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Abstract

We develop nonsmooth optimization techniques to solve H∞ synthesis problems under
additional structural constraints on the controller. Our approach avoids the use of Lyapunov
variables and therefore leads to moderate size optimization programs even for very large
systems. The proposed framework is versatile and can accommodate a number of challenging
design problems including static, fixed-order, fixed-structure, decentralized control, design of
PID controllers and simultaneous design and stabilization problems.

Our algorithmic strategy uses generalized gradients and bundling techniques suited for
the H∞ norm and other nonsmooth performance criteria. We compute descent directions
by solving quadratic programs and generate steps via line search. Convergence to a critical
point from an arbitrary starting point is proved and numerical tests are included to validate
our methods. The propose approach proves to be efficient even for systems with several
hundreds of states.

Keywords: H∞-synthesis, static output feedback, fixed-order synthesis, simultaneous stabiliza-
tion, NP-hard problems, nonsmooth optimization, bundle methods, Clarke subdifferential, bilinear
matrix inequality (BMI), linear matrix inequality (LMI).

1 Introduction

In this paper we consider H∞ synthesis problems with additional structural constraints on the
controller. This includes static and reduced-order H∞ output feedback control, structured, sparse
or decentralized synthesis, simultaneous stabilization problems, multiple performance channels,
and much else. We propose to solve these problems with a nonsmooth optimization method
exploiting the structure of the H∞ norm.

In nominal H∞ synthesis, feedback controllers are computed via semidefinite programming
(SDP) [27, 2] or algebraic Riccati equations [21]. When structural constraints on the controller
are added, the H∞ synthesis problem is no longer convex. Some of the problems above have even
been recognized as NP-hard [41] or as rationally undecidable [7]. These mathematical concepts
indicate the inherent difficulty of H∞ synthesis under constraints on the controller.
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Even with structural constraints, the bounded real lemma may still be brought into play.
The difference with customary H∞ synthesis is that it no longer produces LMIs, but bilinear
matrix inequalities, BMIs, which are genuinely non-convex. Optimization code for BMI problems
is currently developed by several groups, see e.g. [33, 5, 51, 39, 24], but it appears that the BMI
approach runs into numerical difficulties even for problems of moderate size. This is mainly due to
the presence of Lyapunov variables, whose number grows quadratically with the number of states.

Out present approach does not use the bounded real lemma and thereby avoids Lyapunov
variables. This leads to moderate size optimization programs even for very large systems. In
exchange, our cost functions are nonsmooth and require special optimization techniques, which
we develop here. We evaluate the H∞ norm via the Hamiltonian bisection algorithm [10, 9, 26]
and exploit it further to compute subgradients, which are then used to compute descent steps.
Notice, however, that our method is not a pure frequency domain method. In fact, it allows
both frequency domain and state space domain parameterizations of the unknown controller. This
makes it a very flexible tool in a number of situations of practical interest.

Several iterative methods for reduced-order control have been proposed over recent years, see
for instance [18, 23, 32]. In [18], a comparison among four of these methods on a large set of test
problems is arranged, with the result that successive linearization [23], also known as the Frank
and Wolfe (FW) algorithm [25], performed best. Whenever possible, we have therefore compared
our new nonsmooth methods and the augmented Lagrangian algorithm in [6, 44] with the Frank
and Wolfe method. The results are presented in the experimental section.

As far as comparison with existing methods is concerned, let us mention that for specific classes
of plants, it is possible to compute reduced-order controllers without the use of optimization
techniques. This has for instance been investigated in [52, 53, 50]. These approaches usually make
strong additional assumptions like singularity, or hypotheses about unstable invariant zeros. In
such cases it may then even be possible to assure global optimality of the computed controllers.
Unfortunately, in these approaches, the order of the controller is not a priori known, and in
particular, it is not possible to compute static controllers with this type of technique. In the
absence of these additional assumptions, and in particular when structural constraints are imposed,
synthesis via nonlinear optimization appears to be the most general approach to H∞ synthesis.

The structure of the paper is as follows. In section 2 we present the H∞ synthesis problem and
give several motivating examples. Section 3 computes subgradients of the H∞ norm, which are
then applied to closed-loop scenarios in section 4. In section 5 we start to develop our first-order
descent method, which is completed in section 6. Section 6.7 discusses practical aspects of the
method, and the final section 7 presents a number of experiments to validate our approach.

Notation

Let Mn,m the space of n×m matrices, equipped with the corresponding scalar product 〈X, Y 〉 =
Tr(XHY ), where XH is the transconjugate of the matrix X, Tr X its trace. The space of m × m
Hermitian matrices is denoted Sm. For Hermitian or symmetric matrices, X ≻ Y means that X−Y
is positive definite, X � Y that X − Y is positive semi-definite. We use the symbol λ1 to denote
the maximum eigenvalue of a symmetric or Hermitian matrix. We shall use general notions from
nonsmooth analysis covered by [16]. Notions on ε-subdifferentials and ε-enlarged subdifferentials
for spectral functions and their relationships are discussed at length in [17, 40, 45]. Unless stated
otherwise, the symbol x designates a vector gathering (controller) decision variables and must not
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be confused with the plant state in Section 2. In the notation xk, the subscript k refers to the
iteration index.

2 H∞ synthesis

The general setting of the H∞ synthesis problem is as follows. We consider a linear time-invariant
plant described in standard form by the state-space equations:

P (s) :




ẋ
z
y


 =




A B1 B2

C1 D11 D12

C2 D21 D22







x
w
u


 , (1)

where x ∈ Rn is the state vector, u ∈ Rm2 the vector of control inputs, w ∈ Rm1 the vector of
exogenous inputs, y ∈ Rp2 the vector of measurements and z ∈ Rp1 the controlled or performance
vector. Without loss of generality, it is assumed throughout that D22 = 0.

Let u = K(s)y be a dynamic output feedback control law for the open-loop plant (1), and let
Tw→z(K) denote the closed-loop transfer function of the performance channel mapping w into z.
Our aim is to compute K(s) such that the following design requirements are met:

• Internal stability: For w = 0 the state vector of the closed-loop system (1) and (2) tends to
zero as time goes to infinity.

• Performance: The H∞ norm ‖Tw→z(K)‖∞ is minimized among all stabilizing K.

We assume that the controller K has the following frequency domain representation:

K(s) = CK(sI − AK)−1BK + DK , AK ∈ R
k×k, (2)

where k is the order of the controller, and where the case k = 0 of a static controller K(s) = DK

is included. Often practical considerations dictate additional challenging structural constraints.
For instance it may be desired to design low-order controllers (0 ≤ k ≪ n) or controllers with
prescribed-pattern, sparse controllers, decentralized controllers, observed-based controllers, PID
control structures, synthesis on a finite set of transfer functions, and much else. Formally, the
synthesis problem may then be represented as

minimize ‖Tw→z(K)‖∞
subject to K stabilizes (1)

K ∈ K
(3)

where K ∈ K represents a structural constraint on the controller (2) like one of the above.
Without the restriction K ∈ K, and under standard stabilizability and detectability conditions,

it has become customary to synthesize K(s) as follows. After substituting (2) into (1), the
H∞ synthesis problem is transformed into a matrix inequality condition using the bounded real
lemma [1]. Then the projection lemma from [28] is used to eliminate the unknown controller data
AK , BK , CK , DK from the cast, leaving an LMI problem, which may be solved by SDP. In a third
step the controller state-space representation (2) is recovered.

This scenario changes dramatically as soon as constraints K ∈ K are added. Then the prob-
lem may no longer be transformed into an LMI or any other convex program, and alternative
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algorithmic strategies are required. The aim of this paper is to present and analyze one such
alternative.

Example 1. Pure stabilization. Often the first important step in controller synthesis (3) is to
find a stabilizing controller K. Already at this stage the H∞ norm plays a prominent role, because
of the well-known fact that under stabilizability and detectability, a linear-time invariant system
is Lyapunov stable if and only if its H∞ norm is finite [19]. More specifically, under stabilizability
and detectability assumptions, the static control law u = Ky stabilizes the plant

G(s) :

{
ẋ = Ax + B2u
y = C2x ,

(4)

if and only if the closed-loop transfer matrix C2(sI − (A + B2KC2))
−1B2 has finite H∞ norm.

In order to construct a static stabilizing controller for an unstable open-loop system (4), the
following procedure appears fairly natural. Suppose we are given an initial guess K0, which leaves
the closed-loop system unstable. Then we pick a0 > 0 such that the a0-shifted H∞-norm of the
closed-loop system is finite:

‖C2(sI − (A + B2K0C2))
−1)B2‖−a0,∞ < +∞,

where the shifted H∞ norm is given in [11]. The problem of finding a stabilizing controller K may
now be addressed by an optimization program

minimize
K

‖C2(sI − (A + B2KC2))
−1B2‖−a,∞, (5)

where the shift a is either kept fixed at the initial a0, or is gradually decreased after each minimiza-
tion step to accelerate the procedure. A stabilizing controller K is obviously obtained when the
shift reaches a ≤ 0, but very often this happens already with the initial value a0, so that shifting
is not even necessary as a rule. Numerical tests for this method will be presented in section 7.

While we stop the optimization (5) as soon as a stabilizing K is reached, it may happen that
for a fixed shift a, the method converges to a local minimum K of (5), which fails to stabilize
the closed-loop system. This is explained by the fact that (5), just like all the other methods
in this paper, are local optimization methods in the sense that they guarantee convergence to
a local minimum (or a critical point). If an unsatisfactory local minimum is reached, the only
possibility is to do a restart with a new initial guess K0, or switch to another method. Such a local
convergence certificate may appear weak at first sight, but experience shows that local methods
perform much better than global optimization techniques. Those may have stronger certificates,
but run into numerical problems even for small problems. And indeed, our present approach is
almost always successful even without restart. A similar comment applies to the pure stabilization
method in [3]. �

Notice that pure stabilization is just a special case of the more general H∞ synthesis problem
in section 2 when we specialize the standard form to

P (s) :




ẋ
z
y



 =




A B2 B2

C2 0 0
C2 0 0








x
w
u



 . (6)

Example 2. Spectral abscissa. In [12, 13] Burke et al. present an alternative approach to com-
puting static stabilizing controllers K. The authors propose to solve the nonsmooth optimization
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program

minimize
K

α(A + B2KC2), (7)

where α is the spectral abscissa of a matrix M ∈ Mn,n defined as

α(M) = max{Re λ : λ eigenvalue of M}.

Unfortunately, this function is not even locally Lipschitz, which renders application of existing
nonsmooth algorithms impossible. The authors have therefore developed a probabilistic algorithm
which allows to treat problems like (7); see [14, 13]. Since optimality tests and approximate
subgradients for α are difficult to compute (see [3]), we prefer the use of (5) over (7). Numerical
tests for (5) are presented in section 7 and show that this method is successful as a rule. Our own
numerical tests with program (7) are published in [3]. �

The above scenario covers the case of a static stabilizing controller K, but it is clear that
stabilization problems including structural constraints K ∈ K can be treated in exactly the same
way. Several examples of classes K will be presented in the sequel.

Example 3. Simultaneous stabilization. Another instance of interest is the simultaneous stabi-
lization problem, which can be cast as minimizing a finite family of closed-loop transfer functions.
Formally, given the open-loop plants, Gi, i = 1, . . . , r, we consider the problem

minimize
K

max
i=1,...,r

γi‖Ci(sI − (Ai + BiKCi) − aiI)−1Bi‖∞

where γi > 0 are appropriate weights, and the ai are chosen so that the initial guess K renders
the ith system stable after shifting by ai. A lower bound for ai is therefore the spectral abscissa
(7) of the ith system. As before, the shifts are decreased after each H∞ norm minimization step
and a simultaneously stabilizing K is obtained e.g. if ai ≤ 0 for all i = 1, . . . , r. But even when
some ai > 0, the solution may produce a simultaneously stabilizing K. �

Example 4. System reduction. A technique of considerable importance is system reduction.
It is used by practitioners whenever an open-loop system G(s) of large order N is difficult to
control. Let G(s) denote such a large size open-loop plant, and suppose a decomposition G(s) =
Ginstab(s) + Gstab(s) into an unstable and a stable part is available. Then we may consider the
problem

minimize
eGstab∈K

‖Gstab(s) − G̃stab(s)‖, (8)

where G̃stab(s) ranges over a prespecified class K of stable system of reduced order, n ≪ N ,
and where some norm criterion is used to evaluate the mismatch between nominal and reduced
systems. If ‖ · ‖ represents the Hankel norm, an explicit expression for G̃stab is available [31]. But
it may be preferable to use other criteria like the H∞ norm, a problem which then falls within the
class of problems considered in this work. Once a solution G̃stab(s) to (8) is obtained, the new

system G̃(s) = Ginstab(s)+G̃stab(s), while easier to control, may be expected to have characteristics
similar to those of the original system. �
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3 Subdifferential of the H∞ norm

In this section, we start characterizing the subdifferential of the H∞ norm, and derive expressions
for the Clarke subdifferential of several nonconvex composite functions f(x) = ‖G(x)‖∞, where
G is a smooth operator defined on some R

n with values in the space of stable matrix transfer
functions H∞.

Consider the H∞-norm of a nonzero transfer matrix function G(s):

‖G‖∞ = sup
ω∈R

σ (G(jω)) ,

where G is stable and σ(X) is the maximum singular value of X. Suppose ‖G‖∞ = σ (G(jω))
is attained at some frequency ω, where the case ω = ∞ is allowed. Let G(jω) = UΣV H be
a singular value decomposition. Pick u the first column of U , v the first column of V , that is,
u = G(jω)v/‖G‖∞. Then the linear functional φ = φu,v,ω defined as

φ(H) = Re
(
uHH(jω)v

)
= ‖G‖−1

∞ ReTr vvHG(jω)HH(jω) = ‖G‖−1
∞ Re Tr G(jω)HuuHH(jω)

is continuous on the space H∞ of stable transfer functions and is a subgradient of ‖ · ‖∞ at G
[11]. More generally, assume that the columns of Qu form an orthonormal basis of the eigenspace
of G(jω)G(jω)H associated with the largest eigenvalue λ1

(
G(jω)G(jω)H

)
= σ(G(jω))2, and that

the columns of Qv form an orthonormal basis of the eigenspace of G(jω)HG(jω) associated with
the same eigenvalue. Then for all complex Hermitian matrices Yv � 0, Yu � 0 with Tr (Yv) = 1
and Tr (Yu) = 1,

φ(H) = ‖G‖−1
∞ Re Tr QvYvQ

H
v G(jω)HH(jω) = ‖G‖−1

∞ ReTr G(jω)HQuYuQ
H
u H(jω) (9)

is a subgradient of ‖ · ‖∞ at G. Finally, with G(s) rational and assuming that there exist finitely
many frequencies ω1, . . . , ωp where the supremum ‖G‖∞ = σ(G(jων)) is attained, all subgradients
of ‖ · ‖∞ at G are precisely of the form

φ(H) = ‖G‖−1
∞ Re

p∑

ν=1

Tr G(jων)
HQνYνQ

H
ν H(jων),

where the columns of Qν form an orthonormal basis of the eigenspace of G(jων)G(jων)
H associated

with the leading eigenvalue ‖G‖2
∞, and where Yν � 0,

∑p

ν=1 Tr(Yν) = 1. See [16, Prop. 2.3.12 and
Thm. 2.8.2] and [3] for this.

Suppose now we have a smooth operator G, mapping Rn onto the space H∞ of stable transfer
functions G. Then the composite function f(x) = ‖G(x)‖∞ is Clarke subdifferentiable at x with

∂f(x) = G ′(x)⋆[∂‖ · ‖∞ (G(x))], (10)

where ∂‖·‖∞ is the subdifferential of the H∞-norm obtained above, and where G ′(x)⋆ is the adjoint
of G′(x), mapping the dual of H∞ into Rn, where Rn is identified with its dual here. In the sequel,
we will compute this adjoint G′(x)⋆ for special classes of closed-loop transfer functions. Suitable
chain rules covering this case are for instance given in [16, section 2.3].
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4 Clarke subdifferentials in closed-loop

Given a stabilizing controller K(s) and a plant with the usual partition

P (s) :=

[
P11(s) P12(s)
P21(s) P22(s)

]
,

the closed-loop transfer function is obtained as

Tw→z(K) := P11 + P12K(I − P22K)−1P21 ,

where the state-space data of P11, P12, P21 and P22 are given in (1) and the dependence on s is
omitted for brevity. Our aim is to compute the subdifferential ∂f(K) of f := ‖ · ‖∞ ◦ Tw→z at K.
We first notice that the derivative T ′

w→z(K) of Tw→z at K is

T ′
w→z(K)δK := P12(I − KP22)

−1δK(I − P22K)−1P21,

where δK is an element of the same matrix space as K.
Now let φ = φY be a subgradient of ‖ · ‖∞ at Tw→z(K) of the form (9), specified by Y � 0,

Tr(Y ) = 1 and with ‖Tw→z(K)‖∞ attained at frequency ω. According to the chain rule, the
subgradients ΦY of f at K are of the form ΦY := T ′

w→z(K)⋆φY ∈ Mm2,p2
, where the adjoint

T ′
w→z(K)⋆ acts on φY through

〈T ′
w→z(K)⋆φY , δK〉 = 〈T ′

w→z(K)δK, φY 〉

= ‖Tw→z(K)‖−1
∞ Re Tr

(
Tw→z(K, jω)H QY QH T ′

w→z(K)δK (jω)
)

= ‖Tw→z(K)‖−1
∞ Re Tr

(
Tw→z(K, jω)H QY QH P12(jω)(I − K(jω)P22(jω))−1

δK(jω)(I − P22(jω)K(jω))−1P21(jω) )

= ‖Tw→z(K)‖−1
∞ Re Tr

(
(I − P22(jω)K(jω))−1P21(jω)Tw→z(K, jω)H

QY QH P12(jω)(I − K(jω)P22(jω))−1δK(jω) ) . (11)

In consequence, for a static K, the Clarke subdifferential of f(K) := ‖Tw→z(K)‖∞ at K consists
of all subgradients ΦY of the form

ΦY = ‖Tw→z(K)‖−1
∞ Re

(
(I − P22(jω)K)−1P21(jω)Tw→z(K, jω)H

QY QH P12(jω)(I − KP22(jω))−1 )T ,
(12)

where Y � 0 and Tr (Y ) = 1. Recall that ΦY is now an element of the same matrix space as K
and acts on test vectors δK through 〈ΦY , δK〉 = Tr(ΦT

Y δK).
This formula is easily adapted if the H∞ norm is attained at a finite number of frequencies

ω1, . . . , ωq. In this more general situation, subgradients of f at K are of the form

ΦY = ‖Tw→z(K)‖−1
∞

∑q

ν=1 Re
(
(I − P22(jων)K)−1P21(jων)Tw→z(K, jων)

H

QYνQ
H P12(jων)(I − KP22(jων))

−1 )T ,
(13)

where Y = (Y1, . . . , Yq), Yν � 0 and
∑q

ν=1 Tr(Yν) = 1.
At this stage, it is important to stress that expressions (11), (12) and (13) are general and can

accommodate any problem discussed in previous sections. Below we resume and expand this list
by considering more examples of practical interest.
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Example 5. Dynamic controllers. Assume now that the controller is dynamic as in (2). The
subgradient set is again obtained via formula (13) by performing the substitutions:

K →

[
AK BK

CK DK

]
, A →

[
A 0
0 0k

]
B1 →

[
B1

0

]
, C1 → [ C1 0 ]

B2 →

[
0 B2

Ik 0

]
, C2 →

[
0 Ik

C2 0

]
, D12 → [ 0 D12 ] , D21 →

[
0

D21

]
.

(14)

This yields the following Clarke partial subgradients with respect to the controller variable AK ,
BK , CK and DK :

ΦY,AK
= ‖Tw→z(K)‖−1

∞

∑q

ν=1 Re
(
(jωνI − AK)−1BKG21(jων)Tw→z(K, jων)

HQYνQ
H

G12(jων)CK(jωνI − AK)−1 )T ,

ΦY,BK
= ‖Tw→z(K)‖−1

∞

∑q

ν=1 Re
(
G21(jων)Tw→z(K, jων)

HQYνQ
HG12(jων)CK(jωνI − AK)−1

)T
,

ΦY,CK
= ‖Tw→z(K)‖−1

∞

∑q

ν=1 Re
(
(jωνI − AK)−1BKG21(jων)Tw→z(K, jων)

HQYνQ
HG12(jων)

)T
,

ΦY,DK
= ‖Tw→z(K)‖−1

∞

∑q

ν=1 Re
(
G21(jων)Tw→z(K, jων)

HQYνQ
HG12(jων)

)T
,

with the notations

G21(s) := (I − P22(s)K(s))−1P21(s), G12(s) := P12(s)(I − K(s)P22(s))
−1 .

The entire Clarke subdifferential is then described by the set of subgradients in Mk+m2,k+p2

ΦY :=

[
ΦY,AK

ΦY,BK

ΦY,CK
ΦY,DK

]
,

where as before Y = (Y1, . . . , Yq), Yν � 0 and
∑q

ν=1 Tr(Yν) = 1. �

Example 6. Structured controllers. In practice, it is sometimes required that some entries
in the controller gain be put to zero, while the others may be freely assigned. This is the case
in decentralized control, where the controller must enjoy a block-diagonal structure. Consider a
pattern matrix W with entries Wij ∈ {0, 1}, where Wij = 0 means that the controller gain Kij = 0
must be zero, whereas Wℓk = 1 means that Kℓk can be freely assigned. The Clarke subdifferential
of f = ‖ · ‖∞ ◦ F at K is then of the form

W ⊙ ΦY ,

where ΦY ∈ ∂‖ · ‖∞(F(K)) is as in (13) and where ⊙ denotes the entry-wise Hadamard or Schur
product [35]. �

Example 7. PID controllers. PID control is one of the most classical approaches in control
system design. The controller is generally written as

K(s) = KP +
1

s
KI +

s

1 + τs
KD ,

where KP , KI and KD are matrix static gains to be computed, and τ is a small positive scalar. Us-
ing the general formula (11), the subgradients with respect to [ KP ; KI ; KD ] at K(s) are obtained
through

Φ
Y,[KP ; KI ; KD ] = ‖Tw→z(K)‖−1

∞

∑q

ν=1 Re
(
(I − P22(jων)K(jων))

−1P21(jων)Tw→z(K, jων)
H

QYνQ
H P12(jω)(I − K(jων)P22(jων))

−1 [ I 1
jων

I jων

1+τjων
I ] )T .
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where as before Y = (Y1, . . . , Yq), Yν � 0 and
∑q

ν=1 Tr(Yν) = 1.
The above approach could be generalized by making τ an additional design parameter. Then a

constraint τ ≥ 0 should be added. Notice also that the above formula readily extends to arbitrary
basis functions {Qj(s)}j=1,...,r

K(s) :=
r∑

j=1

KjQj(s) ,

where the Kj’s are the design variables.

Example 8. Matrix fraction representations. An alternative representation of controllers is via
matrix fraction descriptions. For instance, the left matrix fraction representation is given as

K(s) = N(s)D(s)−1 = (NJN(s))(DJD(s))−1 ,

with
JN (s) := [ I sI . . . snI ]T , JD(s) := [ I sI . . . sdI ]T

and
N := [N0 . . . Nn ] ,D := [D0 . . . Dn ]

Now, N and D are the design variables. As before, it is immediate to show that partial subgra-
dients with respect to N and D are given as

ΦY,N := ‖Tw→z(K)‖−1
∞

∑q

ν=1 Re (JN (jων)(D(jων)JD(jων))
−1(I − P22(jων)K(jων))

−1

P21(jων)Tw→z(K, jων)
H QYνQ

H P12(jων)(I − K(jων)P22(jων))
−1 )T

ΦY,D := −‖Tw→z(K)‖−1
∞

∑q

ν=1 Re (JD(jων)(D(jων)JD(jων))
−1(I − P22(jων)K(jων))

−1

P21(jων)Tw→z(K, jων)
H QYνQ

H P12(jων)(I − K(jων)P22(jων))
−1K(jων) )T ,

respectively. �

Example 9. Multiple performance channels. Practical specifications often impose that several
closed-loop channels i = 1, . . . , r be minimized simultaneously. One way to address multi-objective
optimization of this type is to solve a program of the form

minimize
K

max
{
γi‖T

i
w→z(K)‖∞ : i = 1, . . . , r

}
,

where T i
w→z is the ith performance specification to be optimized. Since the maximum of a finite

number of maximum eigenvalue functions is itself a maximum eigenvalue function of a block
diagonal operator T = diag(T 1

w→z, . . . , T
r
w→z), the Clarke subgradients could be obtained directly

from (13). When the usual max formula is used, the result is the same, i.e., subgradients are of
the form

φ(Y,τ) =
∑

i∈I(K)

τiγiφYi
,

where I(K) are the i = 1, . . . , r which are active at K, τi ≥ 0,
∑

i∈I(K) τi = 1 and φYi
∈

(T i
w→z)

⋆∂‖ · ‖∞(K) as specified in (13). �

Before going further, it is worth mentioning that our methodology carries over to a wide range
of controller structures of practical interest. This is in particular the case when the structural
constraint is of the form K = {K : K = S(ℓ), ℓ ∈ L}, where (S,L) is a suitable differentiable
parametrization of the class K. This includes for instance observed-based controllers, feed-forward
compensators, controllers defined through Youla parameterizations and much else.
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5 Steepest descent method

Nonsmooth techniques have been used before in algorithms for controller synthesis. For instance,
E. Polak and co-workers have proposed a variety of techniques suited for eigenvalue or singular-
value optimization and for extensions to the semi-infinite case, covering in particular the H∞-norm
(see [47], [48] and the citations given there). Another reference is [11], where the authors exploit
the Youla parameterization via convex nondifferentiable analysis to derive the cutting plane and
ellipsoid algorithms.

Let us consider the problem of minimizing f(x) = ‖G(x)‖∞, where x regroups the controller
data, referred to as K in the previous section, and where G maps Rn smoothly into a space H∞ of
stable transfer functions. We write G(x, s) or G(x, jω) when the complex argument of G(x) ∈ H∞

needs to be specified.
A necessary condition for optimality is 0 ∈ ∂f(x) = G ′(x)⋆∂‖ · ‖∞ (G(x)). It is therefore

reasonable to consider the program

d = −
g

‖g‖
, g = argmin{‖φY ‖ : Y = (Y1, . . . , Yq), Yν � 0,

q∑

ν=1

Tr(Yν) = 1} (15)

which either shows 0 ∈ ∂f(x), or produces the direction d of steepest descent at x if 0 6∈ ∂f(x),
and where the φY are as in (13). If we vectorize y = vec(Y ), Y = (Y1, . . . , Yq), then we may
represent φY by a matrix vector product, φY = Φy, with a suitable matrix Φ. Program (15) is
then equivalent to the following SDP:

minimize t

subject to

[
t yTΦT

Φy tI

]
� 0

Yi � 0, i = 1, . . . , q
eT y = 1

(16)

where eT y = 1 encodes the constraint
∑

i Tr(Yi) = 1. The direction d of steepest descent at x is
then obtained as d = −Φ y/‖Φ y‖, where (t, y) is solution of (16) with y 6= 0. This suggests the
following:

Steepest descent method for the H∞-norm

1. If 0 ∈ ∂f(x) stop. Otherwise:
2. Solve (16) and compute the direction d of steepest descent at x.
3. Perform a line search and find a descent step x+ = x + t d.
4. Replace x by x+ and go back to step 1.

The drawback of this approach is that it may fail to converge due to the nonsmoothness of f .
We believe that a descent method should at least give the weak convergence certificate that
accumulation points of the sequence of iterates are critical. This is not guaranteed by the above
scheme. The reason is that the steepest descent direction at x does not depend continuously on
x. This is why modifications of the steepest descent scheme are discussed in the next section.
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Remark. Spectral abscissa versus H∞ norm. Notice that the stopping test (16) is convenient
because it leads to relatively small size SDPs. Indeed, the matrices Yν , ν = 1, . . . , q, are of the
size of the multiplicity of λ1 (F(x, jων)), and our experiments indicate that dim(y) in (16) rarely
exceeds 30. The situation is very different for the spectral abscissa (7). In [3] we have derived a
stopping test for program (7). The difficulty is that Lyapunov variables re-enter the scene. Indeed,
x∗ is a local minimum of the composite function α ◦F like in (7) with value α (F(x∗)) = t∗ if and
only if (x∗, t∗, X∗) is a local minimum of the optimization program:

(P )
minimize t
subject to X � σI, X � I

F(x)T X + XF(x) − 2tX � 0

for some small fixed 0 < σ ≪ 1. An optimality test for α◦F is therefore derived from an optimality
test for program (P ), as shown in [3]. This leads to a SDP with unknown variable of dim(x, X),
which may be prohibitively large. This is one of the reasons why our present approach privileges
the use of the H∞ norm (5) over (7). �

6 First-order descent method

In this section we devise a first-order algorithm for composite functions of the H∞ norm. Along
with G : R

n → H∞ we consider the symmetrized operators F(x, s) = G(x, s)G(x, s)H respectively
F(x, s) = G(x, s)HG(x, s). We represent f(x) as

f(x) = sup
ω∈R

f(x, ω), f(x, ω) = λ1 (F(x, jω)) , (17)

and solve the optimization program

min
x∈Rn

f(x), f(x) = ‖G(x)‖2
∞ = sup

ω∈R

λ1 (F(x, jω))

Notice that for fixed ω ∈ R, x 7→ F(x, jω) is a smooth operator into the space of Hermitian m×m
matrices, Sm, while λ1 : Sm → R is the maximum eigenvalue function. Similar techniques could
be applied to broader classes with a structure like (17). Deriving the method will require three
steps, which we regroup into subsections. We start with the important special case f = λ1 ◦ F ,
where F maps R

n smoothly into S
m.

6.1 Preparation

The function (17) is subject to two sources of nonsmoothness. The nonsmooth character of the
maximum eigenvalue function, and the nonsmoothness introduced by the operator sup, which in
the case of ‖ · ‖∞ is even infinite. Each individual function f(·, ω) will be analytic at x if the
multiplicity of λ1 (F(x, jω)) is one, but nonsmoothness needs to be taken into account as soon as
eigenvalues coalesce.

From a practical point of view it is reasonable to make the following additional assumption.

(H) The maximum f(x) is always attained on a finite set of frequencies. This set is denoted by
Ω(x) and may contain ω = ±∞.

11



Assumption (H) is for instance satisfied when the multiplicity of λ1 is 1, as ω 7→ f(x, ω) is then
analytic in typical control applications.

Let us introduce some more notation. For Ω ⊂ R ∪ {−∞, +∞} we define fΩ ≤ f as

fΩ(x) = max
ω∈Ω

f(x, ω).

Notice that fΩ(x) = f(x) as soon as Ω(x) ⊂ Ω. Next recall the definition of the ε-subdifferential
of the maximum eigenvalue function [17]

∂ελ1(X) = {Z ∈ S
m : Tr (Z X) ≥ λ1(X) − ε}

which is an important analytical tool in nonsmooth analysis. Since ∂ελ1(X) is difficult to compute,
we follow Cullum et al. [17] and Oustry [45] and introduce a modification δελ1(X) of ∂ελ1(X),
called the ε-enlarged subdifferential for the maximum eigenvalue function. For ε > 0 and X ∈ Sm

let r(ε, X) the index such that

λ1(X) ≥ λ2(X) ≥ . . . ≥ λr(ε,X)(X) ≥ λ1(X) − ε > λr(ε,X)+1(X) ≥ . . . ≥ λm(X).

The index r(ε, X) is also called the ε-multiplicity of λ1(X). Let Qε be a r(ε, X)×m-matrix whose
columns form an orthonormal basis of the invariant subspace of X associated with the first r(ε, X)
eigenvalues. Then we define

δελ1(X) = {QεY QH
ε : Y � 0, Tr(Y ) = 1, Y ∈ S

r(ε,X)}.

By construction ∂λ1(X) ⊂ δελ1(X) ⊂ ∂ελ1(X), so δελ1(X) is an enlargement of ∂λ1(X) and an
inner approximation of the ε-subdifferential (see also [45]). The gap associated with the choice ε
is ∆(ε, X) = λr(ε,X)(X)−λr(ε,X)+1(X) > 0. If r is the multiplicity of λ1(X), then choosing ε small
enough gives r(ε, X) = r. In this case we have δελ1(X) = ∂λ1(X).

The following is an important step toward the analysis of (17). Consider a differentiable
mapping F : Rn → Sm. We extend ∂ελ1(X) and the enlarged subdifferential δελ1(X) to the
composite function f = λ1 ◦ F by setting

∂εf(x) = F ′(x)⋆ [∂ελ1(X)] , X = F(x),

and similarly
δεf(x) = F ′(x)⋆ [δελ1(X)] , X = F(x).

Here F ′(x)⋆ is the adjoint of the linear operator F ′(x). Finally, going one step further, this
approach allows us to consider ∂εf(x, ω) and δεf(x, ω), which are applied to the variable x.

6.2 Descent Step Generator

In this section we discuss a very simple mechanism which generates descent steps in such a way
that the following weak form of convergence can be guaranteed: every accumulation point of the
sequence of iterates is a stationary point.

Let f : Rn → R be a locally Lipschitz function, and let ∂f(x) denote its Clarke subdifferential
[16]. Suppose we can exhibit a mechanism s : Rn → Rn, the descent step generator, such that the
following rules are satisfied:
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(i) Whenever 0 6∈ ∂f(x), then f(s(x)) < f(x).

(ii) When 0 6∈ ∂f(x), then there exists a neighborhood B(x, ε) of x and some δ > 0 such that
f(s(x′)) ≤ f(x′) − δ for every x′ ∈ B(x, ε).

While (i) simply means that s(x) is a descent step away from x, we can interpret (ii) as some
weak form of continuity of s(·). Indeed, when the mapping s(·) describing descent is continuous,
then (i) implies (ii) without further work. Axiom (ii) is weaker than asking s(·) to be continuous.
Clearly, (ii) always implies (i).

Example. In order to understand the idea behind axiom (ii), consider a C1-function f and
let s(x) denote the steepest descent step at x, obtained by an Armijo line search. If we define
formally s(x) = x− t(x)f ′(x), where t(x) is the smallest step satisfying an Armijo rule, then s(x)
turns out continuous, but it is clear that in practice we would accept any step t(x) satisfying the
Armijo condition, without insisting on a continuous dependence of t(x) on x. In that case s(x)
will not be continuous, but property (ii) will still hold true. �

Clearly the situation we have in mind is when f is nonsmooth, so that a steepest descent
step in tandem with Armijo search would typically fail even when t(x) was continuous. This is
explained by the fact that under nonsmoothness, defining s(·) along the lines above would miss
axiom (ii), because the steepest descent direction −f ′(x) behaves very discontinuously. Indeed,
examples where this happens are easily produced.

Proposition 1 . Suppose the descent step generator s(·) for f satisfies axioms (i) and (ii). Let
xk be a sequence of iterates defined as xk+1 = s(xk). Then every accumulation point x̄ of xk is a
critical point, that is, satisfies 0 ∈ ∂f(x̄).

Proof. Let N ⊂ N be an infinite sequence such that xk → x̄, k ∈ N . Then by monotonicity,
f(xk+1) → f(x̄). That means

f(xk+1) − f(xk) → 0 (k ∈ N ).

Now use axiom (ii) at the limit point x̄. There exist ε, δ > 0 such that f(s(x)) − f(x) ≤ −δ < 0
for all x ∈ B(x̄, ε). Since xk ∈ B(x̄, ε) for k ∈ N large enough, and since xk+1 = s(xk), we should
have f(xk+1) − f(xk) ≤ −δ for k ∈ N large enough, a contradiction. �

6.3 Eigenvalue Optimization

How can we define a descent step generator s(·) with properties (i) and (ii) for a maximum
eigenvalue function f(x) = λ1 (F(x))? Suppose we are at a point x where 0 6∈ ∂f(x). Let the
eigenvalues of X = F(x) ∈ S

m be arranged into groups:

λ1(X) = . . . = λk2−1(X) > λk2
(X) = . . . = λk3−1(X) > λk3

(X) = . . .

where k1 = 1 and where ki are the group leaders. Consequently, eigenvalue gaps occur between
ki − 1 and ki. Let Q1 be an orthonormal bases of the eigenspace associated with the first block
λ1(X), . . . , λk2−1(X), Q2 an orthonormal basis containing Q1 associated with the first two blocks
λ1(X), . . . λk3−1(X), and so on. At X = F(x) ∈ S

m we compute the quantities

∆i(X) = λki+1−1(X) − λki+1
(X) > 0,

di(x) = min{‖F ′(x)⋆QiYiQ
H
i ‖ : Yi ∈ Ski+1−1, Yi � 0, Tr(Yi) = 1}
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and keep those i = 1, . . . , r where di(x) > 0. Notice that di(x) = dist(0, δεi(x)f(x)), where
εi(x) > 0 cuts into the ith gap, that is λ1(X) − εi(x) ∈ [λki+1−1(X), λki+1

(X)). Put differently,
the εi(x)-multiplicity of λ1(X) is ki+1 − 1. Moreover, d1(x) ≥ d2(x) ≥ . . . ≥ dr(x) and dr+1(x) =
dr+2(x) = . . . = 0 eventually. We compute the quantity

M(x) = max
i=1...r

∆i(X)di(x)2 (18)

Now we use the following

Lemma 1. Let 0 6∈ ∂f(x) and R > 0. Let ki be the leader of a group of eigenvalues of X =
F(x) ∈ Sm such that di(x) = dist(0, δεi(x)f(x)) > 0. Let hi(x) be the direction of steepest εi(x)
enlarged descent, that is

hi(x) = −
gi

‖gi‖
, gi = argmin{‖g‖ : g = F ′(x)⋆QiY QH

i , Tr(Y ) = 1, Y � 0, Y ∈ S
ki+1−1},

where the columns of Qi are an orthonormal basis of the invariant subspace of X associated with
the eigenvalues up to ki+1 − 1. Then there exists a descent step si(x) away from x in direction
hi(x), which decreases the value of f by at least

f(si(x)) − f(x) ≤ −κ(x)∆i(X)di(x)2 < 0.

Here κ(x) > 0 depends on sup{‖F ′(x′)‖ : ‖x−x′‖ ≤ R} and in particular continuously on x. The
line search required to compute this step is finite.

Proof. In the case of an affine operator A : R
n → S

m, Oustry [45, Theorem 5] shows that
f = λ1 ◦ A may be decreased by the quantity

f(x + t(x)hi(x)) − f(x) ≤ −
1

4‖A∗‖
∆εi(x)(X)di(x)2

where A∗ is the linear part of A. Here κ = 1/4‖A∗‖ is even independent of x. Moreover, t(x) > 0
is computed by a line search which terminates after a finite number of steps, see [45, sect. 3.2].

In [42, 43], this result is generalized to nonconvex maximum eigenvalue functions f = λ1 ◦ F ,
with a constant κ(x) now depending on the Lipschitz constant of F on a bounded region around x,
like for instance B(x, R) with some fixed R > 0. In the nonconvex case, the line search procedure
locating t(x) is more complicated than for f = λ1 ◦ A, but finite termination is still guaranteed
(cf. [42, sect. 3.7]). The constant κ(x) may be computed via the formulae (15), (19) and (20) of
that reference. �

Following the lead of [42], it is now clear how to obtain our step s(x). Choose i so that the
maximum (18) is attained and take s(x) = si(x). Then by Lemma 1, s(x) gives a guaranteed
decrease of

f(s(x)) − f(x) ≤ −κ(x)∆εi(x)(X)di(x)2 = −κ(x)M(x),

where the constant κ(x) > 0 depends continuously on x as argued above. What remains to be
checked is

Lemma 2. This choice of s(x) and M(x) guarantees property (ii).
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Proof. Consider a sequence xk → x. We need to compare M(xk) to M(x). Now observe that due
to the continuity of the eigenvalue functions λj(X), every eigenvalue gap at X is also an eigenvalue
gap at Xk as soon as Xk is sufficiently close to X. On the other hand, Xk may (and will) have
many more gaps than X. But notice that the maximum (18) is over all eigenvalue gaps. So each
gap in M(x) will occur in the computation of M(xk). More precisely, it will be approximated by
some of the gaps considered in M(xk). Put differently, for the ith eigenvalue gap of X we have
∆ik(Xk)dik(xk)

2 → ∆i(X)di(x)2, where ik is the index of the eigenvalue gap of Xk corresponding
to the ith gap of X. Here ∆ik(Xk) → ∆i(X) and dik(xk) → di(x) rely on the fact that gaps at Xk

remain gaps at X. Since dik(xk) calls for all the Q1, Q2, . . . up to the ikth gap at Xk, and since
these converge to the corresponding basis Q regrouping the gap i, the result follows.

That means lim sup M(xk) ≥ M(x), so we can assume M(xk) ≥
1
2
M(x) from some index k on.

This in turn implies

f(s(xk)) − f(xk) ≤ −κ(xk)M(xk) ≤ −
1

4
κ(x)M(x)

as soon as κ(xk) is close enough to κ(x), proving property (ii). �

The method outlined in this section gives a convergence certificate because all eigenvalue
gaps are included in the computation of (18). This may seem inconvenient for very large size
matrices F(x). If we decide to truncate and consider only some of the eigenvalue gaps among
the largest eigenvalues, the theoretical convergence properties of the method are weaker, even
though convergence may still be guaranteed e.g. when f is convex (see [42]). Notice however
that even for large m the quantity M(x) in (18) may be computed fairly reliably by considering
∆εi(x)(X)di(x)2 for some of the first i only. As di(x) → 0 rather quickly, the higher ∆εi(x)(X)di(x)2

as a rule do not contribute to the computation of M(x). Also notice that since the sequence di(x)
is monotone, computing di(x) may often be avoided, for instance when ∆εi−1(x)(X) ≥ ∆εi(x)(X)
or ∆εi(x)(X) ≤ ∆εi−ν(x)(X) when the current best value is located at index i − ν.

6.4 Descent by a local model

In this section we present an alternative way to obtain a descent step generator s(·) for the max-
imum eigenvalue function f(x) = λ1 (F(x)). We start by constructing an intermediate function
θ(x), which serves as an optimality test, and secondly, will allow us to quantify decrease. In this
section our method follows the line of [48, Thm. 2.1.6].

Let X = F(x) ∈ Sm. Let µ1(X) > µ2(X) > . . . > µr(X) be the eigenvalues of X without
repetitions. That means µi = λki

in our old terminology, where we agree that there are r ≤ m
distinct eigenvalues. For some fixed σ > 0 we define the criticality measure

θ(x) = inf
h∈Rn

sup
i=1,...,r

sup
Tr(Yi)=1, Yi�0

−f(x) + µi(X) + Tr (YiQ
H
i [F ′(x)h]Qi) + 1

2
σ‖h‖2 (19)

Here Qi has ki+1 − 1 columns which form an orthonormal basis of the invariant subspace of X
associated with the first ki+1 − 1 eigenvalues. It is immediately clear that θ(x) ≤ 0, because
putting h = 0 gives the upper bound θ(x) ≤ supi=1,...,r −f(x) + µi(X) = −f(x) + µ1(X) = 0.

Lemma 3. We have θ(x) = 0 if and only if 0 ∈ ∂f(x).
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Proof. The easiest way to see this is to swap max and min in (19). This requires that we first
replace the inner double supremum in (19) by a double supremum over the convex hull of Yi � 0,
Tr(Yi) = 1, i = 1, . . . , r, a manoeuvre which does not change the value θ(x). Then we use Fenchel
duality to interchange the inner (double) supremum and the outer infimum, which goes again
without changing the value. The now inner infimum is unconstrained and may be computed ex-
plicitly. For fixed Yi and convex coefficients τ it is attained at h(x) = −σ−1

∑r

i=1 τiF ′(x)⋆QiYiQ
H
i .

Substituting this back into (19) leaves the dual expression

θ(x) = sup
τi≥0,

P
i
τi=1

sup
Yi�0,Tr(Yi)=1

−f(x) +

r∑

i=1

τiµi(X) −
1

2σ

∥∥∥∥∥

r∑

i=1

τiF
′(x)⋆QiYiQ

H
i

∥∥∥∥∥

2

(20)

which the reader recognizes as a semidefinite program. Since µi(X) < f(x) for i ≥ 2, equality
θ(x) = 0 is only possible when τ2 = . . . = τr = 0 and hence

0 = θ(x) = sup
Y1�0,Tr(Y1)=1

−
1

2σ

∥∥F ′(x)⋆Q1Y1Q
H
1

∥∥2

But the quantity on the right hand side is only zero when F ′(x)⋆Q1Y1Q
H
1 = 0, i.e., when 0 ∈ ∂f(x).

The latter follows readily from the representation

∂f(x) = {F ′(x)⋆Q1Y1Q
H
1 : Y1 � 0, Tr(Y1) = 1}

of the subdifferential ∂f(x). �

As a byproduct of the proof via duality we have the following

Corollary. The infimum in (19) is attained at

h(x) = −
1

σ

r∑

i=1

τiF
′(x)⋆QiYiQ

H
i , (21)

where (τ, Y ) is the solution of the dual program (20). As soon as θ(x) < 0, h(x) is a direction of
descent of f at x. �

In order to construct our descent step generator, we need to establish two additional properties
of θ. Firstly, we need to show that decrease at x may be quantified with the help of θ. Secondly,
we have to establish continuity of θ.

Lemma 4 . The function θ is continuous.

Proof. Notice that by the dual formula (20), θ(x) is the supremum of an infinite family of functions
of the form −f(x) +

∑r

i=1 τiµi(X) + c(x) = −f(x) +
∑m

j=1 σjλj(X) + c(x) for σj = τi/(ki+1 − ki),

where ki ≤ j < ki+1, and where c(x) = −1/2σ‖
∑

i τiF ′(x)⋆QiYiQ
H
i ‖

2 depends continuously on

x. Notice that µi(X) = (ki+1 − ki)
−1

∑ki+1−1
j=ki

λj(X). This shows that θ(x) is the supremum of a
family of continuous functions, indexed by (τ, Y ). θ is therefore lower semi-continuous. It remains
to prove that θ is also upper semi-continuous.

Let xj → x such that θ(xj) → θ. We have to show θ ≤ θ(x). We use the representation (20).
Let εj > 0, εj → 0 and choose τ j

i and Y j
i such that

θ(xj) ≤ −f(xj) +

r∑

i=1

τ j
i µi(Xj) −

1

2σ

∥∥∥∥∥

r∑

i=1

τ j
i gj

i

∥∥∥∥∥

2

+ εj,
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where gj
i = F ′(xj)

⋆Qj
iY

j
i QjH

i . Passing to a subsequence if necessary, we may assume that each
Xj has exactly r eigenvalue gaps, which remain in the same places ki, i = 1, . . . , r. That is
µi(Xj) = λki

(Xj). Passing to yet another subsequence, we may assume τ j → τ , Y j
i → Yi and

Qj
i → Qi, where the limiting elements are all of the same types and dimensions as the elements

at stage j.
However, λki

(X) are no longer the distinct eigenvalues of X, because some of the distinct
µi(Xj) = λki

(Xj) may coalesce in the limit j → ∞. Suppose for instance that limj→∞ µi(Xj) =
. . . = limj→∞ µi+t(Xj), so that the blocks i, i + 1, . . . , i + t coalesce in the limit, forming a new
larger eigenvalue block of X:

λki−1(X) > λki
(X) = . . . = λki+t+1−1(X) > λki+t

(X),

which is represented by a certain µν(X). Suppose there are N block leaders at X. For each of
these µν(X) we define

σν = lim
j→∞

i+t∑

s=i

τ j
s ,

then

lim
j→∞

r∑

i=1

τ j
i µi(Xj) =

N∑

ν=1

σνµν(X),

where
∑N

ν=1 σν = 1. This represents the limiting linear term in (20) in a new form suited for the
dual representation of θ(x).

We next have to treat the norm square term arising in (20) in much the same way. Notice
first that the Qj

i , i = 1, . . . , r together form a nested sequence of basis vectors adding up to
an orthonormal basis of eigenvectors of Xj. Passing to the limit j → ∞ gives an orthonormal
basis of eigenvectors of X. We regroup it according to the eigenvalue gaps of X and rename
the corresponding parts P1 ⊂ P2 ⊂ . . . PN . All that remains to do is to re-write the limit
limj→∞

∑r

i=1 τ j
i Qj

iY
j
i QjH

i in the form
∑N

ν=1 σνPνZνP
H
ν for certain Zν � 0 with Tr(Zν) = 1. This

is done by writing

QiYiQ
H
i = Qj

[
Yi 0
0 0

]
QH

j = Pν

[
Yi 0
0 0

]
P H

ν

whenever i < j have to be regrouped in the same Pν , and where j is the last among the old indices
subsumed into the new index ν, so that Qj = Pν . Then

Zν =

i+t∑

s=i

τi

σν

[
Yi 0
0 0

]

is as required, because
∑i+t

s=i τs = σν , hence Tr(Zν) = 1, while Zν � 0 is clear.

The argument shows that θ = −f(x) +
∑N

ν=1 σνµν(X) − 1
2σ

∥∥∥
∑N

ν=1 σνF ′(x)⋆PνZνP
H
ν

∥∥∥
2

, which

is to say that θ is now of the form required to be admitted to the supremum (20) defining θ(x).
In other words, θ ≤ θ(x), and this is what we had to prove. �

Notice that [48, Thm. 2.1.6 (e)] is obtained as a special case of Lemma 4 if the operator F(x)
is specialized to a diagonal matrix. The extension to multiple eigenvalues is possible because all
the eigenvalues are taken into account simultaneously. For large matrices, this may again seem
inconvenient since it will lead to large SDPs in (20).
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Lemma 5 . The mapping h(x) defined by (21) is continuous.

The proof follows along the lines of the previous Lemma and is therefore omitted.
Let us now see how θ(x) may be used to quantify descent of f = λ1◦F at x. Assume 0 6∈ ∂f(x),

so that θ(x) < 0. Using the directional derivative of f at x in direction h(x), we obtain

f ′ (x; h(x)) = sup
Y �0,Tr(Y )=1

h(x)T
(
F ′(x)⋆Q1Y QH

1

)

= sup
Y �0,Tr(Y )=1

Tr (Y QH
1 [F ′(x)h(x)]Q1)

≤ θ(x) −
1

2σ
‖h(x)‖2 < θ(x) < 0

which follows readily from the primal formula (19) for θ if we use the fact that −f(x)+µ1(X) = 0.
In consequence we have the following

Lemma 6 . Let 0 < τ < 1 be fixed. There exists ε > 0 such that f(x′ + th(x′)) − f(x′) < tτθ(x′)
for every x′ ∈ B(x, ε) and all t > 0 sufficiently small.

Proof. By the definition of the directional derivative and the fact that 0 < τ < 1 we have

f(x + th(x)) − f(x) ≤ tτf ′(x; h(x))

≤ tτ

(
θ(x) −

1

2σ
‖h(x)‖2

)
(22)

< tτθ(x)

for some t0 > 0 and all 0 < t < t0. Since h(·) and θ(·) are continuous, we can find a neighborhood
B(x, ε) of x such that f(x′ + th(x′)) − f(x′) < tτθ(x′) for all x′ ∈ B(x, ε) and every 0 < t < t0.
This proves the claim. �

In order to construct s(·), we follow [48, 3c, p. 223] and define s(x) = x + t(x)h(x), where

t(x) := sup{2−k : k ∈ N, f(x + 2−kh(x)) − f(x) < 2−kτθ(x)}.

The supremum is over a nonempty set because of (22), hence 0 < t(x) < +∞. Let k(x) be
the integer where the supremum t(x) is attained. Let us check property (ii) with ε > 0 as in
Lemma 6 and δ = −2−k(x)−1τθ(x) > 0. Let x′ ∈ B(x, ε). Since t(x) satisfies (22), we have
f(x′ + t(x)h(x′)) − f(x′) < t(x)τθ(x′) by Lemma 6. Therefore t(x) = 2−k(x) is admitted for the
supremum t(x′), which implies t(x′) ≥ t(x). Therefore f (s(x′)) − f(x′) = f (x′ + t(x′)h(x′)) −
f(x′) < t(x′)τθ(x′) ≤ t(x)τθ(x′) ≤ t(x)τθ(x)/2 = −2−k(x)−1τθ(x) = −δ, when we assume that ε
is chosen sufficiently small to assure θ(x′) ≤ θ(x)/2 for every x′ ∈ B(x, ε). This proves (ii) for the
above choice of t(x). Other choices of t(x) like for instance [46] are possible.

6.5 The semi-infinite case

Our last step is now to address the semi-infinite case. We are in the situation (17). Suppose that
for finite Ω ⊂ R∪ {−∞, +∞} we already dispose of a descent step generator sΩ for fΩ, satisfying
axioms (i) and (ii). This is naturally the case when the f(x, ω) are maximum eigenvalue func-
tions, because a finite maximum of maximum eigenvalue functions is itself a maximum eigenvalue
function. So here we obtain sΩ as in sections 6.3 or 6.4. Suppose now that we can specify a
sequence of finite sets Ω1 ⊂ Ω2 ⊂ . . . such that the following conditions are satisfied:
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(iii) If 0 6∈ ∂f(x), then lim sup
k→∞

f(sΩk
(x)) − f(x) < 0.

(iv) For every x ∈ Rn and ε > 0, lim
k→∞

max
x′∈B(x,ε)

inf
ω′∈Ωk

|f(x′, ω) − f(x′, ω′)| = 0.

Notice that both axioms guarantee that the approximation Ωk improves with growing k. Axiom
(iii) tells that as soon as 0 6∈ ∂f(x), descent steps may be eventually generated by using approxi-
mations fΩk

of f . Axiom (iv) is simply saying that approximations get better as k increases, and
that this happens uniformly on small neighborhoods of each x.

Using these axioms, let us construct a descent step generator s(·) for f . We proceed as follows:

Semi-infinite descent step generator

1. If 0 ∈ ∂f(x) then s(x) = x and return. Otherwise put counter k = 1
and continue.

2. At counter k, if 0 ∈ ∂fΩk
(x), then increase k until 0 6∈ ∂fΩk

(x).
3. At counter k with 0 6∈ ∂fΩk

(x), compute the descent step sΩk
(x) for fΩk

at x. Let εk, δk > 0 be such that
fΩk

(sk(x
′)) − fΩk

(x′) ≤ −δk < 0
for every x′ ∈ B(x, εk), as guaranteed by axiom (ii) for sΩk

.
4. Compute

ηk := inf{|f(x′, ω) − f(x′, ω′)| : ω′ ∈ Ωk, x
′ ∈ B(x, εk) ∪ s (B(x, εk))}

5. If 3ηk < δk, then let s(x) = sΩk
(x) and stop. Otherwise increase k by

one and go back to step 3.

We have to make sure that this scheme is well-defined and introduces a step generator s(·) for
the infinite maximum function f .

Lemma 7 . The descent step generator s(·) for f(x) = supω∈R
f(x, ω) is well-defined and satisfies

axioms (i) and (ii). Moreover, each of the above loops ends after a finite number of iterations.

Proof. Notice first that if 0 6∈ ∂f(x), then descent around x is possible. Since fΩk
(x) → f(x) as

k → ∞, we can also decrease fΩk
around x for k sufficiently large. So step 2 ends with a descent

step of fΩk
at x after a finite number of trials. Moreover, this remains so for the following counters

k, because Ωk ⊂ Ωk+1.
Next observe that ηk → 0 by axiom (iv), while lim sup−δk < 0 by axiom (iii). That means

3ηk < δk for k sufficiently large, i.e., the procedure ends in step 4 after a finite number of updates
k → k + 1. It remains to check that s is as required.

Suppose fΩk
(sΩk

(x′))−fΩk
(x′) ≤ −δk for every x′ ∈ B(x, εk). Then |f(sΩk

(x′))−fΩk
(sΩk

(x′))| ≤
ηk, |f(x′) − fΩk

(x′)| ≤ ηk, hence f(sΩk
(x′)) − f(x′) ≤ −δk + 2ηk ≤ −1

3
δk. This proves axiom (ii).

�

The procedure is sufficiently flexible to accommodate a problem oriented step generation. We
may adapt the choice of Ωk to the structure of f , and what is more important, to the local behavior
of f around the current x.
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6.6 First-order algorithm for the H∞ norm

We are now ready to present our algorithm, which follows the lines of the previous sections. We
start with a version based on sections 6.3 and 6.5.

First-order algorithm for the H∞ norm: variant I

Fix 0 < τ < 1.

1. Given xk choose a finite set Ωk containing Ω(xk).
2. Compute M(xk) for fΩk

according to (18). If M(xk) = 0 then stop, because
0 ∈ ∂f(x). Otherwise

3. Use a line search to find a step tk such that the predicted decrease satisfies
πk = fΩk

(xk + tkhk) − f(xk) ≤ −κ(xk)M(xk) < 0. Compare with the actual
decrease αk = f(xk + tkhk) − f(xk). If αk ≤ τπk, accept tk, put xk+1 = xk + tkhk

and goto step 5.
4. If αk > τπk then reject tk and add nodes to Ωk to obtain the finer mesh Ωk+1.

Increase counter k by one and go back to step 2.
5. Increase counter k by one and go back to step 1.

In steps 3 and 4 of the algorithm we recognize the mechanism of the previous section, which
obtains a descent step generator for the semi-infinite function by using those of the finite models
fΩk

. We accept the step for f if it exceeds a small fraction of the descent predicted by the finite
model fΩk

. This is essentially the same procedure as in 6.5.

Next comes the version based on section 6.4 in tandem with section 6.5. The semi-infinite case
is handled in exactly the same fashion, but the descent step generators sΩk

are different.

First-order algorithm for the H∞ norm: variant II

Fix 0 < τ1, τ2 < 1 and δ > 0.

1. Given xk choose a finite set Ωk containing Ω(xk).
2. Compute the value θk and the solution (τk, Y k) of the SDP (19). If θk = 0,

then stop because 0 ∈ ∂f(xk). Otherwise compute the descent direction hk

for fΩk
at xk according to (21).

3. Using a line search, find a step tk such that the predicted decrease satisfies
πk = fΩk

(xk + tkhk) − f(xk) < τ1tkθk < 0. Compare with the actual decrease
αk = f(xk + tkhk) − f(xk). If αk ≤ τ2πk, accept tk, put xk+1 = xk + tkhk and
goto step 5.

4. If αk > τ2πk then reject tk and add nodes to Ωk to obtain the finer mesh Ωk+1.
Increase counter k by one and go back to step 2.

5. Increase counter k by one and go back to step 1.
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6.7 Practical aspects

In this section we comment on the salient features of the nonsmooth first-order descent algorithm
and address some of the practical aspects.

In our testing we have observed that often the leading eigenvalues λ1 (F(xk, jων)) have mul-
tiplicity 1 at all frequencies ων ∈ Ω(xk). In this situation step 2 of the descent algorithm vari-
ant II could be simplified. Suppose at the current iterate xk we have selected a finite set of
frequencies Ωk = {ω1, . . . , ωq} containing Ω(xk). Suppose all λ1 (F(xk, jων)) have multiplicity
1. Let gν = F ′(xk, jων)

⋆eνe
T
ν = f ′(xk; ων), where eν is the normalized eigenvector associated

with λ1 (F(xk, jων)). Then the semidefinite program (16) respectively (20) simplifies to a convex
quadratic program

θ(xk) = sup
τν≥0,

P
ν

τν=1

−fΩ(xk) +

q∑

ν=1

τνf(xk, ων) −
1

2σ

∥∥∥∥∥

q∑

ν=1

τνgν

∥∥∥∥∥

2

and the associated direction of descent hk = h(xk) is

h(xk) = −
1

σ

q∑

ν=1

τνgν ,

where τ is the optimal solution of the quadratic program. Observe that for Ωk = Ω(xk), h(xk)
coincides with the steepest descent direction for a finite max function.

Let us now specify in which way we select the frequency set Ωk at each step. The finite set of
frequencies Ω(xk) where the H∞ norm is attained is computed via the Hamiltonian technique [10].
We then form an enriched set Ωk of frequencies by adding to the peak frequencies a collection of
logarithmically spaced frequencies ων such that

‖Tw→z(K)‖∞ − σ(Tw→z(K, jων)) ≤ εω ‖Tw→z(K)‖∞ ,

where εω is a user-specified tolerance. We usually limit the set to the first 50 frequencies with
largest singular values, as this appears to work well on a broad range of numerical tests. Typical
values for εω range from 0.05 to 0.5. The algorithm requires that this set be iteratively refined
when descent steps cannot be computed, but in practice our choice is usually satisfactory, and
numerical problems due to exceedingly fine Ωk can be avoided.

7 Numerical experiments

In this section we test our nonsmooth algorithms on a variety of synthesis problems from the
COMPleib collection by F. Leibfritz [38]. Computations were performed on a (low-level) SUN-
Blade Sparc with 256 RAM and a 650 MHz sparcv9 processor. LMI-related computations for
search directions used the LMI Control Toolbox [29] or our home made SDP code [5] while QP
computations are based on Schittkowski’s code [49].

Our algorithm is a first-order method. Not surprisingly, it may be slow in the neighborhood
of a local solution. We have implemented various stopping criteria to ensure that an adequate
approximation of a solution has been found and to avoid unwarranted computational efforts as is
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often the case with a first-order algorithm. The first of these termination criteria is an absolute
stopping test, which provides a criticality assessment

inf{‖g‖ : g ∈ ∂f(x)} < ε1, (23)

This is reasonable, as 0 ∈ ∂f(x) indicates a critical point. It is also mandatory to use relative
stopping criteria to reduce the dependence on the problem scaling. The test

‖Tw→z(K)‖∞ − ‖Tw→z(K
+)‖∞ < ε2(1 + ‖Tw→z(K)‖∞) , (24)

compares the progress achieved relatively to the current H∞ performance, while

‖K+ − K‖ < ε3(1 + ‖K‖) (25)

compares the step-length to the controller gains. The tolerances

ε1 = 1e−5, ε2 = 1e−3, ε3 = 1e−3

have been used in our numerical testing. For stopping we required that either the first two tests
or the third one are satisfied. For the enriched set, the number of frequencies has been limited
to 50. They are selected according to our discussion in section 6.7. It is sometimes possible to
employ less frequencies, but generally better steps are performed when richer sets are used. Our
choice appears reasonable and has been validated on numerous experiments. It does not restrict
efficiency since QP codes are very efficient up to 500 variables.

7.1 Stabilization

Pure stabilization may be regarded as H∞ synthesis under the special form (6). The optimization
program is (5), but we stop the algorithm as soon as a stabilizing controller is obtained. Iterating
until a local optimum of (5) is reached does not seem to improve any of the usual performance
specifications of the stabilizing feedback controller. Such questions have to be addressed in a second
procedure, where the stabilizing controller will serve as a starting point. The spectral abscissa (7)
is used to check stability of K, but is not used as a cost function. Previous experiments where (7)
was used to find stabilizing controllers are reported in [3].

Table 1 displays results obtained for static stabilization problems borrowed from the literature.
The triple (n, m, p) gives the number of states, inputs and outputs. Column ‘iter’ corresponds to
the number of iterations required to meet the combined stopping tests. Column α displays the final
closed-loop spectral abscissa (7). Negative α < 0 indicates a stable closed-loop system. Column
’cpu’ gives the cputime in seconds. Note that the reported cputimes are only indicative as the α-
version of our code includes a number of extra tests and even graphics that have been exploited for
fine tuning of the various algorithm parameters. Column ’Ref.’ points to the associated reference.

The initial shift for the H∞ norm minimization was chosen according to the following rule

a0 := max (α(A) ∗ (1 + 10%), 1e−2) , (26)

with a zero initial static controller K0 = 0.
From the table, we observe that in all cases but one, the original choice a0 of the shift was

sufficient. As indicated, there is no need to run the algorithm until convergence. A stabilizing
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solution is therefore obtained very early. A single SDP or convex QP with line search suffices in
most cases.

In the second example, we had to reduce the shift three times before stability was reached.
This was done according to rule (26), applied to the closed-loop dynamics. In this example the
H∞ criterion is flat about a (global) optimum, which allows longer steps and renders the step-
length-based termination criterion more stringent. Note that in this case the solution is globally
optimal because a zero H∞ norm is reached.

problem (n, m, p) iter α cpu (sec.) Ref.

Transport airplane (9, 1, 5) 1 −2.22e−2 2.26 [30]
Horisberger’s example (9, 1, 4) 4 −0.01 12.0 [34]

VTOL helicopter (4, 2, 1) 1 −6.00e−2 1.90 [37]
Chemical reactor (4, 2, 2) 1 −1.73 2.26 [36]

Piezoelectric actuator (5, 1, 3) 1 −9.95e−1 2.88 [15]
Boeing 767 (55, 2, 2) 1 −2.33e−2 6.47 [22]

Table 1: Static output-feedback stabilization
steepest descent method - εω = 0.05

For test reasons, the pure stabilization problems have been solved with the steepest descent
method in section 5. As expected, this technique is less stable than algorithmic variants I and II.
Specifically, the choice of εω is rather critical and finding a general selection rule appears difficult.
Together with our analysis in section 6, this encouraged us to use algorithmic variant II in the
syntheses problems below.

7.2 H∞ synthesis problems

This section is devoted to H∞ synthesis problems. The synthesis procedure is based on the scheme
(3) and must be initialized with a stabilizing controller. This initial phase I is described in the
previous section, but alternative techniques to find an initial stabilizing controller K may prove
useful [3]. All examples are extracted from the COMPleib collection [38]. Column ‘problem’ now
indicates the COMPleib acronym attached to each example.

Notice that for a static K, our program could formally be solved as

minimize ‖Tw→z(K)‖∞, K ∈ Mk+m2,k+p2

subject to ‖C2 (sI − A(K))−1 B2‖∞ ≤ M
(27)

where M > 0 is a constant e.g. such that the initial stabilizing controller K0 satisfies

‖C2 (sI − A(K0))
−1 B2‖∞ ≪ M < +∞

and where A(K) refers to the closed-loop system matrix. Note that the extra constraint in (27)
maintains asymptotic stability of the closed-loop system during the optimization of K.

It often happens that stability of the performance channel Tw→z(K) alone already implies
stability of the closed-loop system, so that the (internal) stability constraint in (27) is redundant.
This observation is significant, because this constraint can be dropped, and the problem becomes
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unconstrained. In those cases where this does not hold true, we may if we want to avoid the big-M
constraint in (27), introduce the composite problem

minimize
K

∥∥∥∥
[

Tw→z(K) 0
0 εs C2 (sI − A(K))−1 B2

]∥∥∥∥
∞

where the lower-right term enforces internal stability, with εs > 0 a small enough parameter. The
new problem can now be handled by the techniques discussed so far without change. Similar
modifications apply to design problem with additional structural constraints on the controller.

We compare the results of our nonsmooth algorithm variant II in columns ’nonsmooth H∞’ to
older results obtained with the specialized augmented Lagrangian (AL) algorithm described in [6],
displayed in columns ’H∞ AL’, and to results obtained with the Frank & Wolfe (FW) algorithm
described in [23], column ’FW’. In column ’H∞ full’, we display the gain obtained with a full-order
feedback controller, synthesized via the usual Riccati-based DGKF technique [20]. Note that it
gives the best achievable H∞ performance and thus provides a lower bound for other techniques.

The results which we obtain with our nonsmooth technique are usually close to those previ-
ously obtained with the augmented Lagrangian method [6], except for problems with large state
dimension as ’AC10’ (55 states), ‘BDT2’ (82 states), ’HF1’ (130 states) and ’CM4’ (240 states),
where the augmented Lagrangian method fails, while the present nonsmooth method is still func-
tional. For these large systems, ’AC10’, ’BDT2’, ’HF1’ and ’CM4’, we have observed that even
Riccati or LMI solvers encounter serious difficulties or even break down.

Notice that our present nonsmooth technique (NS) and the AL method are rigorous in the
sense that they converge to local minima (critical points). It is therefore not surprising that
NS and AL often achieve the same H∞ performance at the same K, for which optimality was
established in [44].

Note that in its original form, the FW method cannot solve problems where performance is
optimized under constraints on the order of the controller. We have therefore encapsulated FW
into a dichotomy search in order to assure the best possible performance. According to our numer-
ical experiments, AL and FW, which solve SDPs at every iteration, are no longer functional even
for medium size systems such as the Boeing problem ’AC10’. Higher-order problems like ’BDT2’,
’HF1’, and ’CM4’ are completely intractable with these technique, while the nonsmooth method
continues to produce valid solutions. We observed that FW, when functional, is outperformed
both by AL and NS. We attribute this to the fact that, as opposed to AL and NS, FW is not
supported by a sound convergence theory, and therefore often stops at iterates K which are not
even locally optimal. Examples of K where this is the case are easily identified. It suffices to start
AL or NS at iterates K where FW stops which almost always leads to further improvement. As
an example, when we initialized NS with the FW solution in example ’AC8’, the H∞ performance
was improved from 2.612 to 2.005. A phenomenon that we have also observed in examples ’HE1’
and ’REA2’. This is a strong argument in favor of those optimization techniques, which generate
steps based on local convergence theory. It means that NS and AL can be used to certify criticality
of controllers obtained with alternative methods.

As an illustration of the nonsmooth technique, figure 1 shows the evolution of the maximum
singular value of Tw→z(K) for example ’AC8’ during the first 5 iterations. The stars indicate the
frequencies ωi that were regrouped in the set Ωk to construct a bundle of Clarke subgradients at
iterate xk. Also, figure 2 depicts the evolution of the absolute value of the criticality measure of
algorithm variant II (19) and (20) versus iterations. As theoretically expected, θ(xk) gradually
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tends to zero until a local minimum is reached. Finally, controllers for large problems ’AC10’,
’BDT2’, ’HF1’ and ’CM4’ are given in table 3.

problem (n, m, p) order iter cpu (sec.) nonsmooth H∞ H∞ AL FW H∞ full

AC8 (9, 1, 5) 0 20 45 2.005 2.02 2.612 1.62
HE1 (4, 2, 1) 0 4 7 0.154 0.157 0.215 0.073

REA2 (4, 2, 2) 0 31 51 1.192 1.155 1.263 1.141
AC10 (55, 2, 2) 0 15 294 13.11 ∗ ∗ 3.23
AC10 (55, 2, 2) 1 46 408 10.21 ∗ ∗ 3.23
BDT2 (82, 4, 4) 0 44 1501 0.8364 ∗ ∗ 0.2340
HF1 (130, 1, 2) 0 11 1112 0.447 ∗ ∗ 0.447
CM4 (240, 1, 2) 0 2 3052 0.816 ∗ ∗ ∗

Table 2: H∞ synthesis with nonsmooth algorithm
algorithmic variant II - εω = 0.05

‘∗’: problem is intractable

problem order K(s)

AC10 0 K =

[
−9.0747e−1 2.1249e−5

4.3042 2.2467e−5

]

AC10 1

[
−6.110e−2
−2.361e−2

]
(s + 2.633)−1 [−6.476e−2 1.245e−2 ] +

[
2.698e−1 1.389e−5

−3.285e−01 5.226e−5

]

BDT2 0




−1.0402 1.2997 1.4684 3.0555
−3.7306 −3.5572 −1.9894 2.2705
−2.8162 2.1944 1.8146 9.6202
−9.8493 −5.5376 −2.4885 5.1699




HF1 0 [−0.1907 −1.3093 ]

CM4 0 [−4.5684 −0.6667 ]

Table 3: H∞ controllers for large problems
computed via algorithm variant II

8 Conclusion

We have proposed several new algorithms to minimize the H∞ norm subject to structural con-
straints on the controller dynamics. The proposed method uses nonsmooth techniques suited for
H∞ synthesis and for semi-infinite eigenvalue or singular value optimization programs. Variant I
and variant II of our algorithm are supported by global convergence theory, a crucial parameter
for the reliability of an algorithm in practice. Variant II has been shown to perform satisfactorily
on a number of difficult examples. In particular, four examples with large state dimension (n = 55
n = 82, n = 130 and n = 240) have been solved.
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Note that the proposed tools and techniques easily extend to multidisk problems and syn-
thesis problems on prescribed frequency intervals [4]. More importantly, they pave the way for
investigating an even larger scope of synthesis problems, characterized through frequency domain
inequalities of the form λ1(H(x, ω)) ≤ 0, ω ≥ 0, where H(x, ω) is Hermitian-valued and x stands
for controller parameters and possibly multiplier variables, as is the case when IQC formulations
are used. This is a strong incentive for further development and research. Also, a second-order
version of our technique with enhanced asymptotic convergence is currently under investigation
[8].
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[40] C. Lemaréchal and F. Oustry, Nonsmooth algorithms to solve semidefinite programs,
SIAM Advances in Linear Matrix Inequality Methods in Control series, ed. L. El Ghaoui &
S.-I. Niculescu, (2000).

[41] A. Nemirovskii, Several NP-Hard problems arising in robust stability analysis, Mathematics
of Control, Signals, and Systems, 6 (1994), pp. 99–105.

[42] D. Noll and P. Apkarian, Spectral bundle methods for nonconvex maximum eigenvalue
functions: first-order methods, Mathematical Programming Series B, (2005).

[43] , Spectral bundle methods for nonconvex maximum eigenvalue functions: second-order
methods, Mathematical Programming Series B, (2005).

[44] D. Noll, M. Torki, and P. Apkarian, Partially augmented Lagrangian method for
matrix inequality constraints, SIAM J. on Optimization, 15 (2004), pp. 161–184.

[45] F. Oustry, A second-order bundle method to minimize the maximum eigenvalue function,
Math. Programming Series A, 89 (2000), pp. 1 – 33.

28



[46] O. Pironneau and E. Polak, On the rate of convergence of a class of methods of centers,
Mathematical Programming, 2 (1972), pp. 230–258.

[47] E. Polak, On the mathematical foundations of nondifferentiable optimization in engineering
design, SIAM Rev., 29 (1987), pp. 21–89.

[48] , Optimization : Algorithms and Consistent Approximations, Applied Mathematical Sci-
ences, 1997.

[49] K. Schittkowski, QLD: A Fortran code for quadratic programming, tech. rep., Mathema-
tisches Institut, Universitat Bayreuth, Germany, 1986.

[50] A. A. Stoorvogel, A. Saberi, and B. M. Chen, A reduced-order oberver based controller
design for H∞-optimization, IEEE Trans. Aut. Control, 39 (1994), pp. 355–360.

[51] J. Thevenet, D. Noll, and P. Apkarian, Nonlinear spectral SDP method for BMI-
constrained problems: Applications to control design, European J. of Control, 10 (2004),
pp. 527–538.

[52] X. Xin, Reduced-order controllers for the H∞ control problem with unstable invariant zeros,
Automatica, 40 (2004), pp. 319–326.

[53] X. Xin, L. Guo, and C. Feng, Reduced-order controllers for continuous and discrete-time
singular H∞ control problems based on LMI, Automatica, 32 (1996), pp. 1581–1585.

Acknowledgments

Thanks to Friedemann Leibfritz, Universität Trier, for providing the COMPleib collection and
for fruitful discussions.

29



10
−4

10
−2

10
0

10
2

10
4

0

5

10

15

20

 iteration 1
 σ

m
ax

 

10
−4

10
−2

10
0

10
2

10
4

0

2

4

 iteration 2

 σ
m

ax
 

10
−4

10
−2

10
0

10
2

10
4

0

1

2

3

 iteration 3

 σ
m

ax
 

10
−4

10
−2

10
0

10
2

10
4

0

1

2

 iteration 4

 σ
m

ax
 

10
−4

10
−2

10
0

10
2

10
4

0

1

2

 iteration 5

 σ
m

ax
 

Figure 1: max singular values (transport airplane ‘AC8’) versus frequency
first 5 iterations - ‘*’ selected frequencies
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