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Robust Filtering for Discrete Nonlinear Fractional
Transformation Systems

Nguyen Thien Hoang, Hoang Duong Tuan, Member, IEEE, Pierre Apkarian, Associate Member, IEEE, and
Shigeyuki Hosoe, Member, IEEE

Abstract—<AU: PLEASE REDUCE PAPER LENGTH TO 5
PAGES, THANKS?> In this brief, we consider robust filtering
problems for uncertain discrete-time systems. The uncertain
plants under consideration possess nonlinear fractional transfor-
mation (NFT) representations which are a generalization of the
classical linear fractional transformation (LFT) representations.
The proposed NFT is more practical than the LFT, and moreover,
it leads to substantial performance gains as well as computa-
tional savings. For this class of systems, we derive linear-matrix
inequality characterizations for 2, , and mixed filtering
problems. Our approach is finally validated through a number of
examples.

Index Terms—Linear-matrix inequality (LMI), nonlinear frac-
tional transformation (NFT), robust filtering.

I. INTRODUCTION

I N RECENT years, robust filtering has been intensively
studied in the literature (see, e.g., [4], [7], [11]–[13] and

references therein). This is mainly due to the emergence of
linear-matrix inequalities (LMIs) as an efficient and practical
tool to solve robust controller and filter design problems. The
LMI setting is really fit to handle robust optimization since
many realistic uncertainty constraints can be adequately and
accurately expressed by LMIs in a straightforward manner. In
contrast to the Riccati-equation-based approaches, which only
work for the restricted family of filters with simple Luenberger
observer structure (see, e.g., [7] and references therein), the
LMI-based approaches extend to filters with general structure
and can handle a much wider class of uncertain systems [4],
[11], [12]. Very often, the uncertain systems are assumed linear
in the uncertain parameters [4], [11], [12]. The more general
situation where uncertain parameters enter the system data in
a nonlinear way has been addressed in [8], [12]. The results of
[8] provide matrix inequalities, which are still highly nonlinear
in scaling variables, while those of [12] are in the form of
exact LMIs. As shown in [12], it is crucial to express nonlinear
parameter dependence of a system in a tractable form, which
in turn leads to LMI characterizations. For this purpose, the
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nonlinear fractional transformation (NFT) introduced in [12]
seems to be an eligible candidate.

The aim of this brief is to extend results of [12] to the case of
discrete-time systems. That is to solve robust filtering problems
for the discrete-time uncertain linear systems in the NFT form

(1)

where , , ,
, , and

is the state, is the measured output, is the output
to be estimated and is the noise, the variables

and are introduced to express the uncertain
components of the system. With preliminary normalization if
necessary, the uncertain parameter is assumed to lie in the
unit simplex

In sharp contrast with the linear fractional transformation (LFT)
[14], all the state–space matrix data in (1) are allowed to depend
linearly on the uncertain parameter

(2)

The NFT is advantageuos to the LFT since the NFT yields rep-
resentations with smaller dimensionality which in turn result in
the better efficacy of numerical treatments. It will be seen later
via a number of examples in Section IV that the NFT offers not
only substantial performance gains but also significant compu-
tational reduction. For robust filtering problems of LFT systems
and their treatments one can refer to [3], [10] or resort to the
simplification of linear parameter-varying (LPV) control [1] and
references therein.

It is worth stressing that the strictly proper filter structure

(3)
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used in [4], [11], and [13], in essence, corresponds to the class of
one-step-ahead predictors. Intrinsically, filtering problems are
solved by using the proper structure

(4)

with and . Furthermore, the estima-
tion criterion of filters is based on the mixed criterion

(5)

where and , respectively, denote the squares of the and
norms of the transfer function made out from (1) and (4)

which maps the noise sequence to the estimation error
sequence . The norm constraint introduced
in Section II is the error variance criterion and the norm
constraint is the error energy criterion. Therefore, (5) makes a
compromise between these two constraints with tradeoff con-
stant .

This paper develops an effective approach toward robust fil-
tering problems. The contribution is twofold. For the class of
NFT systems, first we give a new characterization of the
norm constraint then we derive new LMI formulations of ,

and mixed filtering problems.
We organize the paper as follows. Section II outlines charac-

terizations of the and norms of the above NFT systems.
Section III presents LMI synthesis conditions for the robust fil-
tering problems. Section IV provides validation for our tech-
niques through numerical examples. Due to space limitations,
the presentation is rather brief. The interested reader can refer
to the full version of the paper [5] for more technical details.

Notations used in the paper are fairly standard. denotes
the expectation operation. is the transpose of the matrix .
For symmetric matrices, or means is
negative definite or positive definite, respectively. In long matrix
expressions, we use the simplification

(6)

To avoid ambiguity, we write, for instance, or to indicate
the dimensions of matrices and matrix variables in boldface.

II. CHARACTERIZATIONS FOR PERFORMANCE CONSTRAINTS

This section provides LMI-based formulations for the and
performances of filters. This is done with the augmented

system formed by (1) and (4) having the estimation error
as the output to be minimized

(7)

where

and

For convenience, (7) is temporarily written in the virtual form

(8)

Then, the -norm (see, e.g., [6]) is defined as

Trace

where satisfies

Actually, when this norm is exactly the

standard deviation of the output, .
Hereafter, we consider the following robust performance

of system (7):

Trace (9)

In order to compute this upperbound, we take the Lyapunov
function candidate

which, for any nonzero , satisfies the following two in-
equalities:

(10)

(11)

where the matrix is such that

Trace (12)

and matrices , belonging to the symmetric
scaling sets used in [1], [12], hence are such that for all ,

in (7)

(13)
Using (13) and Schur’s complement, it follows from (10), (11)
and (13) that

(14)

(15)

The system (8) is stable by (14) and . Further, it
is apparent from (12) and (15) that (9) holds. Thus, we conclude
that (10), (11) together with (13) secure both the stability and
the upper bound on the performance of the system (7).
Then, the theorem below follows along the line of [1, Th. 1].
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Theorem 1: The norm of the system (7) is less than
if for every , there are symmetric matrices , ,
scalings , and slack matrices ,

, satisfying the following inequalities:

(16)

(17)

(18)

Trace (19)

where , , ,

, , ,
, , ,

, , ,

, , .
Recall that the norm of the system (7) is

With a scaling pair ,

if we have

(20)

where with being
the Lyapunov function, then

So

(21)

implying the norm of the system (7) is less than . Par-
alleling [1, Th. 2], we have the following theorem.

Theorem 2: The performance condition (21) is satisfied if
for every there are matrices , , ,

, and satisfying the following inequalities:

(22)

(23)

with , , ,

, , ,
, , ,

.

III. ROBUST FILTERS FOR NFT

With the variable , we write ,
and in (7) as

(24)

where , , , ,

, , ,

.
To translate (16)–(18) and (22), (23) into LMIs, we have

to make some restrictions: ,

, ;

, , , ,
, , , i.e., the basic

variables are linearly parameter-dependent while the slack
variables are parameter-independent. As a result, (18), (19),
and (23) immediately become LMIs

(25)

Trace (26)

(27)

Section III-A and B will equivalently transform the remaining
inequalities (16), (17), and (22) into LMIs via appropriate con-
gruent transformations and variable changes.
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A. Robust Filter

With the partition , it fol-

lows from (24) that the only bilinear term in inequalities (16)

and (17) is .

To linearize it let us introduce and

variable changes

(28)

Applying the congruence transformations
and to

(16) and (17), respectively, results in

(29)

(30)

where and ,

, ,

, , ,
, , ,

, , ,

, ,
(see [5] for more technical

details).
Theorem 3: There is a filter (4) satisfying the estimation cri-

terion (9) whenever the LMIs (25), (26), (29), and (30) are fea-
sible in the decision variables , , , , , , , ,

, . The matrix data , , , defining the filter (4)
can be derived from a solution to matrix inequalities (25), (26),
(29) and (30) via the formula

(31)

Proof: Given , satisfies (28),

hence, (31) follows easily.

B. and Mixed Filters

By arguments similar to those in Section III-A, the theorem
below holds.

Theorem 4: There is a filter (4) satisfying the estimation cri-
terion (21) whenever the LMIs (27) and (32) are feasible in ,

TABLE I
H PERFORMANCES BY DIFFERENT LMI FORMULATIONS FOR

EXAMPLE 1 IN [11]

, , , , , , , . According to (31), the filter data
, , , defining the filter (4) can be derived from a

solution to (27), and the LMI

(32)

here, , ,

, , ,
, , ,

, .
Consequently, a suboptimal robust filter (4) that solve problem
(5) is obtained from the solution to the optimization problem

(33)

with decision variables , , , , , , , , ,
, , , , , , , and via formula (31).

IV. NUMERICAL EXAMPLES WITH MATLAB

LMI CONTROL TOOLBOX [2]

A. Polytopic Case

The effectiveness of our LMI formulations and how filter
structure (4) can be better than (3) are demonstrated via the solu-
tions to the two plants used as examples in [11]. The simplifica-
tion of Theorem 3 is used as scaling pairs are no longer needed
in this case.

First, consider Example 1 in [11] the upper bound on the
norm of the corresponding plant is 8.47 . Results are
in Table I where improvement ratios correspond to the ratios of
the norm of the plant and the performances achieved
by each robust filter. Clearly, the strictly proper filter structure
(3) used in [4], [11] give almost no improvement in comparison
with the zero filter (the filter that takes zero as the estimate)
while in contrast, a significant improvement is observed with
proposed filter structure (4).

Next, we move to Example 2 in [11], accordingly, the upper
bound on the norm of the plant under our considerration is
18.11 . Results are listed in Table II. Once again, the
improvement ratio greater than 29 obtained by our formulation
shows the effectiveness of the proper filter structure over the
strictly proper one in [11], [4].



IE
EE

Pr
oo

f

HOANG et al.: ROBUST FILTERING FOR DISCRETE NFT SYSTEMS 5

TABLE II
H PERFORMANCES BY DIFFERENT LMI FORMULATIONS FOR

EXAMPLE 2 IN [11]

B. NFT and LFT Cases

Our example demonstrates that different representations and
different filter structures (4), (3) may result in dramatically dif-
ferent estimation performances. The plant is

(34)

where

, , ,

, , ,

, , , ,

.
The LFT representation of plant (34) is in the form (1) with

(35)

Alternatively, its NFT is in the form (1) with

TABLE III
H PERFORMANCES OF FILTERS WITH FILTER STRUCTURES AND

SYSTEM REPRESENTATIONS

TABLE IV
H PERFORMANCES OF FILTERS WITH FILTER STRUCTURES AND

SYSTEM REPRESENTATIONS

TABLE V
PERFORMANCES OF MIXED FILTERS FOR NFT MODEL (1), (36) BY

TRADE-OFF CONSTANTS (�)

(36)

The dimension 12 of in LFT (1), (35) is three times greater
than that of the NFT (1), (36), severely affecting the computa-
tional efficiency and the estimation performances of the filters
as described in Tables III and IV. Table V lists mixed perfor-
mances as well as and performances of mixed filters
corresponding to different tradeoff constants . We also consider
strictly proper filters (3) with the NFT (1), (36). Computed per-
formances are also shown in Tables III and IV. Tables all reveal
the performance improvements due to the proper filter structure.
Note that improvement ratios are defined as before and the upper
bounds on the and norms of this plant are 2.641 and
5.5908, respectively.

V. CONCLUSION

In this paper, we have developed new techniques to design
robust filters which minimize the estimation error in the sense
of the norm, the norm or a prescribed combination of
these norms. The proposed techniques are applicable to a wide
range of uncertain systems admitting an NFT representation.
The resulting design procedure reduces to solving LMIs; thus,
it is highly practical. Finally, the validity and power of this pro-
cedure have been demonstrated on a number of numerical ex-
amples.
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