D.C. Optimization Approach to Robust Control:
Feasibility Problems

H.D. Tuan? P. Apkarian! S. Hosoe! and H. Tuy?}

Abstract. The feasibility problem for constant scaling in output feedback control is
considered. This is an inherently difficult problem [20, 21] since the set of feasible solu-
tions is nonconvex and may be disconnected. Nevertheless, we show that this problem
can be reduced to the global maximization of a concave function over a convex set, or
alternatively, to the global minimization of a convex program with an additional reverse
convex constraint. Thus this feasiblity problem belongs to the realm of d.c. optimization
[14, 15, 32, 33], a new field which has recently emerged as an active promising research
direction in nonconvex global optimization. By exploiting the specific d.c. structure of
the problem, several algorithms are proposed which at every iteration require solving only
either convex or linear subproblems.

Analogous algorithms with new characterizations are proposed for the Bilinear Matrix
Inequality (BMI) feasibility problem.

1 Introduction

Consider the system given by Fig.1, where G(s) is a generalized plant of order n with the
state space realization

A |B1 B,
G(s):==| Ci | D11 D12 |, (1)
Cg D21 0

and X is a constant scaling matrix of the form

Y =diag(oilr,, .y 0ily.), 05> 0, t=1,2,.k 1+ ..+ g = ¢
(g is the dimension of disturbance w and control output z).

(2)

Let K denote the set of proper controllers K internally stabilizing the closed-loop system
F(G, K).
The feasibility problem (FP) for constant scaling in output feedback control can be stated
as follows:

*Department of Control and Information, Toyota Technological Institute, Hisakata 2-12-1, Tenpaku,
Nagoya 468-8511, Japan

{ONERA-CERT, 2 av. Edouard Belin, 31055 Toulouse, France

{Department of Electronic-Mechanical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya
464-01, Japan

$Institute of Mathematics, P.0. Box 631 Bo ho, Hanoi, Vietnam

For a fized value v, find a constant scaling matriz ¥ satisfying (2) and also a controller
K € K such that

22 R(G, K)o < 7. (3)
w! w 7 z'
— > 1/2 > > -1/2 1 =
= "| G(s))
u y

K(s)

A

Figure 1: the feedback system

It is well known (see e.g. [21]) that the above FP plays an important role in robust control
for systems with structred uncertainties. It is already well known (see e.g. [3]) that FP
can be recast as to check the feasiblity of a system of inequality and quality

L(Z,2,y) <0, (4)
zyi=1,2;,>0, 4. >0,i=1,2,..m=k—1, (5)

where (4) is a linear matrix inequality (LMI) in respect to the decision variables Z,z =
(21,22, ey Zm), ¥ = (Y1, Y2y -y Ym). In what follows we shall refer to the FP for (4)-(5) as
LFP for short.

The difficulty of (4)-(5) is the nonconvex constraint (5) that makes LFP nonconvex.

On the other hand, starting from [25], it has became recognized nowadays that many
challenging problems in control theory can be reduced to the so called Bilinear Matrix
Inequality feasibility problem (BFP for short) which is to find z € [a,b] C RN such that

N
Foo+ Y ziFo+ Y ziz;jF;;<0 (6)
-1 1<i<j<N

where Fy, F;;, for 4,j = 1,..., N are symmetric matrices. The difficulty of (6) is the
presence of nonlinear terms z;z; which make BFP nonconvex.

The most existing algorithms for solving LFP and BFP (see e.g. [7, 24]) are heuristic which
are able to locate at best a local solution. Only recently techniques of global optimization
have begun to be applied for finding a global solution (e.g. [13] for solving a particular
case of BFP by the general-purpose branch and bound scheme and [35] for solving LFP
by a covering approach).

In this paper, we shall show that LFP and BFP belong to the class of so called d.c.
optimization problems which have been extensively studied in the last decade (see e.g.
[15, 33, 14, 32]). Several available methods and techniques using the concepts of outer
approximation [33, 34], polyhedral annexation [32, 33], branch and bound, decomposition
[15, Chapter 6] can then be tailored to the special structure of these problems which, even
though nonconvex, are characterized by a fairly notable amount of partial convexity.

In the sequel, we shall develop methods for solving LFP and BFP based on the branch and
bound approach. In light of recent developments, it seems that this approach is the most
suitable for handling nonconvexities in a broad class of optimization problems. However,
unlike the branch and bound algorithm in [13], our methods will incorporate a decompo-
sition strategy to exploit the partial convexity present in LFP and BFP.

In fact, it turns out that these problems have a much lower rank of nonconvezity than
their actual dimension, namely they become convex when a relatively small number of
“complicating variables” are held fixed. By branching upon these complicating variables,
the global search procedure is restricted to operate basically in a low dimensional space,
thus mitigating the difficulties of the “curse of dimensionality” inherent to most noncon-
vex problems. On the other hand, the constraints in these problems are d.c. inequalities,
i.e. can be described by differences of convex functions, and consequently can easily be
relaxed to linear or convex constraints. This allows an efficient lower bounding technique
to be applied for handling the nonconvex feasible set. The resulting branch and bound
algorithm should be practicable for small values of m (in (5)) or Ny (in (67)), even if the
overall dimension of the problem may be fairly large.

The paper is organized as follows. In section 2 we will present the basic branch and bound
(BB) algorithms for 2 classes of low rank nonconvex optimization problems. Based on
this scheme, sections 3 develops algorithm for solving LFP, and section 4 algorithms for
solving BFP. For completeness we will provide rigorous proof for all main propositions,
though some of these might be derived as special cases from more general results of d.c.
optimization. Finally, section 5 is devoted to some preliminary computational experience.

The notation of the paper is standard. In particular, 8g(z) denotes the subdifferential of
a convex function g(z), @, is a matrix satisfying Q' Q| > 0 such that the null space of
@1 is equal to the range space of @, Amax[Q] is the maximum eigenvalue of a symmetric
matrix @, and {.,.) is the scalar product in a finite dimensional linear space, for z € R"

the notation 2! means (27, ...,2') and convM for a set M means its convex hull.

‘M n

2 Branch and Bound Scheme for Global Optimization and
convergence issues

2.1 Minization of a nonconvex function over a convex set: CPA

To solve LFP and BFP, one of our approaches is to convert them into checking whether
the optimal value of the following optimization problem is not more than zero

(P) min{w(z,y)| (z,y9) € F C R™ x R"}

where F' is a convex set (defined by LMIs), function w(z,y) is nonconvez but becomes
convex (in y) when z is held fixed (so z = (z1,...,2m,)" are “complicating variables”).
A branch and bound (BB) method for solving (P) is an iterative procedure in which the
z-space is iteratively partitioned into smaller sets (branching) and the search over each
partition set M is carried out through estimating a lower bound B(M) of w(z,y) over all
(2,y) € F such that 2 € M (bounding). At each iteration, a feasible solution is known
which is the best among all feasible solutions so far obtained. The value of the objective
function at this current best solution is the current best value. Clearly, those partition
sets M with 3(M) higher than the current best value cannot provide any better feasible
solution than the current best. They are therefore discarded from further consideration.
On the other hand, from the information so far obtained, the partition set with smallest
B(M) can be considered the most promising one. To concentrate further investigation on
this set we subdivide it into more refined subsets. A lower bound is then computed for
each of these newly generated partition sets, and the procedure goes to the next iteration.
Thus, a BB method for solving (P) involves two basic operations:

1. Branching: The space of complicating variables ¢ = (21,...,2,,) is partitioned
into finitely many polyhedrons of the same kind, e.g. (hyper)rectangles of the form M =
[p,g)={z € R"|p; <e; < ¢, i=1,...,m}. At each iteration, a partition set M = [p, q] is
selected and subdivided further into two subrectangles (children of M) via some hyperplane
z;, = a where 79 and a € (p;,,¢i,) are chosen according to a specified rule. When
%, — Pip = Max;—1 . m{¢; — pi} and a = % the subdivision is called the standard
bisection.

2. Bounding: Given a partition set M, one has to compute a number 3(M) such that

A(M) < &(M) := inf{w(z,y)| (2,y) € Fu}, (7)

where Fy = {(z,y) € F| 2 € M}. A general bounding method is to construct a convez
minorant Yar(z,y) of w(z,y) over M, i.e. a convex function ¢(z,y) satisfying

¢M(z,y) S w(z,y)vy,m € M. (8)

Then, it is obvious that the optimal value (M) of the convex program

min{¢M(m,y)|(m,y) € Fur} (9)

provides a lower bound for w(z,y) over M.
Let M, be the candidate for further partition at iteration x (as mentioned above,
M, is the partition set with smallest lower bound at iteration k). To ensure convergence,

the operations of branching and bounding must be consistent in the following sense: as
Kk — +oo, the difference min@(M,) — B(M,) must tend to zero, i.e. the smallest lower
bound at iteration x must tend to the sought global minimum @(F’). Of course, a sufficient
consistency condition is that the difference between the current best value and the small-
est lower bound tends to zero as kK — co. In that case, by stopping the procedure when
this difference has become less than a precribed tolerance € > 0, the current best solution
yields an approximate global optimal solution, called a (global) e-optimal solution of the
problem.

Obviously, the quality of bounding has much influence to the convergence speed of BB
algorithm since the tighter ¢ps(2,y) approximates w(z,y) the closer 3(M,) is to @(My)
and the lesser iterations are needed to reach an £ —optimal solution.

Another fact worth mentioning is that the speed of convergence may critically depend on
the subdivision strategy. For rectangular subdivisions, although the standard bisection
method guarantees convergence under rather general conditions, a drawback of this sub-
division strategy is that it does not take account of the problem conditions at the current
stage of the algorithm. In many cases the convergence can be significantly sped up by
using an adaptive subdivision strategy exploiting the information so far obtained in the
course of the iterative process.

In the present paper, the function w(z,y) in (P) is shown having the following form

w(z,y) = fi(y) + fo() (10)
where f; and fy have the following special structures:
(?) f1 is linear on y.

(%) f2 is separable concave in z;, i.e.

fala) = i Fue:) (11)

where fy;, 1 =1,...,m are concave functions.

Note that (¢) also means (P) becomes convex when z is held fixed, while (iZ) means that
for every rectangle M C [a, b] there is an affine minorant of w(z, y) which agrees with f at
the vertices of M ([32, Prop. 5.7]). In fact, it can be easily seen that on [p;, ¢;], the affine
function which agrees with fo; at p;, ¢; is

f2i(@:) — fai(ps)

Yain (2:) = fai(ps) + P

(z; — pi) (12)

Then function fgi := fa; — tainr is still concave on [p;, ¢;] and thus its mimimum value
over M is attained for z; € {p;, ¢;} which is obviously zero. Therefore foi is nonnegative
on [p;, ¢;] which implies ¥o;pr(2;) < fai(2:)Ve; € [ps, ¢:), 1.e. Y2inr is an affine minorant of
fai on [p;, ¢;]. It can be shown moreover [32] that 12 is the convex envelope of fy; on
[ps, ¢i], i.e. a;pr is the tightest convex minorant of fo; on [p;, ¢;].

Thus, the tight convex minorant satisfying (8), which agrees with w(z,y) at the vertices

of M =[p,q] is

dar(ory) = F10) + Yl + 22100 i)

(2i — pi)] (13)

Therefore, a lower bound B(M) in (7) in a BB algorithm is provided by (9) with ¥ (2, y)
defined by (13).

Let (2(M),y(M)) be the optimal solution of (13). Then is is obvious that w(z(M), y(M))
provides an upper bound for (P) and thus can be used for updating the current best so-
lution. Moreover, if Yy (2(M),y(M)) = w(z(M),y(M)) (this happens for instance when
z;(M) € {pi,q:}) then B(M) is the ezact minimum of (P) over M and thus will provide
the optimal value of (P) in our BB process. This implies the following subdivision rule,
which makes such situation as fast as possible.

Adaptive subdivision rule. For M = [p, q] select
iy € argmax{fa(2;(M)) — Youm(z;(M))| i =1,2,..m} (14)

Divide M into two subrectangles by the line z;,, = z;,,(M).

An important property ensured by this subdivision process is that

Lemma 1 Let M, = [p¥,¢"],v = 1,2,..., be any infinite nested sequence such that every
M, 41 is a child of M, in the above subdivision process. Then there are ig € {1,2,...,m}
and a subsequence A C {1,2,..} such that ipr, = 49 Vv € A and as v — oo, v € A,

Y, (2i(My), 4: (M) — w(z:(M), 4:(M,)), i=1,2,..m. (15)

Proof First observe that, since p¥ < p¥*1 < ¢¥*+1 < ¢¥, the limits p = limp¥, § = lim ¢
exist. Next, since 737, € {1,2,...,m}, there exist 39 € {1,2,...,m} and a subsequence
A C {1,2,...} such that ips, = 79 Vv € A. Without loss of generality we may assume
ip = 1. By (14) we thus have

0 < foi(2) — Yaim(27) < far(2?) — Yormr(27), i =2,...,m, (16)

where z¥,y” stand for z(M,),y(M,). We can also assume that 2¥ — Z,y¥ — §. Now

the subdivision rule ensures that z} € {p’l’+1,q1”+1}, so letting v — +oo,v € A, yields

Z; € {p1,q1}, which gives f51(Z1) = ¥21m(Z1). This in turn implies, by (16), foi(Z;) —
’lﬁg,‘M(ii) =0,:1=2,...,m. -
The last thing we should not forget is that we are interested only in checking whether zero
is the optimal solution of (P). Thus, at iteration «, all M with (M) > 0 can be delet-
ed from a futher consideration. Suming up, we are now in a position to state our algorithm.

Concave programming algorithm (CPA).
Initialization. Start with My = [a, b]. Set S1 = N7 = {Mp}. Set x = 1.

Step 1. For each M € N, solve (13) to obtain B(M) and an optimal solution
(z(M), y(M)). Define (z*,y"*) to be the best among all the feasible (z(M),y(M)), M € N..
If w(z(M),y(M)) <0 terminate: the optimal value of (P) is not more than 0.

Step 2. In S, delete all M such that S(M) > 0. Let R, be the set of remaining
rectangles. If R,. = (), terminate: the optimal value of (P) is more than 0.

Step 3. Choose M, € argmin{3(M)| M € R,} and divide it into two smaller rectangles
M, 1, M, 5 according to the above adaptive subdivision rule 1. Let Nyy1 = {My 1, Mi 2},
Sn+1 - (Rn \ Mn) U Nn-}-l-

Set k < k£ + 1 and go back to Step 1.

Proposition 1 FEither CPA terminates after finitely many iterations, producing the evi-
dence that the optimal value of (P) is more than 0 or not. Or if it is infinite then the
optimal value of problem (P) is zero.

Proof Suppose the algorithm is infinite. One of the two childrens of My must have
infinitely many descendants, hence must be split at some iteration i, i.e. must be M,,
for some k; (following our notation, M, is the candidate for further partition at iteration
k). Analogously, one of the two childrens of M,, must be M,, at some iteration ky > &1,
and so on. Proceeding that way we see that there exists a nested sequence of rectangles

M, :=M,,, v=1,2,.... as in Lemma 1. Therefore, we may also assume that {M,} —
M =[p,q], (z¥,y") — (Z,y) with ¢;;(Z,9) = w(2Z,y). Then (Z, y) satisfies
w(2,9)) > min{w(z,y)| (2,y) € F}. (17)

But by the choice of M, in Step 3, B(M,,) < B(M) VM € R,,, hence ¥, (2,y") =
B(My,) < min{w(z,y)| (z,y) € F}, and by letting v — o0 : w(Z,y) < min{w(z,y)| (z,y) €
F }. This, together with (17), implies

w(z,7) = min{w(z,y)| (2,9) € F}.

Thus, (Z,y) is an optimal solution of problem (P). Now, again with

¥, (2,9") = B(M,,) Vv (18)
and B(M,,) < 0 Vv it follows, by letting v — +o0, that
w(2,9) = ¥ (23) < 0. (19)
On the other hand, for every v, the termination criterion in Step 1 implies
w(z”,y”) > 0. (20)
As v — oo, since (2¥,y") — (Z,7), (20) yields
w(z,7) > 0, (21)
and hence, in view of (19), w(Z,y) = 0. 0

Fortunately, in practice, we only need an approximate solution, within a given tolerance
€ > 0. Therefore, in Step 3 we can delete all M such that (M) > —e. With this deletion
criterion, the algorithm will terminate after finitely many steps, and when R, = (J, we can
conclude that the optimal value of (P) is more than —e.

Indeed, if the algorithm were infinite, we would have from (18), where 3(M,,) < —¢:
w(z,y) < —e, contradicting (21).

2.2 Minimization of a convex function over a nonconvex set: DCPA

Alternatively, we also show that in many case, the problems of our interest can be reduced
to checking whether the optimal value of (P) is negative when w(z,y) is linear function
but the constraint (z,y) € F is nonconvez which becomes convex (in y) when z is held
fixed (so again only 2z = (21,...,2.,)" are “complicating variables”). For instance, this
happens when F' has the representation

F=CnD (22)
where C' is a convex set defined by LMIs and D is a nonconvex set defined by d.c. constraint

D={(z,9): fi(y)+ fa(z) <0} (23)

with convex function f; and concave function fs.

For developing a BB algorithm to solve (P) is this case, with given a partition set M, one
has to compute a number 3(M) satisfying (7). A general bounding method is to construct
a convex set

Huy D Fy = {(=,y) € F| z € M}. (24)
Then the optimal value 3(M) of the convex program:

min{w(z,y)| (z,y) € Hum}- (25)

yields a lower bound for w(z,y) over Fyy, i.e. such (M) satisfies (7).

Again, it is clear that the tighter Hps approximates Fyz, the closer B(M) is to w(Fs), and
the lesser iterations are needed to reach an optimal solution within a given tolerance, but,
on the other hand, the larger will be the computational effort necessary for constructing
Hjs and estimating the lower bounds. Therefore, for the efficiency of the procedure,
a trade-off must be resolved between these two conflicting requirements. For instance,
the tightest Hps satisfying (24) is of course convFjy, which is however hardly described.
Instead, one often takes

Hyr := C Nconv{(z,y)| (z,y) € D, ¢ € M} D convFy (26)

which is much easier to described, for instance in problems considered below.

Note however that we can not directly take the optimal solution (z(M),y(M)) of the
relaxed problem (25) for updating the current best solution as done in the CPA since
(z(M),y(M)) in general is not feasible to F'. Instead, the upper bound of problem (P) in
M can be provided by the following optimization programm

min{w(z(M),y) : (2(M),y) € Fu} (27)

which become convex since z is held fixed equal z(M).

Clearly, branching for this nonconvex problem can be performed analogously to that for
concave program.

When F has the form (22)-(23) with fo(2) having the separated concave structure like
(11), for every rectangle M = [p, q], a set Hjps satisfying (24) can be taken as

HM:CO{(‘E’?/): 'I)bM(m’y)SOa ZEM} (28)

with ¢ps(2,y) defined by (13). Moreover, it can be shown that {(z,y) : Ym(2,y) <0, z €
M} =conv{(z,y): fi(y) — fa(z) <0, z € M}, i.e. Hpys defined by (28) satisfies (26).

If (z(M),y(M)) € Fur then (M) become the ezact minimum of (P) over M and thus is
the optimal value of (P) in our BB process. Therefore again the adaptive subdivision rule
is fit to speed up this situation.

Suming up, for problem (P) where w linear, F' has form (22), (23) with f, having
structure (11), we can produce the d.c. optimization branch and bound algorithm (DCPA
for short) which is different of CPA only by step 1: it uses (25),(28) for lower bound
computing instead (13) of CPA and uses (27) for updating the best current solution.
Analogously, we can prove that

Proposition 2 FEither DCPA terminates after finitely many iterations, producing the ev-
idence that the optimal value of (P) ts more than 0 or not. Or if it is infinite then the
optimal value of problem (P) is zero.

3 The LFP Problem

First, we recall the following already known result (see e.g. [3]).

Lemma 2 There is a controller K (s) satisfying (3) if and only if the following inequality
system 1s feasible on symmetric matrices Z1, Zs of dimension n X n and ¥ of the structure

(2)-

By AZ, + Z; A ZlC{ By 77T B> !
Do Ci172, —‘)’E D1 Do < 0
01, Bj no -y tlLlol,
Cé Z9A + AIZ2 Z9Bq Cl 1T 02 1’ (29)
Dy, B{Z, —yx-1 DY, Dy, < 0
01, C1 D —’)’E-_Z. 0 I
1 n
_In Zy 2 0 O

Note that (29) is LMIs in (Z1, Zs, %, ¥7!) and we always can set o3, = 1. Then by setting
Z = (Z1,2s), © = (01,02, .ey0k—1), ¥y = (1/01,1/02,...,1/0k_1) We see that (29) can be
rewritten as (4)-(5).

In the sequel without loss of generality we shall restrict # to the domain

a; <w; <b;, a;>0b>0 1=1,2,...,m, (30)

and also Z belongs to some closed bounded set of symmetric matrices. Such an assumption
is automatically satisfied when the problem is solved on computer.

3.1 CPA and DCPA for LFP

The reduction of m nonconvex constraints in (5) to just 1 nonconvex one is shown in the
following lemma.

Lemma 3 (5) is equivalent to the following

z; 1 .
[1 yi] >0,7=1,2,..,m, (31)
m m 1
Zyi -, —<0 (32)
i=1 i=1

where (31) is LMIs while (32) in nonconvez.

Proof Since the implication (5) = {(31),(32)} is obvious, let us prove the inverse impli-
cation. Rewrite (32) as
= 1
Y (wi-—)<0 (33)
=1 Li
But by (31),
2y >21,1=12,..,m,

so (33) holds true if and only if y; = m%_, t=1,2,..,m, i.e. (5). -

By the above lemma 3, the feasibility of LFP (4)-(5) is equivalent to the feasibility of the
system (4), (31), (32) which will be used from now on. Thus, the following result can be
easily established.

Lemma 4 The system (4), (31), (32) is feasible if and only if either
(2) Zero is the optimal value of the problem

m

min Zyi - im% : (4),(31), (34)

=1

or
(¢2) The optimal value of the following optimization problem is negative

min t: (31),(32), (35)
L(Z,2,9) <1, (36)
where I is the identity matriz with the dimension conformed with that of L(Z,z,y).

Since each function —1/2; in (34) is concave on (0, 4occ], function
m m 1
wleg) =S - 30)
i=1 i=1 "

belongs to the class (10)-(11). Therefore, defining

F:={(z,y)| 37 := (Z1, Z>) s.t. (4),(31)}, (38)

10

problem (34) is the concave programm (P) considered in Subsection 2.1 and thus can be

solved by CPA, with 3(M) is computed according (13), (12), (13) by

Lq

B(M) _m1nZy1—|-Z——l—l’—l-]: (4),(31), z € M, (39)

q; Diq;

which is just a LMI optimization program.

Analogously, (36) is a particular case of problem (P) considered in Subsection 2.2 with
F having the structure (22), (23), (11). Thus DCPA is readily applied for solving (34).
In this case the convex program (25) for computing the lower bound (M) is looked
concretely as the following LMI program

1 1
B(M) o= min{t : (31), £(Z,2,9) < 1,3y + 30~ - L
i=1 -1 P % Pigi

“L1<0} (40)

Let (Z(M),z(M),y(M)) be the optimal solution of (40). Then obviously we can take
Amex[L(Z (M), &,371)] with 2 € {&(M),y(M)~'} for updating the upper bound instead
of solving an additional optimization problem like (27).

Remark 1. For more general cases involving also full block scalings of LFP we refer the
reader to [4]. Note that in such cases the separated concave structure is no longer present
and the problem become high rank nonconvex ones, which require different BB methods.
Although the separated concave structure also disappears in the optimal scaling problem
(OSP) (finding the smallest v such that LFP is solvable by some controller K (s) € K), the
solving efficient BB algorithms still are possible [30], which require cputime only about two
times than that needed for solving LFP. The concave struture has been also exploited in
[5, 29] for solving so called parameterized LMIs arising in many robust control problems.

Remark 2. Let as before (a,b) satisfy (30). Denote

571(7) = {(Z,y) € R2m Doagy; < 72’ 1=1,2,...,m; z € [a" b]}

A covering type algorithm for solving LFP has been proposed in [35] where LFP is trans-
formed to checking the feasibility of the system of LMI (4), with the nonconvex constraint

(2,9) € &a(1). (41)

The covering algorithm [35] can not directly solve the feasibility of system (4), (41).
Instead, for every € > 0, it constructs N convex sets C(6;,1) satisfying

N
En(l—€) C U C(8;,1) C &£,(1) (42)
where b/as) B = .
N H In 1/’Cl) T1rVI-(-eo (43)

Thus the feasibility of (4) with
N
(z,9) € JcC(6;,1) (44)

11

is checked by solving N convex (LMI) feasibility problem of (4) with (z,y) € C(6;, 1).
For example, with a; = 0.001, b; = 1000 (as in the numerical examples in Section 5 below)
and 7 = 0.01 then by (43) one can see that N = 49 so one needs to solve 49™ (i.e. 49,
2401, 117649,..., for m=1,2,3,..., respectively) convex (LMI) problems for checking the
feasibility of (4), (44). Thus, such covering search process can not be practical for m > 1.
Moreover, by (42), if system (4), (44) is feasible then system (4), (41) is so but not vice
versa. Hence, even after solving N LMIs feasibility problems one can not know whether
(4), (41) is feasible or not. This also means that LFP using the covering technique of
[35] may be even more difficult than OSP (the covering algorithm of [35] for OSP with
tolerance ¢ requires solving N LMI programs) that is of course unnatural. Note that the
inefficiency of the covering method is quite well known in global optimization, so it is not
surprising that the covering method of [35] for both LFP and OSP is not practical for
problems with m > 1. The attempt in [35, Section 6] to improve the covering process not
only does not work for the feasibility problem (4), (41) but seems to be not correct as it
illegitimately leaves unexplored a significant portion of the feasible set (see [31] for more
details).

3.2 Alternative linear programming based algorithm

Although there are a lot of great softwares for solving LMIs, most of them presently still
require a high computational cost for LMIs of a large size or a system involving many LMI
constraints. Thus DCPA computes lower bounds by solving LMI programs (40), which
may be expensive at the first stage when very tight lower bounds are not worthwhile. We
next describe an alternative Algorithm which computes lower bounds by using much less
expensive linear programs. Since these lower bounds are less accurate than those provided
by convex programs, more iterations will be required when approaching the optimum.
Therefore, a reasonable compromise seems to be a hybrid algorithm which proceeds as
this algorithm in a first stage, then switches to DCPA in the second stage.

Rewrite problem (4)-(5) in the form
min t : f(Z,z,y)<t, Z€2Z,a<e<b zy=1i=12,..,m, (45)

where f(Z,2,y) = Amax[L(Z,2,y)] and Z is a bounded set of symmetric matrices with
the size conformed with that of Z.

Note that a subgradient of the convex function f(Z,z,y) at any point (Z,z,y) can be
easily computed (see e.g. [22] and also the Appendix).

3.2.1 Bounding

At iteration k, we already have in hand a convex piecewise affine minorant L.(Z,z,y) of

f(Z,z,y), of the form
Ly(Z,z,y) = max{l;(Z,z,y)| j € Jx},

where [;(Z,2,y),j € Jx, are affine functions resulting from the previous iterations. For
each newly generated rectangle M = [p, ¢] we approximate the arc

Fyri=A{(2ziy9:) : @iy =1, 2, € M}

12

by the polytope Hjs; formed by the chord of this arc with the tangents to the arc at the
two endpoints of the arc, and the tangent to the arc parallel to the chord (see Fig.2). It
is easily verified that Hjs; is determined by the inequalities

Piq:iy; + 2, < p; + ¢,
iy + 2 > 2piy @Y + 2 > 2, (46)
PiGiYi + T > 2,/Pig;.

A lower bound 3(M) for

Yia
T:¥i=1

1p |-
& \ 2;9;Y; + zi = P;+ q;

29; = qizyi-l'xi
2p; = p} ya‘"‘«'lf'i/

l/q, """ O X
P4 Yi + zi = 24/P;4; -
: ! >
p; 9; T
Figure 2: the set Hps;
min{t| f(Z,2,y)<t, Z€ Z, z;y; =1,z € M,i=1,2,...,m}, (47)
is then provided by the optimal value of the linear program
LP(M) min ¢ :

lj(Z,:cay)St, jEJn (48)

Pigi¥i+ 2 <p;+¢ (:=1,2,..,m)

Py 4 2 > 2piy @y 2 > 2¢; (1= 1,2, m)
Pigiyi + 2, > 2¢/piq; (1=1,2,...,m)

ZeZ.

Updating L.(Z,z,y)

At iteration k let M, be the rectangle with smallest §(M), i.e. the candidate for further
splitting. Let (Z(M,),z(My),y(M,)) be an optimal solution of LP(M,). If f(Z(M,),
z(M,),y(Ms)) = B(M,), then set L.y1(2,y) = Lu(2,y), Jet1 = Jx. Otherwise, f(Z(M,),

13

z(M,),y(M)) > B(M,), then (B(M,), Z(M.,), z(M,),y(M,)) does not belong to the con-
vex set {(¢, Z,2,y)| f(Z,z,y) <t} and we can separate it from the latter by the cutting

plane
L(Z,z,y) <t (49)

where
l(Z2,y) = (T, (Z — Z(My), 2 — 2(My),y — y(My)))
+£(Z(My), 2(My), y(My))
with 7, € 0f(Z(M.), z(M.,),y(Ms)). Indeed, it is obvious that (8(My), Z(M.,),z (M), y(M.,))
does not satisfy (49) and if f(Z,z,y) < ¢ then by the definition of subdifferential one has

I.(Z,2,y) < f(Z,2,y) <,

(50)

i.e. (t,Z,z,y) satisfies (49).
So, when £(Z(M,),2(M,),y(My)) > B(M.), we define

Jor1 = I U{k}, Ley1(Z,2,y) = sup {};(Z,2,y)} (51)

J€J w11

3.2.2 Algorithm and Convergence
The branching rule is as follows. If

i, € argmax{|z;(M)y;(Ms) — 1| : i =1,2,...,m}

then we divide M, into two smaller rectangles via the line z;, = 3 (z;, (M) + m)
Linear Programming based algorithm (LPA)

Initialization. Start with My = [a,b] and a point (Z°,2°%,4°) such that Z° € Z,a <
20 < b,20y) = 1,i=1,2,...,m (see (47)). Compute my € §f(Z°,2°,40°). Let

10(31?/) = <7T0’ (Z - ZO’ T — mO’y - y0)> + f(ZO"EO’ y0)1
Ji= {0}7 Ll(may) = lO(may)-

Define ag = f(Z°,2%,9°). Set S; = N1 = {Mp}. Set x = 1.

Step 1. For each M € N, solve LP(M) to obtain (M) and (Z(M),z(M), y(M)). De-
fine the current best solution (Z*, 2", y") by comparing f(Z*~1,2*~1,y*~1) with f(Z(M),
:B(M),@(M)), f(Z(M)a {é(M)’ y(M))’ for M € Nm where gz(M)ml(M) =1, ‘iz(M)yz(M) =
1, i=1,2. If o, = f(Z",2",y") < 0, terminate.

Step 2. In S, delete all M such that (M) > 0. Let R, be the set of remaining
rectangles. If R,, = {J, terminate: the problem (45) has no solution.

Step 3. Choose M,, € argmin{3(M)| M € R,} and divide it into two smaller rectangles
M, 1, My according to the above specified rule. Let Nn+1 = {Mn,l,Mn,g}, Se+1 =
(Rn \ MN) U Nn+1-

Step 4. If f(Z(Mx),2(My),y(Mx)) = B(M.y), then let Juy1 = Jiy Luy1(Z,2,y) =
L.(Z,z,y). Otherwise, f(Z(M,),z(M,),y(M,)) > B(M,), then take w,, € 0f(Z(M,),z(M,),
y(M,)), and define J.11 = J,, U {k} and ., L1 by (50), (51).

Set k < k + 1 and go back to Step 1.

An analogue to Proposition 2 holds for LPA, namely:

14

Proposition 3 If Algorithm 3 is infinite, then the system (4)-(5) is infeasible and the
optimal value of problem ({5) is zero.

Proof Let M, := M, = [p¥,¢"], v = 1,2,... be an infinite nested sequence of rectangles
as in Lemma 1. As in the proof of Lemma 1 we may assume (Z(M,),z(M,),y(M,)) —
(Z,z,9) with z;5;, = 1, i = 1,2, ...,m, i.e. (Z,Z,7%) satisfies (5). Furthermore, by an outer
approximation argument [34] we now show that

ﬂ(Mu) _>ﬂ_ = f(Z’E’g) (52)
Let v’ and # stand for (Z(M,),z(M,),y(M,)) and (Z, z, y), and B stand for 3(M,).

Note that
Li(uw”) < B” < f(u”) Vi< Ky. (53)
Since {u”} is bounded, {7 € df(u”)} is bounded, too [23, Theorem 24.7], so we may
assume m¥ — T € 0f(u). Since lc,(uv) = (7¥,u — v”) + f(u”), it follows that I, (u) —
(m,u — @) + f(@) Vu. In particular
L, (@) — f(@). (54)
But from (53)
f(u) = B, (55)
while by fixing i we have [;(u”) < 8% V&, > i, so, by letting v — oo, we get [;(2) < 3,
for any 7 = 0,1,.... In particular
Le, (@) < B (56)
From (54) and (56) it follows that f(#) < £, hence, in view of (55): 3 = f(u), proving
(562). Now, since t(M,) = f(M,) < min{f(Z,z,y)| (5) }, it follows that

f(2,%,3) < min{f(Z,z,y)| (5)}

But, as shown above, (Z, z, §) satisfies (5). Hence f(Z,Z,3) = min{f(Z,z,y)| (5) } just
as in the proof of Proposition 1. The rest is clear. O

3.3 Hybrid algorithms

The idea behind this hybrid algorithms is that in the first stage of the search procedure,
it does not pay to compute very accurate bounds, so less computationally expensive al-
gorithms like linear programming based or local search ones can be utilized, but at an
advanced stage, as it becomes more and more important to have accurate bounds, better
results could be obtained by using LMI based algorithm with a global search instead.

Take the problem (45). Since LP(M) increases in size with k, solving LP(M) becomes
more and more time-consuming. Furthermore, many of the constraints (48) may be re-
dundant or may correspond to very poor approximations of the constraint f(Z,z,y) < ¢
for « € M. Therefore, in practical implementation, when x exceeds a certain number, say
K > Ko, it may be better to replace (48) simply by the original constraint f(Z,z,y) <t
and to compute a lower bound for M = [p, ¢] by solving (40) rather than LP(M).

An alternative way is to use an local search algorithm like Frank and Wolf algorithm (FW)
[9] which is less computational expensive, at the first stage to obtain a good upper bound
and then use a global search algorithm like CPA, DCPA, LPA at the final stage.

15

4 BMI Feasibility Problem

4.1 Concave programming reformulation of general BFP

Return to consider BFP (6) which can be written as

N N
Fy + Z z; + Z wijFi; <0 (57)
i=1 i<j<N
:I}E[a,b], Wij = Wjs, ,7=1,...,N, (58)
wi; = 225, 1<i<j<N. (59)

Thus the difficulty of BFP (57)-(59) is N(N + 1)/2 nonconvex quadratic constraints
(59). Therefore BFP (57)-(59) belongs to the class of nonconvex indefinite quadratic
programming, which is one of most important classes in global optimization and has
been a subject of intensive investigation in recent years due to its numerous applications
[1, 14, 26, 32, 8, 2, 33]. In this section, we will show a new solution method for BFP
(57)-(59) based on concave programming.

In the following Lemma, we reduce N (N + 1)/2 indefinite quadratic equality constraints
(59) to just one reverse convex constraint.

Lemma 5 Let W be the N X N symmetric matriz consisting from w;; in (59), i.e. W =
[wijli<i <N, wi; = wy; V(3,7). Then N(N + 1)/2 indefinite quadratic equality constraints
(59) are equivalent to

|

MMED (60)
N

Trace(W — zz') = Trace(W) — Y 2} <0 (61)
=1

where (60) is a LMI and (61) is reverse convez.

Proof Since the implication (59) = {(60), (61)} is obvious and we have to show only the
inverse implication. But (60) is equivalent to W — 22’ > 0 which particularly also implies
Trace(W —z2') > 0. Therefore, in view of (61) we get W —z2' > 0 and Trace(W —z2z') =0

which are equivalent to W — zz’' = 0, i.e. (59). -

Now, from (60)-(61) we see that BFP (6) is feasible if and only if 0 is the optimal value
of the following optimization problem

N

min Trace(W) — >z} : (57), (58), (60). (62)

=1
Clearly, the objective function of (62) has the representation (10) with y = W, fi (W) =
Trace(W), fa(z) = — TN, ? satisfying condition (z), (4) in Section 2. Therefore, we can
propose CPA for solving this nonconvex program (62). In this case, applying formula (13),
program (9) for computing a lower bound (M) of (62) for z € M = [p, q] C [a,b] is

N
min Trace(W) — Z[(pz + ¢:)z; — pigi] = (58),(60), = € [p,q] (63)

=1

16

and the adaptive rule is concretized analogously.

Of course the local search algorithms like FW should be very helpful for computing a good
upper bound to reduce the computing time of this algorithm.

Finally, if instead of BFP (57)-(59) we have to solve the the nonconvex optimization
problem

min {c,z): (57) — (59) (64)

with ¢ € RN, then it is better to using another equivalent representation of the nonconvex
constraint (59) instead of (60)-(61). Namely, like (60)-(61) we can show that (59) is
equivalent to (60) with

wi; — 27 <0,i=1,2,..,N. (65)

Note that (65) is just reverse convex constraints since the functions in its left hand side are
concave. Thus, N? nonconvex equality constraints (59) have been substantially reduced to
N reverse nonconvex inequality constraints (65). An interesting feature of (65) is that it is
decoupling in z; and thus convenient for a tight relaxation. Using (12) for computing the
tight affine minorant of function —z2, the resulted lower bound of (64) with z € M = [p, q]
is provided by the optimal solution of the following LMI optimization programm

min <C’ m> : (57)1 (60)’m e [p7 q]’ (66)
wi — (i + ¢i)e; +pigi <0, 2=1,...,N.

Based on this lower bound computing, like DCPA it is easy to produce a corresponding
rectangular branch and bound algorithm.
4.2 Decomposition method for a special class of BMIs

In this subsection we will concentrate to the feasibility of the following particular case of

BMI (6),

Ny N, N; N

Foo+) @:Fio+) yiFo; +) > 2y Fi; <0, (67)
=1 j=1 =1 j=1

e €[a,b] C RM, ycle,d C RM,a>0,c>0 (68)

where F;; are symmetric matrices.

Without loss of generality we may assume Ny < Ny (if Ny < N; the roles of z and y are
interchanged). BFP of (67), (68) has been considered first in [12, 13].

Obviously one can reduce (67)-(68) to the form (57)-(59) and then apply CPA developed in
subsection 4.2 for solving (67)-(68). However, it is not best way to handle (67)-(68) since
it requires branching performed on the space of all variables (z,y). It is quite known in
global optimization that the efficiency of a global optimization algorithm critically depends
on its branching space and this fact motivates the recent decomposition methods in global
optimization (see e.g. [15, 32]). This is very natural since in general the iteration number
of a branch and bound algorithm depends ezponentially on the dimension of its branching
space. Now, (67)-(68) can be writen as

min f(z,z,y) : (68),2; = z;y;, i =1,2,...,Ny; j =1,2,...,, Ny, (69)

17

with

N N» N N
f(z,2,9) = Amax[Foo + Z z; Fyo + E y;Fo; + E Z 2z;; Fyj]
=1 j=1 =1 j=1

((67)-(68) is feasible if and only if the optimal value of (69) is negative).

Note the following fundamental bilinear features of (69): it becomes just convez LMI
program when variable z is held fixed. Thus from development in Section 2, considering
as the “complicating variables”, an effcient way to handle BFP (69) should be a branch and
bound with branching performed on z—space of dimension N1 = min{Ny, N3} instead of
(2, y)-space of dimension N1+ Nj. The resulted algorithms presented below with branching
on that way may be practical even for large dimension of y but not so large dimension of
z.

4.2.1 LMI based method

Bounding

Given a rectangle M = [p, q] C [a, b] the computation of a lower bounding 3(M) for values
of f(z,z,y) over the feasible points

zij=aiyjy t=1,...,N1, 7=1,...,Na; (2,y) € M X [¢,d] (70)
is based on the following
Lemma 6 Assume p; < ¢;,¢c; < d;. We have
pi<z;<¢, c;<y;<d; (71)
iof and only if there exists z;; satisfying

z;; > max{c;z; + p;y; — picj, d;; + ¢;y; — ¢:d;} (72)
zij < min{c;z; + ¢;y; — gicj, dji + piyj — pidj}. (73)

Proof The inequalities (71) imply

(@i —pi)(y; —¢j) >0, (& —z:)(dj —y;) >0, (74)
(i —pi)(y; — d;) <0, (2:i—q:)(y; —¢;) <0 (75)
hence
zy; > e + piyj — picy; 2y > dizg + gy — gidj, (76)
zy; < djz; 4+ py; — pidy; 2y < ez + 4y — gicy, (77)

Thus (72)-(73) holds with z;; = 2;y;.
Conversely, suppose z;, y; satisfy (72)-(73) for some z;;. From

Zij 2 ¢t + piY; — Picj
zij < ¢ + QY — 4:Cj
we get 0 > (c;z; + piy; — picj) — (cj25 + iy; — aic;) = (0 — @:)(y; — ¢;), hence y; > ¢;

because ¢; — p; > 0. The other inequalities in (71) can be derived analogously.

18

a

Note that each of the inequalities (72), (73) splits into two linear inequalities, so the system
(71)-(73) is actually a linear system. As a consequence of the above Lemma, a lower bound
on M = [p, q] is provided by the optimal value 3(M) of the subproblem (equivalent to a
linear program under LMI constraints):

CQ(M) min f(z,z,y) :
zij > max{c;z; + piy; — picj, djzi + ¢iy; — Gid;} (78)
zi; < min{c;z; + qiy; — gicj, djwi + piy; — pid;} (79)
i=1,...,Ny, j=1,...,Ny (80)

Furthermore, by Lemma 6, p; < 2;(M) < ¢;, ¢; < y;(M) < d;, Vi,jso (£2(M),z(M),y(M))

with Z;;(M) = 2;(M)y;(M) is a feasible solution to BFP and (M) := f(2(M), z(M),y(M))
yields an upper bound for (69). Thus, the subproblem CQ(M) provides not only a lower

bound but also an upper bound.

Remark 3. The fact that the nonconvex constraint (70) can be relaxed to (79)-(80) and

(mvy) € [p,q] X [c,d] (81)

is quite well known since the work of McCormic [18]. In view of our lemma 6, the constraint
(81) is however superflous.

Moreover, it seems that most of control people don’t know this well known fact in global
optimization, which has been subsequently described in the text books on optimization
[19, 14] or any paper on indefinite quadratic optimization (see e.g. [1, 2, 8, 26] for a few).
For instance, in [12, 13], (70) is relaxed just to

ES [p,QL yc [C’d], pic; < Zig < Qidj’i: 17"-,N1’ j:]-’"',N? (82)

which is a very coarse approximation of the nonconvex set (70).
On the other hand, the following relaxed constraint for (70)

ES [pv q]a /NS [Cad]’zij € Conv{(piacj’Picj)1 (Pi,dj,pidj), (Qi,Cj,QiCj), (Qi,dj,Qidj)} (83)

used in [10] is nothing else than (79)-(80), (81), which has been also essentially established
n [19]. However, the form (79)-(80), (81) which is an explicit description of (83), is more
convenient for computational implementation.

Using the general BB scheme [16], both [12, 13] and [10] don’t take the bilinear chara-
terization of (69) into account for BB processes. The branching in their BB algorithms
is performed in the (z,y)-space (of dimension N; + Nj) rather than in the z-space (of
dimension N1 < Nj), and thus can be not practical for the case of large N1 + Na. Finally,
the computation of the current best solution in [12, 13] involves finding a local minimum
of f(=,y,z) over (z,y) € [p,q] X [r,5],2z:; = ziyj,¢ = 1,...,N1,7 = 1,..., N2, which may
be computationally expensive since this local optimization problem is also NP-hard for
itself.

Clearly, problem (69) belongs to the class of d.c. optimization since the indefinite quadar-
tic constraints z;; = #;y; in (69) are a particular case of d.c. constraints [14, 32]. A d.c.

19

structure of (69) in quite different setting has observed in [17]. This is not surprising since
there are infinite d.c. representations for a given problem and in principle, every optimiza-
tion problem can be transformed to a d.c. optimization problem [28, 33]. However, the
efficiency of a d.c. optimization algorithm does depend on the used d.c. representation.
The d.c. representation of [17] leads to solving (nonconvex) concave programs at every
iteration for computing a lower bound, which is obviously very computationally expensive.
This is sharp constrast to our d.c. optimization algorithm, which requires solving only
(convex) LMI or linear programms at every iteration.

Now, our branching performed only on the space of variables is looked as follows.

Branching

Let M be the candidate for further subdivision at a given iteration and let (z(M), z(M),
y(M)) be an optimal solution of CQ(M). If z;;(M) = z;(M)y;(M) V(4,7), then it is
a feasible solution to BMI and since S(M) is a lower bound for (69) it follows that
(z(M),z(M),y(M)) solves BFP. Thus, to ensure convergence the subdivision rule should
tend to bring the difference max;;{|z;;(M) — 2;(M)y;(M)|} to zero. To achieve this, we
set

(im, jm) € argmax{|z;;(M) — z;(M)y;(M)| (3,7) € N1 x N2}

and divide M = [p, q] into two smaller rectangles by the plane

1 ZiMjM(M)
iy = 5 (@ing (M) + m)-

LMI based BB algorithm for BFP (LMIBBA)

Initialization. Start with My = [a, b]. Set S; = N7 = {Mp}. Set x = 1.

Step 1. For each M € N, solve CQ(M) to obtain the optimal value 3(M) and an opti-
mal solution (z(M),z(M), y(M)). Define (z*,2",y") to be the best among (z*~1, 21, y=1)
and (2(M),z(M),y(M)), (2(M),2(M),y(M)), (z(M),z(M),5(M)), M € N, where
25(M) = 2s(Mygy(M), (M) = 25(M) (M), &:(M) = 2i5(M) /g (M). TF e =
f(z",y"*,2") < 0, terminate: (z"*,y"*) is a feasible solution of BMI (67)-(68.

Step 2. In S, delete all M such that (M) > 0. Let R, be the set of remaining
rectangles. If R,; = 0, terminate: BMI (67)-(68) is infeasible.

Step 3. Choose M, € argmin{3(M)| M € R,} and divide it into two smaller rectangles
M, 1, M, 5 according to the above specified subdivision rule 3. Let N1 = {My 1, My 2},
8K+1 = (Rn \ Mn) U NK,+1.

Set k¥ + k+ 1 and go back to Step 1.

The following convergence proposition can be established similarly to Proposition 1.

Proposition 4 FEither LMIBBA terminates after finitely many iterations, yielding a fea-
stble solution to BFP (termination at step 1) or producing the evidence that BFP is infea-
sible (termination at step 2). Or it is infinite and then the system (67)-(68) is infeasible
and the optimal value of problem (69) is zero.

20

4.3 Linear programming based method

Just as in LPA for solving LFP, instead of solving convex programs (by LMI solvers) for
lower bounding, we can also solve iterative linearizations of these programs, at least in
the first stage of the procedure, when highly accurate lower bounds may not be worth
the computational effort to obtain them. Thus, the lower bounding subproblem at each
iteration is constructed by linearizing the convex constraints and replacing the convex
objective function f(z,z,y) by a convex piecewise affine minorant approaching f(z,z,y)
more and more closely as the algorithm proceeds.

Bounding

At iteration k we already have in hand a convex piecewise affine minorant L.(z,z,y) of
f(z,2,y), of the form

Le(z,2,y) = max{l;(z,z,y)| j € Jx},

where (2, 2,y),j € J, are affine functions resulting from the previous iterations. A lower
bound 3(M) for (69) is then provided by the optimal value of the linear program

LQ(M) min ¢ : (78) — (80) and
Li(zyz,y) <t, jeJs

Updating L.(z,z,y)

At iteration k let M, be the rectangle with smallest 3(M), i.e. the candidate for fur-
ther splitting. Let (¢(Mx), z(My),z(My),y(M,)) be an optimal solution of LQ(M,). If
F(2(My), 2(My), y(M,)) = (M), then set Lus1(2,5) = La(2,9), Jus1 = Ji Otherwise,
f(z(My), (M), y(M,)) > t(M,), then (t(M,),z(M,),2(M,),y(M,)) does not belong to
the convex set {(¢,z,2,y)| f(z,2z,y) < t} and we can separate it from the latter by the
cutting plane

lo(z,2,y) <t (84)
where
l(zy2,y) = (me, (2 — 2(My), 2z — 2(My),y — y(My))) (85)
+f(2(My), 2(Ms), y(My))

with m, € 0f(z(M.), z(M),y(M,)).
So, when f(z(My),z(M,),y(M,.)) > t(My), we define

Jet1 = I U {K’}i Ln+1(z1m7y) = Ssup {lj(z’m’y)} (86)

J€Jkt1

LP based BB algorithm for BMI (LPBBA)
Initialization. Start with My = [a, b] and a feasible point (2°,2°,4°) to (69). Compute
mo € 8f(2°,20,). Let

lO(‘E’y) = <7r0’ (z - 20’ T - ZO’y - y0)> + f(ZO’mO’yO)’
J1 = {0}’ Ll(z,y) = IO(m’y)'

Define ag = f(2°,2°,9°). Set S; = N1 = {Mp}. Set x = 1.

21

Step 1. For each M € N, solve LQ(M) to obtain B(M) and (z(M),z(M),y(M)).
Define (z*, 2", y*) to be the best among all the feasible (z(M), z(M), g(M)), (z(M), (M),
y(M)), (Z(M), (M), y(M)) M € Ny where §s(M) = z5(M) /2;(M), &:(M) = 2;(M)/
y; (M), z;(M) = 2;(M)y;(M). If a,, = f(2*,y",2") < 0 terminate: (z*,y") is a feasible
solution of (67)-(68).

Step 2. In S, delete all M such that (M) > 0. Let R, be the set of remaining
rectangles. If R, = 0, terminate: BMI (67)-(68) is infeasible.

Step 3. Choose M, € argmin{B(M)| M € R.} and divide it into two smaller rect-
angles M, 1, M, s according to the same subdivision rule as in LMIBBA. Let Ney1 =
{Mn,laMnJ}, Sn+1 = (Rn \ MN) U-/V’fc+1-

Step 4. T F(2(Mo), 2(M2),y(M)) = t(My), then let Jus1 = Ju, Luti(z,2,0) =
Li(z,z,y). Otherwise, f(z(My),z(M,),y(My)) > t(My), then take w, € 0 f(2(M.,), 2(M,),
y(M,)), and define Jei1 = J U {k} and ., L1 by (85), (86).

Set k¥ + k + 1 and go back to Step 1.

The proof of the following result is analogous to that of Proposition 4.

Proposition 5 If LPBBA is infinite, then the system (67)-(68) is infeasible and the op-
timal value of problem (69) is zero.

Just as in the case of LFP, a hybrid Algorithm for BFP can be used which in a first stage
proceeds according to LPBBA and later swtiches to LMIBBA.

5 Computational experience

In this Section, we present some computational experience with the above developed al-
gorithms for LFP and BFP, using MATLAB on PC with CPU Pentium 133 MHz.

5.1 LFP

CPA and DCPA for LFP were tested on problems with k¥ = 2,3,4 (i.e. m = 1,2,3 in
the corresponding LFP (4)-(5)) and with the dimension of the state space of the plant (1)
ranging from 5 to 10 (hence the dimension of the space containing Z is ranging from 30
to 110). For each value of k, up to 150 randomly generated instances were solved, with
a; = 0.001, and b; = 1000 in (30). The value v in (29) was chosen to be equal to /¢ for
some £ > 2, where 7 is the minimum of ¥ such that LMI (29) with fixed z; =1, y; =1
is feasible (i.e. < is the optimal value without scaling). For such 4 LFP had a feasible
solution in 60% of our examples and no feasible solution in the remaining 40%.

The results are presented in Table 1 which tell us that CPA performs better than DCPA.
The figures in brackets in the AI column are the average numbers of iterations needed for
computing the optimal value of problem (35)-(36), with tolerance ¢ = 0.01. These numbers
represent the upper bounds of the average number of iterations for any v in LFP.

In more than 80% of our examples, the optimal value of problem (35)-(36), lies in the
interval [—0.2,0.2] which is a small neighborhood of zero. In the remaining 20% it lies
in the interval [—0.9,0.9]. This means that the statistics given in Table 1 relate more or
less to “worst cases” of LFP. As it often happens in deterministic global optimization,
the optimal value is often found very early, but most of the time is spent on checking

22

their optimality. Since the termination criterion of Algorithm 1 is that either the current
best value of f(Z,z,y) is negative or the smallest lower bound 3(M,)) is greater than —¢,
this suggests that Algorithm 1 should require much less iterations if the optimal value lies
outside the interval, say, [—1.5,1.5].
As expected, the number of iterations depends on m but is little sensitive to the dimension
of Z. To investigate the role of the subdivision rules, we have also run the algorithm by
using different subdivision rules. It turned out that with regard to performance, the
subdivision rules are ranked as follows:

1. the above proposed adaptive subdivision rule;

2. the adaptive bisection: ips is chosen as in (14), but the subdivision line is z;,, =
%(piM(M) + q’iM(M));

3. the special rule: 737 is chosen as in (14), but the subdivision line is z;,, = @;,,(M);

4. the standard bisection: divide M by a line orthogonal to the longest edge at the
midppoint of this edege.
Thus the best subdivision rule is the one proposed above, while the standard bisection
is by far the worst: the number of iterations can increase dramatically (from two to ten
times) with the standard bisection when k = 3, 4.
Our computational experiments also show that the performance of DCPA does not change
when the convex constraint (31) in (40) is replaced by its linear relaxation (46).
Note that a tighter upper bound for (35)-(36), in Step 1 could be obtained by solving two
LMTI problems

min t: £(Z,& & ") < tI (87)

with # € {z(M),y(M)~1}.
However, our experience shows that although slightly less iterations will be needed because

of better initial upper bounds, more total CPU time will be required because of the time
spent on solving these two additional LMI problems.

Alg. |k Al MBN | ACPU5-10
CPA |2| 9.2(17.8) 5 1.45-3.62°
DCPA | 2 | 13.4(25.3) 7 2.05"-5.13’
CPA | 3| 25.63(40.2) | 13 | 6.45-15.79’
DCPA | 3 | 40.75(70.2) | 19 | 10.2%-24.92°
CPA |4 35.23(60.5) | 25 | 10.35-33.72°
DCPA | 4 | 97.53 (120.5) | 69 | 24.28-74.98’

Tab. 1:Al: average # of iterations, MBN: max # of branches,
ACPUS5-10: average CPU time/LFP when the state dimension varies from 5 to 10

5.2 BFP

LMIBBA and LPBBA were tested on problems with Ny = 1,2,3 and N2 < Ny, Ny from 1
to 3. Specifically, we solved problems where (67) has the form

Foo+z1Fo1 +y1Fio+ziyi Fiu < 0, (88)

23

3 3

F00‘|‘Z€EiF0i —|—y1F10—|- ZmiylFil < 0’ (89)
=1 =1
2 2
Foo + Y (ziFoi + yiFio) + Y _zyiFy < 0, (90)
=1 =1
3 3
Foo + Y (ziFoi + yiFio) + > _ziyiFy < 0 (91)
=1 =1

Since Ny < Nj, the method branches upon y. So the space on which branching is perfomed
is R! for (89), R? for (90), R3 for (91). In each case, up to 150 randomly generated
instances were solved, in which all variables are restricted to the interval [0.001, 1000]
and all matrices are of order from 3 X 3 to 10 X 10. The computational results when
tolerance ¢ = 0.1% are shown in Table 2. To improve the performance of the algorithms,
we also restart the algorithms (see e.g. [15, Chap.6]), when the number of partition sets
has become too large: if o, is the incumbent value at the last iteration, then add the
constraint f(z,y,z) < o, for the next cycle of iterations. This restart strategy is useful
for keeping the number of partition sets within manageable limits and often speeds up
the convergence. In all our tested examples, the optimal value is located in the segment
[-0.9,0.9] which is a small neighborhood of 0. Thus, the results presented in Table 2
relate more or less to worst cases.

From the statistics of Table 2 we see that for the cases under consideration (small Ny, Ny
and small size of all matrices) LPBBA performs much better than LMIBBA. The number
of iterations needed for both algorithms is almost the same, despite the fact that the
constraints in the bounding subproblems in LMIBBA are more accurate.

Alg. BMI | Al for BFP | Al for OV | CPUtime for BFP | CPUtime for OV

LMIBBA | (88) 5.12 20.13 13.51 sec. 40.03 sec.
LPBBA | (88) 7.01 22.70 1.40 sec. 3.95 sec.

LMIBBA | (89) 10.13 37.43 60.05 sec. 214.48 sec.
LPBBA | (89) 13.90 38.80 5.40 sec. 20.35 sec.
LMIBBA | (90) 16.25 38.9 65.99 sec. 176.18 sec.
LPBBA | (90) 18.27 32.00 5.53 sec. 11.27 sec.
LMIBBA | (91) 30.63 58.09 206.00 sec. 320.17 sec.
LPBBA | (91) | 33.00 57.50 18.83 sec. 46.99 sec.

Tab. 2:Al: average # of iterations; OV: optimal value of (69)

Also note from the statistics in Table 2 that the degree of difficulty of a problem depends
both on the number of “complicating variables” and the number of nonconvex constraints.
For instance, both (88) and (89) have just one complicating variable (the space in which
branching is performed is R!), but (89) has 3 nonconvex constraints z;; = ;1,7 = 1,2,3
compared with 1 nonconvex constraint z;; = 21y; in (88). So to reach the optimal value
requires much more iterations in (89) than in (88).

For other computational examples using our LMIBBA and LPBBA to solve BMIs like
(67) with Ny > 10N; arising from robust constrained nonlinear control problems we refer
the reader to [27]. Some comparisions of our methods with other can be found in [6].

24

Finally, it may be of interest to see how our algorithms solve the following example from

[13]

10 —05 -2 18 —0.1 -04 9 05 0
05 45 0 |+y|-01 12 —1|+z|05 0o -3
2 0 0 04 -1 0 0 -3 -1
0 0 2 (92)
tzy |0 —55 3| <0, (z,9) € [-0.5,2] x [-3,7],
2 3 0

The results are given in Table 3. LMIBBA finds a feasible (z,y) = (0.7492,1.8051)
after the first iteration with CPU time 3.13 sec., while LPBBA finds a feasible (z,y) =
(0.5499,4.5643) after the second iteration with cpu-time 0.33 sec.

Alg. OVl | IT. for OV1 | timel | OV2 | IT. for OV2 | time2
LMIBBA | -0.9551 7 17.19 | -0.9565 25 56.79
LPBBA | -0.9565 16 4.06 | -0.9565 19 4.77

Table 3: Alg.: algorithm;OV1 (OV2, resp.): optimal value with tolerance
0.5% (0.001%, resp.) of value of last incumbent;IT.: # of iterations;

timel: CPU time for OV1; time2:CPU time for OV2.

6 Conclusion

We have demonstrated in this paper that several important classes of robust control prob-
lems can be recast as d.c. optimization problems, which become convex when their com-
plicating variables are held fixed. The exploited features of such optimization problems
allows us to propose several branch and bound algorithms with branching performed only
in the space of complicating variables that makes algorithms practicable.

Acknowlegement. We thank Eric Beran from Technical University of Demark and Olav
Slupphaug from Norwegian University of Science and Technology for their helphul remarks
and fruit discussions on BMI subject which have helped to improve the content of this

paper.

25

APPENDIX

Lemma 7 [22]. Let Ay, A1, Ay, ..., A, be symmetric n X n matrices and f : R™ — R be
a function defined by

f(:l)) = /\max(AO + Z ZlAl) Ve € R™.
=1

At a given a € R™, let u be a unit eigenvector corresponding to the eigenvalue f(a) of the

matriz Ag + Y g a;A;. Then (v'Aju,u'Asu, ..., u'A,u) € 3f(a).

Proof We have to show that
3w Aju(z; — a;) < f(z) — f(a) Yz € R™ (93)
=1

But the left hand side of (93) satisfies

AO—I—EmA u—u AO—I—EalA)u_u A0+EmA)u— f(a) < f(2) — f(a)

=1 =1

since

A()—I—E:aZ u=f

by the definition of u, and
AO—I—Zzl Ju < f(z) Ve € R

is obvious (for every unit vector » in R™ and for every symmetric matrix A of dimension
n X n one has v'Au < Anax(4)).

References

[1] F.A. Al-Khayyal, J.E. Falk, Jointly constrained biconvex programming, Mathematics
of Operation Research 8(1983), 273-286.

[2] F.A. Al-Khayyal, Jointly constrained bilinear programms and related problems: an
overview, Computers and Mathematics with Applications 19(1990), 53-62.

[3] P. Apkarian, P. Gahinet, A Convex Characterization of Gain-Scheduled H,, con-
trollers, IEEE Trans. Automatic Control 40(1995), 853-864. See also pp. 1681.

[4] P. Apkarian, H.D. Tuan, Robust control via concave optimization: local and global

algorithms, Proc of CDC 1998.

[6] P. Apkarian, H.D. Tuan, Parameterized LMIs in control theory, To appear in SIAM
J. Control and Optimization.

[6] E. Beran, Methods for optimization based fixed-order control design, Ph.D. thesis,
Technical University of Denmark, 1997.

26

[7] J.C. Doyle, A. Packard, K. Zhou, Review of LFTs, LMIs and y, Proc. of 80-th IEEE

Conf. on Decision and Control, 1991, 1227-1232.

[8] C. Floudas, V. Visweswaran, Quadratic optimization, in R. Horst and P. Pardalos

*eds.), Handbook on Global Optimization, Kluwer, 1995, 217-269.

[9] M. Frank, P. Wolfe, An algorithm for quadratic programming, Naval Res. Log. Quart.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

3(1956), 95-110.

H. Fujioka, K. Hoshijima, Bounds for the BMI eigenvalues problems-A good lower
bound and a cheap upper bound, Trans. of SICE 33(1997), 616-621.

P. Gahinet, A. Nemirovski, A. Laub, M. Chilali, LMI control toolboz, The Math.
Works Inc..

K.C. Goh, Robust control synthesis via bilinear matrix inequalities, Ph.D. thesis,
University of Southern California, Los Angeles, CA, 1995.

K.C. Goh, M.G. Safonov, G.P. Papavassilopoulos, A global optimization approach for
the BMI problem, Journal of Global Optimization, 7(1995), 365-380.

R. Horst, H. Tuy, Global optimization: deterministic approaches (3rd edition),
Springer, 1996.

H. Konno, P.T. Thach, H. Tuy, Optimization on Low Rank Nonconvex Structures,
Kluwer Academic Publishers, Boston, Dordrecht, London, to appear in 1996

E.L. Lawler, D.E. Wood, Branch and bound methods: a survey, Operation Research
14(1966), 699-719.

S.M. Lim, G.P. Papavassilopoulos, Numerical experience with parallel algorithms for
solving the BMI problems, Proc. of 13-th IFAC Congress, San Fransisco, 1996, pp.
387-392.

G.P. McCormic, Computability of global solutions to factorable nonconvex programs:
part I-convex understimating problems, Mathematical Programming 10(1976), 147-
175.

G.P. McCormic, Nonlinear programming: theory, algorithms and applications, John
Willey and Sons, 1982.

A. Packard, K. Zhou, P. Pandey, J. Leonhardson, G. Balas, Optimal, constant I/O
similarity scaling for full-information and state-feedback control problems, Systems
& Control Letters 19(1992), 271-280.

A. Packard, J. Doyle, The complex structured singular value, Automatica 29(1993),
71-109.

E. Polak, Y. Wardi, A nondifferentiable optimization algorithm for the design of con-
trol systems subject to singular value inequalities over a frequency range, Automatica

18(1982), 267-283.

27

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

R.T. Rockafellar, Convex analysis, Princeton University Press, 1970.

M. Rotea, T. Iwasaki, An alternative to the D-K iteration?, Proc. of the American
Control Conference 1994, pp- 53-57.

M.G. Safonov, K.C. Goh, J.H. Ly, Control systems synthesis via bilinear matrix
inequalities, Proc. of the American Control Conference 1994, pp. 45—49.

H.D. Sherali, A. Alameddine, A new reformulation-linearization technique for bilinear
programming problem, J. of Global Optimization 2(1992), 379-410.

O. Slupphaug, On robust constrained nonlinear control and hybrid control: BMI
and MPC-based state feedback schemes, it Ph.D. Thesis, Department of Engineering
Cybernetics, Norwegian university of Science and Technology, Norway, October 1998.

P.T. Thach, D.c sets, d.c. functions and nonlinear equations, Mathematical Program-
ming 58(1993), 415-428.

H.D. Tuan, P. Apkarian, Relaxation of parameterized LMIs with control applications,
International J. of Nonlinear Robust Controls 9(1999), 59-84.

H.D. Tuan, S. Hosoe, H. Tuy, D.C. optimization approach to robust controls: the
optimal scaling value problem, Proceedings of 1997 American Control Conference,
350-355; Also to appear in IEEE Trans. Automatic Control.

H.D. Tuan, Remarks on a global optimization algorithm for H, control, To appear
in IEEE Trans. Automatic Control.

H. Tuy, Convez analysis and global optimization, Kluwer Academic, 1998.

H. Tuy, D.C. Optimization: Theory, Methods and Algorithms, in Handbook of Global
Optimization, R. Horst and P. Pardalos eds, Kluwer Academic Publishers, 1995, pp.
149-216.

H. Tuy, Canonical D.C. Programming: Outer Approximation Methods Revisited,
Operations Research Letters 18(1995), 99-106.

Y. Yamada, S. Hara, Global optimization for H,, control with constant diagonal

scaling, IEEE Trans. on Automatic Controls 43(1998), 191-203.

28

