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Abstract

In this paper we develop an augmented Lagrangian method to determine local optimal
solutions of the reduced- and fixed-order H,, synthesis problems. We cast these synthesis
problems as optimization programs with a linear cost subject to linear matrix inequality
(LMI) constraints along with nonlinear equality constraints representing a matrix inversion
condition. The special feature of our algorithm is that only equality constraints are included
in the augmented Lagrangian, while LMI constraints are kept explicitly in order to exploit
currently available semi definite programming (SDP) codes. The step computation in the
tangent problem is based on a Gauss-Newton model, and a specific line search and a first-order
Lagrange multiplier update rule are used to enhance efficiency. A number of computational
results are reported and underline the strong practical performance of the algorithm.

Keywords: Linear matrix inequalities, fixed-order synthesis, reduced-order synthesis, rank con-
straints, robust synthesis, semi definite programming, augmented Lagrangian method.

1 Introduction

Algebraically or rank-constrained LMI problems frequently arise in control engineering applica-
tions. Two prominent examples of this type are fixed and reduced-order synthesis of output feed-
back controllers. While the present paper is mainly concerned with these problems, we mention
that our solution strategies apply to many other practical problems in control (see e.g. [19, 14, 13]).

The goal of the paper is to obtain an iterative technique which allows to compute solutions of
the fixed-order H,, synthesis problem. Here, solution means a locally optimal solution, that is,
a reduced-order controller which stabilizes the plant and induces a locally minimal H,, norm for
the performance channel. Reasonably good procedures to achieve this goal are the Augmented
Lagrangian (AL) algorithm and the Sequential Quadratic Programming (SQP) algorithm. AL and
SQP are well-known in the context of mathematical programming with classical equality and in-
equality constraints. There these techniques have well-established convergence properties. Global
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convergence for AL is for instance proved in [7], for SQP in [4]. According to the optimization
terminology, global refers to convergence toward a locally optimal solution from an arbitrary, even
remote, starting point. The convergence rates of AL and SQP in a neighborhood of a local optimal
solution are also known; see [9, 8| for classical constraints.

The situation is less well understood when matrix inequality constraints, that is, LMIs, BMIs,
etc arise. Even for the simplest case of LMIs, so far no convergence proofs have been established
for the AL algorithm. The approaches cited above depend heavily on the polyhedral structure of
the constraints and do not carry over to matrix inequalities.

Recently, we have established local convergence of the SQP algorithm for matrix inequality
constraints [14]. In a yet unpublished manuscript [20], to be submitted shortly, we have proved
global convergence of the Augmented Lagrangian Method for Matriz Inequality Constraints as
used in the present paper. Proving convergence of these methods is important since an increasing
number of problems in control lead to optimization problems with matrix inequality constraints.
The discussion in [20] is mostly of general and theoretical nature whereas we address here a number
of practical features leading to a more effective and reliable implementation of the AL algorithm
in the specific setting of fixed-order H,, synthesis. Specifically, we pay special attention to the
Newton step via Gauss-Newton approximation, exact line search, multiplier update rule in section
4. Numerical examples are presented in section 5.

2 A motivating example

In this introductory section we shall look at the static output feedback stabilization problem as
a particularly motivating example. The fixed-order H,, synthesis problem will be examined in
section 3.

Without additional performance embroideries, the static output feedback stabilization problem
requires finding a pair of symmetric matrices (X,Y") such that

XY =I z:=(XY)eX (1)

where «x is the decision vector gathering the decision variables in X and Y, and where A denotes
a convex set of LMI constraints on the matrices X, Y, which will be given in detail in section 3.

The feasibility problem (1) is inherently nonconvex, and one possible numerical approach is to
minimize a suitable norm expression || XY — I|| subject to the LMI constraint z € X'. A popular
strategy based on this idea (considered successful by various authors) is the Frank & Wolfe or
conditional gradient algorithm [17]|, which is tested and analyzed in [11]. We refer the reader to
[3] for a standard textbook on the subject. Despite the promising statistics presented in [11], the
conditional gradient algorithm has been reported to fail on many practical problems.

At a closer look, it is fairly easy to generate examples where the conditional gradient method
fails, simply by restricting the achievable stability degree of the system. In the event of a failure,
as a rule the LMI feasibility regions are “small” and ill-conditioned, and the first-order algorithm
is not at ease. A thorough analysis of the breakdown of the conditional gradient algorithm was
given by Dunn in [12] for polyhedral sets, but the findings remain correct for LMI constrained
regions.

A rather typical situation encountered when solving (1) is displayed in Figure 1, where we
have plotted the error norm || XY — I||r as a function of the iteration index. The dotted line
shows that the Frank and Wolfe algorithm reaches a small norm level after a few iterations, but



gets stalled on this plateau forever. The designer is then facing the question: Does this plateau
level provide a true and reliable solution of the problem? From a theoretical point of view, the
conditional gradient algorithm does not provide any satisfactory convergence theory, which would
support this decision. Nonetheless, in some cases, the attained plateau level turns out sufficiently
good to reconstruct valid controller gains from X and Y.

Here we propose a much more reliable algorithmic approach to problem (1), which uses either
the partial AL method developed in [13, 20], or the successive semi definite programming (SSDP)
technique discussed in [14]. Both techniques are of second-order type in the sense that gradient
steps are replaced with Newton type search steps, which exploit duality with respect to either
nonlinear equality constraints or both equality and LMI constraints in order to improve and
secure convergence. From the point of view of robustness we prefer the AL method, as it is easier
to implement and to combine with currently available SDP solvers than the SSDP method, at the
cost of a somewhat slower speed.

Important advantages of both techniques are that they guarantee convergence to a local so-
lution satisfying the algebraic constraint XY — I = 0 in the limit [20, 15] under fairly standard
hypothesis. And secondly that they converge linearly in the worst case. The more sophisticated
SSDP has been proven to converge locally superlinearly in [14].

An important aspect of our approach is that it extends to performance minimization problems
under rank and LMI constraints. This class of problems can be cast as

minimize c'z
subject to z € X
h(z) =0,

where as before X is an LMI constraint set, and h(z) = 0 encodes a rank or an algebraic constraint.
The fixed-order H, control is a typical instance of this program, to be looked at later in this paper.

A typical behavior of the AL algorithm is displayed in the same Figure 1 (continuous line).
We observe that this time the algorithm shows no sign of failure and gradually decreases the error
norm to zero. Notice that the feasibility problem in (1) has been reformulated as

minimize || XY — I||%
subject to x € X
XY -—-1=0,

and is handled through the partially AL function
®.(z,A) = | XY = I|% + Tt (A'(XY = 1)) + ¢/2|| XY — I||%.

Here, A is the Lagrange dual variable attached to the equality constraints XY —I =0, and cis a
penalty parameter bending the iterates toward the surface XY — I = 0. The AL algorithm now
requires computing a sequence x* of minimizers of ®.(-, A) for an increasing sequence of penalty
parameters ¢ = c and suitably updated multiplier estimates A = A*.
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FIGURE 1: Error norms in conditional gradient and augmented Lagrangian

3 Fixed-order H, synthesis

The general setting of the fixed-order H,, synthesis problem is as follows. We consider a linear
time-invariant plant described in “standard form” by the state-space equations:

T A Bl Bz xz
P(s): z|=1C1 Du Dy |w|, (2)
Yy Cy Dy Do u

where z € R" is the state vector, u € R™2 is the vector of control inputs, w € R™ is a vector
of exogenous inputs, y € RP? is the vector of measurements and z € RP* is the controlled or
performance vector.

Let T'(s) denote the closed-loop transfer functions from w to z for some dynamic output-
feedback control law u = K(s)y. Our aim is to compute a k-th order output-feedback controller

K(s) = Cx(sI — Ag) 'Bg + D, Ag € RF** (k< n) (3)
which meets the following design requirements:

e internal stability: for w = 0 the state vector of the closed-loop system (2) and (3) tends to
zero as time goes to infinity.

o performance: the Hy, norm ||T(s)||e is minimized.
As is well-known, the closed-loop system can be described as

[ Acl ‘ Bce :| — [ Aa + Ba,KaCa ‘ Bl,a + BaKaD21,a :|

Ccl ‘ DCZ CYl,a + D12,aKaCa ‘ D11 + D12,aKaD21,a
where
AK BK A 0 Bl
K, := , A= B, = , Ci.:=[C1 0
[CK DK] [0 OJ " [o] 1a:=[C1 0] 5)
|0 By |0 I . 10
Ba - [Ik 0 :| 3 Ca - [02 0:| ) D12,a — [O DlZ]) D21,a - |:D2]_:| -



With these ingredients, the fixed-order H,, synthesis problem is first transformed into a matrix
inequality condition using the Bounded Real Lemma [1]. Then the Projection Lemma from [16]
is used to eliminate the unknown controller data Ay, By, Ck, Dk from the cast. As a result, the
Bounded Real Lemma matrix inequality reduces to the following set of conditions: Find symmetric
matrices X and Y in S** such that

AX +XA, XBi, C{,a i

./\/Z? B{’GX —yI Dijy |[Ng < 0 (6)
Cla Dy =1 |
YA, +AY B, YC{’G i

Np B{,a —yI Dj, |[Np < 0 (7)
CiY Dy I |

X >0, Y >0, XY -I =0 (8)

where Ng and Np denote any bases of the nullspaces of Q and P with
Q = [Ca D217a 0], P .= [B(Il DiZ,a 0] .

O
The reader is referred to [16, 2] for proofs and further details. Notice that according to [17], it is
possible to replace the positive definiteness constraints in (8) with
X I
[ I Y} 20, (9)

without loss of generality. This option helps stabilizing algorithms and eliminates spurious solu-
tions.

4 Augmented Lagrangian with explicit LMI constraints

In this section, we present our approach to finding local solutions of the fixed-order H, synthesis
problem. The problem is recast as an optimization problem using a cost function which combines
the Lo-gain index 7 and a penalty term accounting for the nonlinear constraint in (8), attributing
a high cost to infeasible points. The LMI constraints, being different in nature, are not included
in the objective but kept explicitly.

For future use and simplicity of manipulations, let X denote the set determined by the LMI
constraints in (6), (7) and (9), where < 0 has been replaced with < 0, or if we wish, with < —eT
for a small threshold ¢ > 0 in order to guarantee strict feasible solutions to the LMIs. The vector
x regroups the ensemble of decision variables (X, Y, ) and should not be confused with the state
vector in (2). With these notations, the fixed-order H,, synthesis problem is equivalent to :

min f(z) :=
st. h(z)=XY-I=0, (10)
zeX.

withz e RN, N=(n+k)n+k+1)+1,h:RY - RM M = (n+k)? and where the LMI size
L is generically given as L = 2(2n + k + my + p1) — ma — po.
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Following the general idea of the AL method, the key in solving (10) is now to eliminate the
non-convex constraints h(z) = 0 in (8) by including them into a partially AL function. This
allows us to approximate the difficult non-convex synthesis problem by a two-stage series of easier
LMI subproblems, as we proceed to indicate: The non-convex problem (10) is approximated by a
series of new optimization problems, each of which involves minimizing the AL function, ®.(z, A),
defined as: .

S.(z,A\)=~+ ZAij(XY —I)i; + B Z(XY - I)?j
¥ L)

subject to the LMI constraints £ € X. In matrix form, the new objective is:
Bo(z,A) =7+ T (A’(XY - I)) + %Tr((XY ~I(XY - I)) , (11)

where c is a positive penalty and A is a Lagrange multiplier matrix. Each of the new optimization
problems

minimize ®.(x, A)

subject to z € X (12)

is by itself solved by a sequence of SDPs. At the current point z, a new iterate z7 = z + dx
is obtained by minimizing the (suitably convexified) second-order Taylor series approximation of
®.(z + dz,A) about the current z and subject to z + dx € X.

It is important to keep in mind that the motivation for using the AL is that, for an appropriate,
fixed choice of (A*, c*), a local optimal solution z* of the original program (10) can be found
by simply optimizing the function ®.(z, A*) with respect to z. A thorough discussion on this
mechanism is given in [15]. Of course, the central task is to determine (A*, c*), and the AL
algorithm achieves this goal by forming a sequence (A*, cF) converging to (A*, c*).

Since the proposed algorithm is of second-order type, we need to compute the gradient and
Hessian of (11). The first order information at the point z = (X, Y, ) is easily obtained. With T
the transformation matrix mapping the vectorized lower triangle of the symmetric matrix X into
its vec representation, the Jacobian of the matrix function h(z) = XY — 1 is

J@)=[Yeo)T (IkX)T 0],
and the gradient of the Lagrangian V,®.(x, A) is computed as

T'vec (AY)
V@ (z,A) = | T'vec (XA) | +cJ(z)'vec (XY —1I). (13)
1

The Gauss-Newton Hessian VSN ®,(z, A) is

[ 0 T'(I® AT 0]
VeNG, = [ T'(I® AT 0 0f +cJ(x)J(z). (14)
0 0 0

By definition it is obtained by omitting the term
M
¢ hi(z)Vihi(z) (15)
i=1
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from the full Hessian expansion V2_®,(z, A). The rationale in this approximation, often referred to
as Gauss-Newton approximation, is that (15) is small when the iterates = get close to feasibility,
and the terms h;(z) get smaller. The Gauss-Newton approximation has the further advantage
that it is easier to compute than V2,®,, is more positive definite than the true Hessian and
asymptotically converges to the true Hessian, as h(z) gets closer to zero by virtue of expression
(15).

Notice that due to the inherent non-convexity of the problem, neither V2 &, nor VEN &, can be
expected to be positive (semi) definite. According to the experience with optimizers in traditional
nonlinear programming gained during recent years, it is considered best to include the negative
curvature information in V2, ®, or VEV®, into the search strategies by using trust region steps
[22, 10]. Unfortunately, in our case, this would lead to an LMI constrained tangent problem with
a nonconvex quadratic objective, a problem with a complexity similar to the original program. As
opposed to the classical case, where the tangent problem is an indefinite quadratic program, for
which tailored solution strategies exist, this new type of tangent problem presently does not lend
itself to efficient algorithmic solutions, and we are therefore forced to privilege an older strategy,
viz. to convexify the true or Gauss-Newton Hessian VEN®, in order to obtain an SDP tangent
problem. Our proposal of a potential convexifying technique is discussed in section 4.1.

With these preparations, a general description of the algorithm is now the following.

Algorithm for Fixed-Order H, Synthesis

1. Initial phase . Initialize the algorithm with z° € X. This can be done by simply solving a
feasibility SDP. Then initialize the penalty parameter ¢ > 0 and the Lagrange multiplier
A Fixp<1,0<pu<1ande>0.

2. Optimization phase. For j = 0,1, --, minimize &, (x, A’) over z € X, and let 7™ be the
solution so obtained. Possibly use the previous iterate z/ as a starting value for the inner
optimization.

3. Update penalty and multiplier.

AT = N 4 J(XIT YT - T). (16)

it =

(17)

pcl 3 || XIHY I~ 1| > pl| XYY — 1|5
o i [ XY~ I||p < p| X9V — I

4. Terminating phase . If | XY — I||r < €, try to reconstruct a k-th-order H,, controller. If
the reconstruction fails, reduce ¢, set j = 5 + 1 and return to Step 2.

4.1 Inner steps

The inner steps in our algorithm involve minimizing the AL ®.(-,A) for fixed ¢ and A. This
minimization is performed iteratively by generating search directions dx about the current iterate
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x through the tangent model

min  V®.(z,A) dz + i da’ H dz
st. xz+dre X

As indicated before, here we have replaced the true Hessian V2, ®, by its Gauss-Newton approxi-
mation H = VEN®,, or more precisely by a strictly convex approximation of V&N &, obtained e.g.
by further adding a positive diagonal correction term. Due to the convexity of H, the resulting
tangent problem may now be handled as a general conic programming problem [23] or as an SDP
via the equivalent formulation

min ¢
t— Vo (z,A) dz dz'L
s.t. I/ da 9] >0
r+dre X,

where L Cholesky factorizes H, that is, H = L L'.

From a practical point of view, instead of modifying the Hessian matrix directly and computing
the Cholesky factor of the resulting matrix, we find it more reliable and efficient to compute its
symmetric indefinite factorization

VéN®, = P'LDL'P

where P is a permutation matrix, L a unit lower triangular matrix and D is block diagonal with
diagonal blocks of dimension 1 or 2. We then trivially modify the diagonal blocks of D such that
D + E is positive definite, finally letting H = P'L(D + E)L'P. The advantage of this approach
is that it can be accomplished at roughly the cost of a customary Cholesky factorization [6].

4.2 Line search

The search direction computation just discussed must be followed by an appropriate line search
to ensure convergence of the method. In our case, because of the polynomial nature of the AL
n (11), the step length computation can be performed ezactly at almost no cost, using a simple
third-order polynomial root computation routine. Indeed, within the search interval [z, = + dz],
the AL is a fourth-order polynomial

®.(z + adz,A) = asa* + asa® + a0® + a1+ ay .

Its minimum on the interval [0, 1] is either attained at 0, 1 or at values of o for which the derivative
of ¢(a) := ®.(z + adz, A) vanishes, that is,

daqs03 + 3a3a2 + 2aa0+a; =0.

4.3 First-order multiplier updates

The multiplier update AT = A + ch(z) in (16) is known as the first-order multiplier update rule.
It is an essential ingredient to establish convergence of the AL algorithm. An in-depth discussion
of the multiplier update rule and its importance regarding the convergence of the AL is provided
in [20].



5 Numerical illustrations

In this section, we provide a catalog of results that have been obtained using the AL algorithm.
The reader is referred to [20] for additional illustrations of the AL algorithm.
From now on, we will use the notation

A |B;, | By
C1 | Dy | Do
Cy | D2y | Do

to refer to the state-space data of the standard form. The experiments reported below have been
performed using the algorithm parameters:

e=107° p=4.0, p=0.2.

5.1 Randomly generated problems

A preliminary assessment of the method can be carried out using full-order controllers. In this
case, there exist well established techniques to compute the globally optimal H,, performance
[18, 21, 16], and this allows us to check the quality of the gain 7 obtained by our algorithm. It
is instructive to verify that our method is still efficient, even though one disregards the hidden
convexity in the constraint set specified by (6), (7), (9) in tandem with the inversion constraint
XY — I =0. In these experiments, we have randomly generated 1000 stabilizable and detectable
plants as described in [11]. Dimensions of our tests are given as

n=1{3,6, 10}, my={3,7}, ms={L,2 4},
p1:{3a 7}) p2:{17 2: 4}

Remarkably enough, our method not only never failed, but also invariably returned the optimal
~ within machine accuracy for all tests.

As one may argue that the hidden convexity in this type of test problems alleviates the dif-
ficulty, we performed similar tests for the reduced-order case with the problem generation tech-
nique outlined in [11]. Again no failure in computing a stabilizing controller was observed, and
the method performed very efficiently in computing a locally optimal cost. As an important side
aspect, notice that our method is apparently insensitive to the reachable stability degree in the
system, a major source of breakdown in first-order or gradient-based methods, as outlined in the
introductory section 2.

5.2 Comparison with a randomized algorithm

Reference [5] proposes a randomized algorithm to compute a first-order H,, controller for the
augmented plant described by the following state-space data:

[ 0 0 1 0 0 0 0 0 0 0 0 0 0
1.5 -1.5 0 0.0057 1.5 0 0 0 0 0 0 0.16 0.8
—12 12 —0.6 —0.0344 —12 0 0 0 0 0 0 —19 -3
—0.852 0.29 0 —0.014 -0.29 0 0 0 0 0 0 —0.0115 —0.0087
0 0 0 0 —0.73 2.8289 O 0 0.1146 O 0 0 0
0 0 0 0 0 —1.25 0 0 4 0 0 0 0
0 0 0 0 0 0 —1000 0 0 1024 0 0 0
0 0 0 0 0 0 0 —1000 0 0 1024 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.01 0
0 0 0 0 0 0 0 0 0 0 0 0 0.01
1 0 0 0 0 0 —139.0206 0 0 142.8571 0 0 02
0 1 0 0 0 0 0 —139.0206 | O 0 142.8571 | O 0




Using their technique, a first-order contoller with H,., performance v = 4.8937 was obtained. In
contrast, our AL method achieved a performance of v = 1.821, a result which required solving 46
SDPs, and corresponded to a performance improvement of 62%. The optimal first-order controller
we obtained is

[ —27.617 ‘ 0.23275 —0.60698 -|
65.735 | 0.46106 —0.26079
[ 406.8 0.69252 —0.56237 J

Here the problem dimensions were N = 91, M = 81 and L = 44.

Evolution of the error norm || XY — I||F, the gain v and the penalty parameter ¢ during the
iterations are displayed in Figure 2. While the penalty parameter was forced to increase or be
stable, the other quantities were allowed to vary freely and to grow locally until a balance between
the cost value and the error norm was attained. As described in section 4, the penalty parameter
is kept constant during inner steps.

A remarkable feature of our algorithm is that a good guess of the optimal gain v is already
obtained at an early stage of the iteration process, while later iterations serve to satisfy the equality
constraints at almost constant cost.

1041 | norm(XY-I) B

I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50
iterations

FIGURE 2: AL method: error norm, v, penalty

6 Conclusion

In this paper, an AL method has been developed to solve the fixed-order H,, synthesis problem.
Implementation of this method involves several practical algorithmic issues which have been dis-
cussed. Four important features of the proposed AL are: (i) LMIs are not incorporated into the
AL but kept explicitly throughout the iterations; (ii) we consider a Gauss-Newton approximation
of the full Hessian; (iii) an exact line search is used; (iv) a first-order rule is used for the equality
multipliers. An important consequence of (i)-(ii) is that subproblem iterations reduce to simple
SDP problems.

As theoretically expected [20], our method shows strong and reliable performance on a num-
ber of numerical tests and compares favorably to existing techniques. In addition to its strong
convergence properties, our approach is not only applicable to stabilization (feasibility) prob-
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lems, but also performance (linear objective minimization) problems, an option which is crucial
in applications.
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