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Parameterized Linear Matrix Inequality Techniques in
Fuzzy Control System Design

H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto

Abstract—This paper proposes different parameterized linear
matrix inequality (PLMI) characterizations for fuzzy control sys-
tems. These PLMI characterizations are, in turn, relaxed into pure
LMI programs, which provides tractable and effective techniques
for the design of suboptimal fuzzy control systems. The advantages
of the proposed methods over earlier ones are then discussed and
illustrated through numerical examples and simulations.

Index Terms—Fuzzy systems, parameterized linear matrix in-
equality (PLMI).

I. INTRODUCTION

T HE well-known Tagaki–Sugeno (T–S) fuzzy model [13] is
a convenient and flexible tool for handling complex non-

linear systems [11], where its consequent parts are linear sys-
tems connected byIF–THEN rules. Suppose that is the state
vector with dimension , is the control input with dimen-
sion , , and are the disturbance and controlled output of
the system with the same dimension , and denotes the
number ofIF–THEN rules, where eachth plant rule has the form

is and is

(1)

Here, are premise variables assumed independent of the
control and are fuzzy sets. Denoting by
the grade of membership of in and normalizing the
weight of each th IF–THEN rule by

(2)

(3)
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the state-space representation of the T–S model is

(4)

where

(5)
The simple and natural feedback control for T–S model is the
so-called parallel distributed compensation (PDC), whose each
th plant rule is inferred similarly to (1) as

is and is
(6)

The outcome is the state-feedback control law:

(7)

where

(8)

Since in (4) is available online, system (4) also belongs
to the more general class of gain-scheduling control systems in-
tensively studied in control theory in the past decade (see, e.g.,
[12], [1], and [2]). Gain-scheduling is a widely used method
for the control of nonlinear plants or a family of linear models.
Only recently, however, this technique has received a systematic
treatment within the framework and tools based on LMIs [12],
[1], [2]. LMI characterizations of the gain-scheduling control
problem renders the design task both practical and appealing
since LMIs can be globally and efficiently solved by interior-
point methods in semidefinite programming. The representa-
tion relation (3) and (4) is often called a polytopic system [7] a
class of parameter-dependent systems, which lends itself easily
to practical computations. At first glance, it could appear that
the additionally restricted structure (8) for PDC fuzzy control in-
curs conservatism in the synthesis problem in comparison with
the most general structure (7) often considered in gain-sched-
uling control [14], [15]. In fact, the main contribution of [14]
and [15] is to adapt the approach of [7] (for polytopic systems)
to design PDC controller (8). However, by a main result pre-
sented in this paper, the existence of a general gain-scheduling
freely structured controller (7) is equivalent to the existence of
one with PDC structure (8). In other words, the PDC structure
(7) very naturally arises in gain-scheduling control. Moreover,
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our presented results based on a general theory of gain-sched-
uling control [1], [2], [12] have the following essential advan-
tages over those of [14] and [15]:

1) The resulting optimization formulations are much simpler
with much fewer variables involved. Therefore, they are
much more efficient computationally. In fact, our compu-
tational experiments show that the cpu time for solving
problems of [14] and [15] are 2–4 times larger than that
needed for solving our problems.

2) The controller performance are much better. In fact, our
computational experience indicates that our controllers
improve the performance by a significant order of magni-
tude of 10–15 as compared to those of [14] and [15].

It is important to note that the aforementioned advantages are
also achieved by our new relaxation results for solving arising
parameterized linear matrix inequalities (PLMIs). To see how
PLMIs naturally arise in gain-scheduling control including
fuzzy logic control, let us consider the stabilization problem
where we seek stabilizing (1), i.e., such that system

(9)

resulting from (1) and (8) by setting is asymptotically
stable.

By virtue of the Lyapunov theorem, (9) is asymptotically
stable if there exists a quadratic Lyapunov function

such that

(10)

(11)

(12)

The linearization technique (12) is rather standard and well
known in control theory, even before LMI invention (see, e.g.,
[6]). Particularly, it is the main tool of [7, Ch. 7] in state-feed-
back control for polytopic systems. Later, it has been adapted
in [14] and [15] for designing PDC of the form (8). In fact, with
the PDC (8), has the form

(13)

Therefore, (11) can be rewritten as

(14)

where

(15)

i.e., is an affine matrix-valued function of the variable.

Note that (14) is an LMI problem depending on the parameter
, i.e., one has to check the LMIs in (14) holds for all ,

hence, the named PLMI.
As we shall see, PLMIs like (14) also arise in other control

problems such as the regulator problem,, control prob-
lems and so forth. PLMI problems of the form (14) belong to the
class of robust semidefinite programs, which is a very hard opti-
mization problem whose NP-hardness is well known [4]. There-
fore, it is natural to derive some convex (LMI) relaxations for
(14) (see, e.g., [5], [3], and [17]) to make it computationally
tractable. For it is obvious that one such convex (LMI)
relaxation for (14) is obtained as [15]

(16)
Unfortunately, conditions (16) are practically very restrictive
and some potential improvements have been discussed in
[14]–[16]. Other convex relaxations techniques solving a
general PLMI including (14) as a particular case have been
proposed in [17] and [3].

A major target of this paper is to give some new convex re-
laxation results for PLMI (14), which include and generalize all
previous results in [14], [15], [17], and [3] as a particular case
and are less conservative, i.e., they offer much better solutions
while are still computationally efficient.

Since the work of [9], it is known that in many cases the con-
trol variable in (11) can be eliminated by using the Projection
Lemma [9] or the Finsler’s Lemma. Such an elimination pro-
cedure not only makes LMI formulations much more appealing
for computation but plays a key role for obtaining LMI charac-
terizations in dynamic output feedback problems. In this paper,
such elimination technique is adapted to obtain simpler PLMI
characterizations with the two aforementioned advantages com-
pared with (14), (15) and other arising in regulator and con-
trol problems.

The structure of the paper is as follows. The main results on
LMI relaxation for PLMIs are given in Section II. Then, based
on this, different PLMI characterizations for stabilization, regu-
lator, control problems together with their LMI relaxations
are considered in Sections III–V. The comparison between these
LMI relaxations are illustrated by numerical examples in Sec-
tion VI.

The notation of the paper is fairly standard. is the trans-
pose of the matrix . For symmetric matrices,
( , respectively) means is negative definite
(positive definite, respectively). In symmetric block matrices or
long matrix expressions, we useas an ellipsis for terms that
are induced by symmetry, e.g.,

Useful instrumental tools such as congruent transformation of
matrices, Shur’s complement and Finsler’s lemma are given in
the Appendix.

II. LMI R ELAXATIONS FOR PLMIS

The following intermediate result proves to be useful in the
sequel.
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Lemma 2.1:Given a -symmetric matrix

one has

(17)

if and only if there is such that

(18)

A sufficient condition for (17) and (18) is

(19)

Proof: First, let us prove (17) (18). Since the implica-
tion (18) (17) is obvious, we need only prove the inverse im-
plication. It is trivial that , . If in (17),
then (18) is obvious with . On the other hand, when

, taking , then (17) implies

i.e., (18) for .
Since the implication (19) (17) is obvious when ,

let us consider the case . Then for every , ,

hence, (17) follows.
The main LMI relaxation result which plays a crucial role

hereafter is the following.
Theorem 2.2:PLMI (14) is fulfilled provided one of the fol-

lowing conditions holds:

1)

(20)

(21)

2) There are symmetric matrices , such that

(22)

3) There are symmetric matrices , such that

(23)

Proof: Note that (14) can be rewritten as

(24)

and thus a sufficient condition for (24) is

(25)

Hence, parts 1) and 2) follow by applying Lemma 2.1.
For part 3), first note that since , (23) gives

while by condition in (23)

so (14) follows.
Remark: While (19) implies (18) in Lemma 2.1, (20) and

(21) are no longer a particular case of (22). A sufficient condi-
tion for (14) in [14] and [15] is

(26)

and can be shown a particular case of (20) and (21). Therefore,
the introduction of the additional variable in (26) in [14] and
[15] is superfluous.

III. STABILIZATION PROBLEM

Return back to the stabilization problem for the system (4),
i.e., to find a feedback control (7) and (8) such that the closed
loop system (9) is asymptotically stable. Applying Theorem 2.2
to (14) with defined by (15) gives the following result.

Theorem 3.1:System (1) is stabilized by the PDC (8) if either
one of LMIs system (20), (21) or (22) or (23) is feasible with

defined by (15). Feedback gains deriving the controller
(8) are obtained as solutions of (20) and (21), (15) or (22), (15)
or (23), (15) according to (12) by

(27)

Now, we will show how the control variable in the LMI
formulation of Theorem 3.1 can be eliminated to obtain a much
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simpler formulation. By Finsler’s lemma the existence of
satisfying (11) is equivalent to the existence of and
such that

(28)

which is PLMI (14) with

(29)

Obviously, once such exists, satisfying (11) is given as

(30)

and thus by (12), is defined by

(31)

which already has PDC structure (8). To sum up, we state the
following theorem.

Theorem 3.2:There is a generally structured stabilizing con-
troller (7) if and only if there is one with PDC structure (8) de-
fined by

(32)

where is a solution of PLMI (14), (29), whose feasibility is
implied by that of LMI systems (20), (21), (29) or (22), (29) or
(23), (29).

Remark: Compared with (14) and (15), we see that (28) and
(29) has the obvious advantages: it requires only one variable
instead of in (14) and (15) and with much sim-
pler form which makes it much more computationally tractable.

IV. REGULATOR PROBLEM

Setting , , in (1) and (4), the
regulator problem is to minimize the performance index

(33)

subject to the initial condition with some given
and weighting matrices and .

Suppose that the function with and
control satisfies the following Hamilton–Jacoby inequality

(34)

(35)

(36)

then for every , one has

which implies that is an upper bound of (33).
Note that the equivalence between (35) and (36) is provided

by the control signal

(37)

From (4) and (8), we deduce

(38)

(39)

Hence, using a Schur’s complement and a congruent transfor-
mation, leads to (40), as shown at the bottom of the next page,
which by virtue of the structure (13) of is PLMI (14) with

(41)

Applying Theorem 2.2 to (40) and (41) gives the following re-
sult:

Theorem 4.1:An upper bound of (33) with the class of con-
troller with PDC structure (8) is provided by one of the fol-
lowing LMI optimization problem

(20), (21), (41) (42)

(22), (41) (43)

(23), (41). (44)

Suboptimal controllers for realizing (8) are defined from
solutions of problems (42)–(44), by (27).

The PLMI-based result for computing an upper bound of [14]
can be shown to be more conservative than (40), i.e., the result
of [14] is a sufficient condition for feasibility of (40). As men-
tioned, the relaxation result (26) used in [14] is also more con-
servative that ours. Therefore, it is not difficult to see the upper
bound given by [14] is more conservative than that given by
(42)–(44). This will also be confirmed by computational exper-
iments in Section VI.
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Now, again we will try to eliminate the control variable
in (40) by using Finsler’s lemma. As clarified in Section VI,
such elimination is really helpful and the corresponding upper
bound is improved. Rewriting (40) as

(45)

by Finsler’s lemma, the existence of is equivalent the ex-
istence of and such that

(46)

which is PLMI (14) with the definition

(47)

Obviously, when PLMI (46) is feasible, the function
satisfies Hamilton–Jacoby inequality (35) or (36) and

therefore one of controllers is defined according to (37) by

(48)

which also has PDC structure (8). The result is summarized in
the following theorem.

Theorem 4.2:Using quadratic Lyapunov function for
assessing the performance (33), the existence of the generally
structured suboptimal controller (7) is equivalent to the exis-
tence of that with PDC structure (8).

An upper bound of (33) with the controller (8) is proved by
either one of the following LMI optimization problems:

(20), (21), (47) (49)

(22), (47) (50)

(23), (47) (51)

and accordingly, a suboptimal controller for realizing PDC
(4) is

(52)

Again, note that problems (49)–(51) involve only variables
and are much simpler than (42)–(44). These advantages

will be clarified by numerical examples in Section VI.

V. CONTROL

The optimal control problem consists in finding con-
troller (7) for (4) such that

(53)

(40)
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Suppose that there exist , and
satisfying the following Hamilton–Jacoby–Isaac

inequality

(54)

(55)

(56)

then for every , taking the definite integral from 0 to of both
sides of (54) gives

i.e., constraint of (53).
By a least square technique, it is easy to show that one of the

controllers satisfying (55) is

(57)

provided that is full-column rank, which can be as-
sumed from now, without loss of generality.

Like (38) and (39), we can easily derive (58) and (59), shown
at the bottom of the page. So, again using Schur’s complement
and congruent transformation as manipulation tools, shown in
(60) at the bottom of the next page, which by structure (13) of

is PLMI (14) with

(61)

The following result is a direct consequence of Theorem 2.2.

Theorem 5.1:An upper bound of (53) within class of PDC
structure (8) is provided by either of the following LMI opti-
mization problem

(20), (21), (61) (62)

(22), (61) (63)

(23), (61) (64)

A suboptimal control gains for realizing PDC (8) are
defined by solutions of (62), (63) via (27).

Again, we can eliminate the control variable from (60)
as follows. Rewrite (60) as

(65)

then again by Finsler’s lemma the existence of in (65) is
equivalent to the existence of such as (66), shown at the
bottom of the next page, which is (14) with

(67)

When (66) holds true, it is obvious that the function
satisfies Hamilton–Jacoby–Isaacs inequality (55).

Then, by (57), we see that when is independent of (i.e.,
) as often verified on all control

designproblem,control (57) isadaptedto

(68)

i.e., it has structure (68).
Theorem 5.2:Suppose that

and also that is a full-column rank matrix in (1), (4), and the

(58)

(59)
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class of quadratic Lyapunov function is used for checking
performance. Then the existence of general suboptimal con-
troller (7) for problem (53) is equivalent to the existence of that
with PDC structure (8).

Moreover, an upper bound of (53) is provided by either one
of the following LMI optimization problems

(20), (21), (67) (69)

(22), (67) (70)

(23), (67) (71)

In these cases, a suboptimal controllerfor realizing PDC (8)
is

(72)

VI. NUMERICAL EXAMPLES

By [14], the T–S model of the eccentric rotational proof mass
actuator (TORA) system [8] (see Fig. 1) is described by (4) with

(60)

(66)
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Fig. 1. TORA model.

TABLE I
LMI OPTIMIZATION COMPUTATIONAL RESULTS: � (RESPECTIVELY� ; � ) IS

AN UPPERBOUND GIVEN BY THE RESULT OF[14] [RESPECTIVELY(49), (51)]

Fig. 2. Performance control simulation: [14] (dot line), (49) (dash-dot line),
and (50) (solid line).

The state of (4) in this case is , where
and is the angular position and velocity of the rotational
proof mass, and with

, the translational position and velocity of the
cart.

Fig. 3. Tracking performance of the angular position of rotational proof mass
by control given by [14] (dot line), (49) (dash-dot line), (50) (solid line).

Fig. 4. Tracking performance of the angular velocity of rotational proof mass
by control given by [14] (dot line), (49) (dash-dot line), (50) (solid line).

The problem is to regulate to the equilib-
rium (0, 0, 0, 0) so problem (33) is an appropriate formulation
for this purpose.

The computational results using optimization formulations
[14], (49), (51) with different initial condition but ,

are summarized in Table I. Computations are performed
using LMI control tool box [10]. From Table I, we see the ben-
efit of optimization formulations (49) and (50) with control vari-
able eliminated: the control performance, are im-
proved dramatically compared with based on optimization
formulation (42) involving control variable . Moreover, the
cpu-time for computing solutions of (49) is 2–4 times less that
needed for computing solution of their counterpart in [14]. From
the MATLAB simulation results in Figs. 2–4 with initial con-
dition (1, 0, 0, 0) as in [14], we see that indeed both tracking
and controller’s performance resulting from (49), (50) are better
than that given in [14].

APPENDIX

• Congruent transformation of matrices: the matrix is
negative definite (positive definite, respectively) if and
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only if is negative definite (positive definite, re-
spectively) too for any nonsingular matrix of appro-
priate dimension.

• Schur’s complement:

for any matrices of appropriate dimen-
sions.

• The Finsler’s lemma: Given matricesof dimension
and

one has

Here ( , respectively) is the identity matrix of di-
mension (zero matrix of dimension , respec-
tively).
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