimal solution has been found). Otherwise, v, > 0 (since
f(z*) > 0, Vk), then go to Step 3.

Step 3. (Pruning) Delete every simplex M € Sy such that (M) > 0
(this means that f cannot attain 0 in M N X). Let Ry be the
collection of remaining members of Sj.

Step 4. (Termination criterion) If Ry = 0, then terminate.

Step 5. (Branching) Select M} € argmin{8(M)| M € Ri}. Sub-
divide M;, according to a chosen normal rule (bisect Mj or
split it through w(M)). Let Pry1 be the partition of M;,.

Step 6. (New net) Set Sp41 = (Ri \ {Mw}) U Prt1, k< k+1 and
return to Step 1.

The convergence properties of the simplicial algorithm are clarified by
the following theorem.

Theorem 5.2 FEither the simplicial algorithm terminates after fi-
nitely many iterations, yielding a zero optimal solution of (16) (ter-
mination at Step 2) or providing evidence that (16) has no zero
optimal solution (termination at Step 4). Or it generates an infin-
ite sequence of feasible solutions wk converging to a zero optimal
solution.

The conical algorithm which makes use of subdivision into cones is
discussed in [4].

6 Numerical experiments

This section provides a set of illustrations of the local and global tech-
niques proposed in the paper. As mentioned in the introduction, the
overall algorithm can be detailed as follows. The FW algorithm is
computationally cheaper than simplicial and conical global techniques,
and hence is used first to find a good suboptimal value v. Then, the
simplicial/conical algorithm are employed to further reduce ~, or to
certify global optimality. As discussed hereafter, in realistic and ran-
domly generated examples, the FW algorithm is able to locate a sub-
optimal solution, up to 8% of the global optimal value, after only a few
iterations. The simplicial/conical algorithms starting from this good
initial guess find a global optimal solution very quickly, less than 5
iterations when the problem is feasible. For infeasible problems, they
obtain a positive lower bound of Pb.1 after less than 10 iterations. It
is also important to emphasize that for feasible v, the use of the stop-
ping criteria in Section 4.2 substantially reduces the computational
cost since only an approximate solution is required for termination.
This fact and the power of simplicial/conical techniques explains why
so few iterations (LMI runs) are needed and thus the relatively cheap
cost of our global algorithms.

6.1 Robust control of an inverted pendulum

The first illustration consists of the robust control problem of an arm-
driven inverted pendulum (ADIP) which is depicted in Figure 1. This
is a two-link system comprising an actuated arm (first link) and a
non-actuated pendulum (second link). The main control objective is
to maintain the pendulum in the vertical position using the rotation
of the arm. Moreover, this stabilization must be accomplished on
a wide range with respect to the angular position of the arm. A
detailed description of the plant as well as the corresponding physical
experiment is given in [21].

By selecting as state vector # := [z 2 7, ©1]7, where 7, is the
horizontal position of the arm tip (r, is the vertical position), ¢1 and
@o are the angular positions of the arm and the pendulum, respect-
ively, and z := r, + %lzwz, the following simplified LFT state-space
representation is obtained [21].

T = Az + Bawa + Bu
ZA = CAZ
ry O 0
WA = AZA N A= [ 0 P2 0 :|
0 0 o2

Therefore, the inverted pendulum admits LPV dynamics and can be
controlled using either LPV or robust control techniques, as those con-
sidered here. Given an operating range for the inverted pendulum, the
parameters are normalized such that A = diag(d1, d212) with |§;]| < 1,
i=1,2.

The synthesis structure used to achieve the design requirements is
shown in Figure 2. It simply translates performance tracking (wrzr)
and high-frequency gain attenuation (wg7g).

Formulated in this way, the local and global robust control techniques
discussed in this paper are immediately applicable. The numerical
data of the synthesis interconnection are given in [4].

Table 1 displays the performance of each algorithm in terms of number
of iterations and cputime. The computations were performed on a PC
with CPU Pentium IT 330 Mhz and all LMI-related computations were
performed using the LMI Control Toolboz [11]. Remember that the
simplicial and conical algorithms are used only after the FW algorithm
has failed (y = 0.1903 in this case). The symbol 'f’ indicates a failure
of the FW algorithm to achieve the corresponding value of #, first
column, whereas the symbol ’inf’ is used to specify infeasibility of .

From Table 1, we see that the performance found by the FW algorithm
is within 5.5% of the global optimal value of 4. It is also worth
noticing that with the same <, there are many solutions obtained by
the global algorithms. See [4].

The optimal value of v achieved with both the simplicial and conical
algorithms are very close to that obtained using LPV synthesis (y =
0.1830), which indicates that one will hardly find a better linear time-
invariant controller for the specified control objectives.

6.2 Randomly generated examples and larger problems

The algorithms have also been shown to perform well on a set of ran-
dom and larger size problems (up to 30 states and 5 repeated para-
meters) [4].



7 Concluding remarks

In this paper, we show that many important problems in robust con-
trol theory can be formulated as the minimization of a concave func-
tional over a convex set determined by LMI constraints. In this
respect, concavity appears to play a central role in a broad class
of problems. Although, we do not pursue the vein further, it ap-
pears that the technique is applicable with only modest changes to
many other difficult problems encompassing fixed-order robust con-
trol, multi-objective LPV control, ... and any aggregation of these
problems.

Acknowledgment to Professor Hoang Tuy and Dr. Hiroyuki Kaji-

wara
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Synthesis structure for the inverted pendulum

FWA SA CA

o # iter. cpu 7 iter. cpu 7 iter. cpu
0.2 3 65.74 s. - - - -
0.1910 10 148.03 s. - - -
0.1905 10 152.09 s - - - -
0.1904 2 56.08 s - - - -
0.1903 f f 1 12.3 s. 1 18.73 s
0.1838 - - 2 84.80 s. 1 18.95 s
0.18375 - - 12(inf) | 793.01 s. 1 18.840 s.
0.18370 - - 1(inf) 13.03 s 1(inf) 16.04 s

Table 1: FWA: Frank and Wolf Algorithm; SA: simplicial al-
gorithm; CA: conical algorithm; f: the test fails; inf: no
zero optimal value




