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Gain-Scheduled Filtering for
Time-Varying Discrete Systems

Nguyen Thien Hoang, Hoang Duong Tuan, Pierre Apkarian, and Shigeyuki Hosoe

Abstract—This paper deals with the design of gain-sched-
uled filters, whose state-space realization depends on real-time
parameters of plants. Similar to well-recognized advantages of
gain-scheduled controllers in control theory, gain-scheduled filters
are expected to provide enhanced performance in comparison
with customary nonadjustable filters. Our construction technique
is based on nonlinear fractional transformation (NFT) represen-
tations of systems that are a generalization of widely used linear
fractional transformation (LFT) representations. Both generalized

2 and discrete-time filter design problems are investigated
together with their extension to mixed designs. This study leads to
new linear matrix inequality (LMI) formulations, which in turn
provide an effective and reliable design tool. The proposed design
technique is finally evaluated in the light of simulation examples.

Index Terms—Linear fractional transformation (LFT), linear
matrix inequality (LMI), nonlinear fractional transformation
(NFT).

I. INTRODUCTION

ACOMMON tool to express the parameter dependence of
a system is certainly the linear fractional transformation

(LFT). Methods to transform many practical forms of parameter
dependence into LFT representations are given in [24]. Besides,
other forms of parameter dependence can be well approximated
by LFT representations to be embedded into the context of linear
parameter varying (LPV) control, as in [2], [14], and [15]. How-
ever, a critical issue with this transformation is the well-known
”curse of dimensionality,” i.e., the LFT systems have often too
large dimensions in terms of parameters for practical and ef-
fective uses. One may also argue that the LFT is not the best
system for representing systems with affine parameter depen-
dence such as those of polytopic type. The so-called nonlinear
fractional transformation (NFT) has been introduced in [18] for
uncertain continuous-time systems to overcome these difficul-
ties. An immediate advantage of the NFT is that it yields smaller
representations that better lend themselves to numerical treat-
ments.
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This paper investigates gain-scheduled filtering techniques
for time-varying NFT system described as

(1)

where , ,
, , ,

, and is the state, is the measured
output, is the output to be estimated, and
is the disturbance . The extra variables ,

are introduced to express the system nonlinear
parameter dependence. The time-varying parameter is as-
sumed to be gain scheduled, i.e., it is measured on line. Without
loss of generality, it is allowed to vary in the unit simplex

The state-space data in (1) are assumed linear in , i.e.,

(2)

The acronym NFT originates from the LFT. This can be viewed
by the fact that if the slack variables and are re-
moved from (1), then we can have the following equivalent rep-
resentation of the parameter-dependent system:

(3)
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One can see that (3) is highly nonlinear in the gain-scheduling
parameter and includes well-known parameter-dependent
classes as a particular case: The LFT representations corre-
spond to the independence from of all system matrices
except in (1), whereas polytopic systems correspond
to . As mentioned, most nonlinear parameter-de-
pendent systems including the NFT representations (1), or its
equivalence (3), can be alternatively expressed by the LFT, but
as it will be seen through some simple examples, this often
leads to impractical representations, whereas in stark contrast,
the NFT-based ones are easily handled.

Correspondingly, the filters for estimation of the output
of systems (1) and (3) are also time-varying and share an NFT
structure

(4)

where

(5)
and their sizes are the same as those of the matrices ,

, , , , ,
and in (1). The matrices on the right-hand side of (5)
are computed offline using efficient LMI software. Then, the
estimation of the output is easily updated online ac-
cording to (4) and (5). Note that we can have just the param-
eter-independent matrices because of the cross
products of those matrices with the parameter-dependent ma-
trices that constitute the measured output of (1). This is
necessary to obtain the convex formulations and will be clearly
clarified from the context of Section III. The following mixed
generalized error criterion is used to estimate

(6)

where and denote the norms inducing the general-
ized and norms, respectively. As in [13], the generalized

-norm is appropriate for handling time-domain peak errors,
whereas is most suitable for treating energy errors. Mini-
mization of the peak-error and minimization of the energy-error
are proved to be conflicting in [2], [8], and [13]. Therefore, a
parameter is introduced in (6) to attain some balance
between peak error and energy error constraints.

For linear time invariant (LTI) filtering with different ap-
proaches, e.g., interpolation approaches, Riccati equation-based
approaches and LMI-based approaches, one can refer to a va-
riety of papers [3], [9], [11], [17], [22] and references therein.
LTI filtering has been intensively addressed in the literature;
see, e.g., [5]–[7], [11], [12], and [23]. Forms of mixed
control have been introduced in [2], [8], and [13], whereas one

for mixed filtering has been used in [19], [20]. A com-
prehensive collection of performance criteria for control pur-
poses is given by [10] and [13]. Some related topics such as filter
order reduction and filtering for systems with stochastic uncer-
tainties can be found in [16], [18], and [21]. Note that robust
Kalman filtering exclusively detailed in [11] addresses some-
what narrower class of uncertainties via the use of Riccati equa-
tions, yielding LTI filters with the simple Luenberger observer
structure. In the time-varying case, the differential Riccati equa-
tion-based approaches exhibit computational impracticality for
real-time applications [10], wherein the LMI-based approaches
can stay viable [2], [14]. Up to date, in the robust control lit-
erature, the LPV control for both analog and discrete uncertain
systems has been considered by [2], [14], and [15]. However,
the counterpart of the gain-scheduled filtering for robust con-
trol problems of NFT systems (1) remains open and very chal-
lenging.

The layout of the paper is as follows. Section II develops
LMI-based norm characterizations of NFT systems, which are
then used in Section III to derive new LMI-based formulations
for the design of NFT filters. Validity and effectiveness of the
proposed techniques are assessed via a number of numerical ex-
periments in Section IV.

Notations in this paper are standard. Particularly, is the
transpose of the matrix , whereas ( ,
resp.) means that is negative definite (positive definite,
resp.) for symmetric matrices and . In symmetric block
matrices or long matrix expressions, we use as an ellipsis for
terms that are induced by symmetry, e.g.,

In addition, in long matrix inequalities involving matrix func-
tions of the parameter , we use, e.g.,

(7)

to save space. The bold capital letters such as , , , etc., are
used to emphasize matrix variables.

II. CHARACTERIZATIONS FOR NORM CONSTRAINTS

In this section, we provide LMI-based analysis for different
performance criteria of NFT filters. In other words, we are in-
terested in generalized and norms of the augmented
system formed by (1) and (4) with the estimation error

rewritten in the compact form

(8)

where

(9)
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and other matrices are defined accordingly [see (30) below].
With these definitions, the generalized -norm of the system
(8) is defined and analyzed first.

A. Generalized -Norm Characterization

The -norm of an LTI system is strictly connected with
its transfer function. For instance, the -norm of the transfer
function is defined as [8]

When is of finite impulse response (FIR), i.e.,
, this becomes the square norm

. Stochastically, the -norm is inter-
preted as the standard deviation of the output caused by the
normalized white noise input. Deterministically, the -norm
means the square root of the output energy under the normal-
ized impulsive input. The generalized -norm for systems is
defined as the peak of output values under normalized energy
input. Clearly, these norm definitions are restricted to strictly
proper continuous systems [13]. However, they are valid for
both proper and strictly proper discrete-time systems. Indeed,
the generalized -norm for system (8) is nothing but

(10)

In other words, (8) is said to have the generalized -norm less
than if and only if the following relation holds for any input

and the corresponding output :

(11)

For continuous systems, it is obvious that
, and therefore, the

counterpart of (10) is not well-defined if there is a feed-through
term in the output. That is why the generalized -norm is
defined only for strictly proper continuous systems. Contrarily,
it is obvious that ,
and thus, the definition (10) is valid, whatever the class of
discrete systems.

The stability, as well as the generalized -norm of (8), can
be examined with the help of the Lyapunov function

(12)

satisfying the two following inequalities:

(13)

(14)

with matrices and belonging to
the symmetric scaling class, which has been used in [2].

By additionally imposing

(15)
for all , satisfying (8) (i.e.,

), (13) and (14) lead to

(16)

(17)

Hence

(18)

meaning that the generalized -norm of (8) is indeed less than
.

Furthermore, in the zero input case ( ), by (13) and
(15)

(19)

which, according to Lyapunov theory, guarantees
as for any initial condition , thus showing the

asymptotic Lyapunov stability of (8).
To sum up, we state that (13) and (14), together with (15),

guarantee that (8) is stable with the generalized -norm less
than .

Meanwhile, all inequalities (13)–(15) can be readily rewritten
as matrix inequalities as follows.

• As and are linearly dependent on
by (8), the left-hand sides of (13)

and (14) are easily rearranged as quadratic functions in
. By using the Schur’s complement,

these quadratic functions are equivalent to the following
inequalities:

(20)

(21)

• By substituting , the left-hand
side of (15) becomes a quadratic function in , which
is also equivalent to the following matrix inequality via the
Schur’s complement:

(22)

It is clear that inequalities (20)–(22) are not LMIs. Here, we use
the linearization techniques, which have been introduced in [2]
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to render those inequalities linear at the expense of the insertion
of some slack variables.

Theorem 1: One has (11), guaranteeing the generalized
-norm of system (8) less than if there are a symmetric

matrix , scalings , , and slack ma-
trices , , satisfying inequalities (23)–(25), shown at the
bottom of the page.

Proof: The deduction from (23)–(25) to (20)–(22), respec-
tively, can be established along the lines of [2].

It is worth noting the following three points concerning the
conservatism of Theorem 1. First, we have to resort to the single
Lyapunov function (12) since we do not make any assumption
on the varying rate of the gain-scheduled parameters. If informa-
tion on this rate is available, then like [1], our result can be easily
modified to yield the corresponding LMI-based characteriza-
tion with parameter-dependent Lyapunov functions, which in
general are very efficient at handling the case of slowly varying
parameters. Second, the symmetric scalings are used instead of
the more general full-block scalings [15] to handle uncertainties.
Based on our experience in robust control, the latter are actually
not much better than the former. Moreover, the used symmetric
scaling class will lead to convex formulations for the filtering
problems in the next section, whereas the full-block one does
not. Third, the slack matrices , , and are still parameter
independent. This is unavoidable in later attractive convex for-
mulations for the filter design problems.

B. -Norm Characterization

The norm for system (8) is well understood as

(26)

i.e., (8) has the -norm less than if and only if

(27)

Paralleling the results in [2] leads to the following LMI charac-
terization.

Theorem 2: One has (27), guaranteeing the -norm of
system (8) less than if there exist and ,

, , , satisfying (28) and (29), shown at the bottom
of the page.

(23)

(24)

(25)

(28)

(29)
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III. NFT FILTER DESIGNS

Returning to the design problem for NFT filters (4), an im-
portant preparation step is to write the matrices of system (8) in
the following convenient forms:

(30)

with

(31)

and the variables

(32)

The next subsection considers the case of the generalized
filter design.

A. NFT Generalized Filter Design

All inequalities (23), (24), and (28), which characterize the
existence of a filter (4), are not LMIs in the variables , ,

, , , , and . To translate them into
LMIs, we choose the following linearly parameter-dependent
class of scaling matrices , :

(33)

It follows that (23)–(25) are rewritten as (34)–(36), shown at the
bottom of the page, where

(37)

A careful analysis of inequalities (34)–(37) reveals the fol-
lowing bilinear terms involving the filter variables , ,

, scaling variables , . and slack variable :

We resort to the structure of matrices in (31) and (32) to linearize
these terms according to the following steps.

• With the partitioning

(38)

defining

(39)

as well as

(34)

(35)

(36)
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• Define the new variables

(40)

and

(41)

(42)

(43)

• Apply the congruence transformations

diag

diag

diag

to (34)–(36), respectively.

• With the help of the structured matrices in (30) and (31),
bring into play the following identities, whose lengthy al-
gebraic verification is provided in the Appendix :

(44)

As a result, the nonlinear matrix inequalities (34)–(36) are trans-
lated into the following LMIs with respect to the newly intro-
duced variables , , , , , , , , , and ,

, , shown in (45)–(47) at the bottom of the page.
We recap these results in the next theorem.
Theorem 3: There is an NFT filter (4) that makes the estima-

tion (11) fulfilled if LMI’s (45)–(47) are feasible in , , ,
, , , , , , . The matrix data defining the

(45)

(46)

(47)
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filter (4) can be derived from a solution to (45)–(47) through the
formulas

(48)

Proof: For given matrices , , and , matrices , ,
and satisfying (40), (41), and (43) are

(49)

Substituting these values of , , and into (41)–(43) and
then (48) can be easily obtained by restoring , , ,

, , , , , , and .

B. NFT and Mixed Generalized Filter Designs

By similar arguments, an LMI characterization for the exis-
tence of filters is as follows.

Theorem 4: There is an NFT filter (4) that makes the estima-
tion (27) fulfilled if LMIs (50) and (51), shown at the bottom of
the page, are feasible in , , , , , , , , ,
and , as in (50) and (51). The matrix data defining the filter
(4) can be derived from a solution to (50) and (51) according to
(48).

Consequently, the mixed generalized filter design is
merely the combination of Theorems 3 and 4.

Theorem 5: A suboptimal filter (4) for (6) can be obtained
from the solution to the optimization problem in (52), shown at
the bottom of the page, according to (48).

C. Particular Cases: LFT and LPV Filters

It is interesting to gain insight into the linearizing transforms
(42) and (43) by considering two special cases.

If we impose , , ,
, , and ;

in (4), i.e., we obtain the LFT filter

(53)

then the corresponding linearizing transform of the filter ma-
trices is

(54)

and (45), (46), and (50) are obviously still LMIs in
.

On the other hand, if , i.e., (1) becomes the usual
linear parameter varying (LPV) system

(55)

then accordingly, . In other words, (4) is down to the
LPV filter

(56)

In this case, the scaling variables , (in Theorem 3), ,
(in Theorem 4), and their related elements are no longer

necessary. As a result, LMIs (47) and (51) in Theorem 3 and
4 disappear, whereas LMIs (45), (46), and (50) are reduced to

(50)

(51)

(45)-(47), (50), (51) (52)



HOANG et al.: GAIN-SCHEDULED FILTERING FOR TIME-VARYING DISCRETE SYSTEMS 2471

(57)–(59), shown at the bottom of the page, with the redefini-
tions

(60)

(61)

(62)

Note that LMI formulations for the (nonadjustable) LTI filter

(63)

follow from LMIs (57)–(59) by the restriction

(64)

IV. NUMERICAL EXAMPLE

The power and flexibility of the proposed approach are
demonstrated through the following example:

(65)

where

(66)

Two representations are used to handle the nonlinear uncer-
tain parameters and .

The NFT format

(67)

leads to NFT (1) with

(68)

Alternatively, the LFT format

(69)

(57)

(58)

(59)
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TABLE I
COMPUTATIONAL PERFORMANCES OF DIFFERENT FILTERS.

Fig. 1. GeneralizedH ,H performances of NFT-mixed filters.

leads to LFT (1) with

(70)

The Matlab LMI Control Toolbox [4] was used in all LMI-re-
lated computations. The dimension of 12 of the ’s in the LFT
representation (69) is very large in comparison with that equal
to 4 in the NFT format (67). This deteriorates the computational
efficiency and estimation performance so severely that our com-
puter equipped by a 1.3-GHz AMD CPU was unable to solve the
corresponding LMI formulations with the LFT model. In con-
trast, we easily solved the LMI formulations corresponding to
the NFT model. Applying the result of Theorems 1 and 2, upper
bounds on generalized , and norms of NFT (1), (68), in
the worst case, are found to be 2.2129 and 3.9961, respectively.

First, we consider the performance of the particularly de-
signed LFT filters (53), LPV filters with structure (56), and LTI
filters with structure (63). Table I displays different measures of
performance. As expected, NFT filters result in substantial im-
provements of generalized and performances over LFT,
LPV, and LTI filters. Such improvement is reaffirmed through
the comparison between Figs. 1 and 2, depicting the generalized

Fig. 2. GeneralizedH ,H performances of LTI-mixed filters.

TABLE II
MSE PERFORMANCES OF FILTERS

, , and mixed performances of NFT and LTI mixed filters
with different values of the tradeoff constant .

Next, the actual performance of the NFT and LTI filters are
evaluated via the mean square error (MSE) criterion

. Process noise and measurement noise are mutually
independent white Gaussian noises with the unity variance. The
gain-scheduling parameter was randomly generated for
every instant , and then, was appropriately obtained.
For each filter, the corresponding result was obtained over 1000
trials with 10 000 samples per every trial and listed in Table II.
Noting that the variance of the signal , of the
time-varying plant is 4.5683, whereas that of the nominal (LTI)
plant, i.e., , is 3.8641, time-varying uncertain-
ties essentially alter the statistics properties of the plant’s re-
sponse. In comparison with the variance of the signal of interest
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Fig. 3. Signal tracking of the NFT-mixed filter (� = 0:9).

Fig. 4. Ensemble-average squares of errors jz(k) � z (k)j g by gen. H
filters and the Kalman filter.

, the results affirm that all the NFT filters
achieve very good MSE performances. For the case of LTI fil-
ters, the LTI generalized filter outperforms the Kalman filter
designed for the nominal plant. Although the design noise con-
ditions are met exactly, the MSE performance of the Kalman
filter is slightly poorer than that of the LTI- filter.

Furthermore, the tracking performances the NFT-mixed filter
is shown in Fig. 3, confirming that it is a very good filter. For
the sake of comparison and clarity between NFT filters, LTI
filters, and the Kalman filter, the ensemble average squared error
sequences over 1000 trials are depicted in Figs. 4–6. The figures
all together demonstrate the superiority of NFT filters over the
LTI and the Kalman filters.

V. CONCLUSIONS

In this paper, we have developed new techniques for the
design of parameter-dependent filters. These filters explicitly
depend on real-time-available system parameters and, thus,
outperform customary nonadjustable filters. Our discussion

Fig. 5. Ensemble-average squares of errors jz(k) � z (k)j by H filters
and the Kalman filter.

Fig. 6. Ensemble-average squares of errors jz(k)� z (k)j by mixed filters
(� = 0:9) and the Kalman filter.

has also investigated specific parameter structures attached
to systems and filters. We have shown that the NFT structure
is especially attractive, not only to encompass a wider set of
parameter dependence but also for computational efficiency.
Of most importance, our design techniques are based on LMI
computations for which efficient and reliable software is now
available. The validity of the proposed techniques has been
confirmed through a number of simulations.

Finally, applications of similar techniques to equalization for
fading communication channels are currently under study.

APPENDIX

We will verify the identities in (44). In the steps to follow, the
left-hand sides of all the identities will be transformed to their
equivalent forms. The verifications of the equivalence between
these forms and the corresponding right-hand sides of identities
are trivial; hence, they are omitted to save the space. Verifica-
tions of identities in (44) are done in order:
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• Validity of :

• Validity of :

• Validity of :

• Validity of

:

• Validity of :

• Validity of :

• Validity of :
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• Validity of :

• Validity of :

• Validity of :

• Validity of :

• Validity of :
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