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Brief Papers

Adaptive Control for Nonlinearly Parameterized Uncertainties
in Robot Manipulators

N. V. Q. Hung, Member, IEEE, H. D. Tuan, Member, IEEE, T. Narikiyo, and P. Apkarian

Abstract—In this brief, a new adaptive control framework to
compensate for uncertain nonlinear parameters in robot manip-
ulators is developed. The designed adaptive controllers possess a
linear parameter structure, guarantee global boundedness of the
closed-loop system as well as tracking of a given trajectory within
any prescribed accuracy. Our design approach takes advantage
of a Lipschitzian property with respect to the plant nonlinear pa-
rameters. The outcome is that a very broad class of nonlinearly
parameterized adaptive control problems for robot manipulators
can be solved using this technique. Another feature of the pro-
posed method is the design of low-dimensional estimator, even 1-D
if desired, independently of the unknown parameter vector dimen-
sion. Simulations and experiments in friction compensation task
for low-velocity tracking of a 2 degree-of-freedom planar robot
demonstrate the viability of the technique and emphasize its ad-
vantages relatively to more classical approaches.

Index Terms—Adaptive control, friction compensation, motion
control, nonlinearities, parameter estimation, robot control, uncer-
tain systems.

I. INTRODUCTION

THE ORIGINAL and popular adaptive control theory usu-
ally deals with linear parameterizations (LP) of uncertain-

ties, that is, it is assumed that uncertain quantities in dynamic
systems are expressed linearly with respect to unknown param-
eters. Actually, most developed approaches such as gradient-
based ones or recursive least squares [2], [11] rely heavily on
this assumption. In the literature of robot control, most adap-
tive control techniques exploit the linear structure of manipu-
lator dynamics [3] and effective techniques have been proposed
in this context [11].

However, nonlinear parameterizations (NP) are very common
in practical robot manipulators. A typical example is the
Stribeck effect of frictional forces at joints of the manipulators
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[1]. Such an effect results in undesired tracking errors, espe-
cially at the low-velocity tracking task [8]. Adaptive controls
for robot manipulators (see [9] and [12] for a survey) cannot
successfully compensate for the Stribeck effect since they are
based on the LP structure of unknown parameters. Also, most
of adaptive friction compensation schemes in the literature of
motion control only deal with either frictions with LP structure
[5] or linearized models at the nominal values of the Stribeck
friction parameters [7]. Recently, a Lyapunov-based adaptive
control has been designed to compensate for the Stribeck effect
under set-point control [4]. There are very few results in the
literature addressing the adaptive control problem for NP of
robot manipulators in a general manner.

In this brief, we exploit the recent results of our work [13]
to formulate a general framework of adaptive control to com-
pensate for uncertain nonlinear parameters appearing in robot
manipulators. The proposed approach is applicable to any NP
under Lipschitzian conditions. These conditions are satisfied
for a broad class of practical systems. It is worth noticing that
Lipschitzian parameterizations include as special cases convex/
concave and smooth parameterizations. From the viewpoint of
adaptive control for NP, we also redesign the traditional adap-
tive control for LP. The resulting adaptive control incorporates
estimators of minimum dimension (1-D) independently of the
parameter dimension.

The organization of this brief is as follows. In Section II, we
discuss dynamic model of robot manipulators in the presence of
nonlinearly parameterized uncertainties. Some results of adap-
tive controls for NP in [13] will be recalled at this stage. As main
contributions of this brief, adaptive controllers for robot manip-
ulators are synthesized in Section III. A general framework of
adaptive control for NP in the system is developed first. Then,
adaptive control with 1-D estimators is derived. In Section IV,
an application of our adaptive control for friction compensa-
tion in tracking problem of a 2 degree-of-freedom (DOF) planar
robot is introduced together with comparative simulations and
experiments. Some concluding remarks are given in Section V.

This brief is the journal version of the conference paper [6].

II. PROBLEM STATEMENT

The dynamic model of a robot manipulator can be described
by the following equation:

(1)
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where is the joint coordinates of the manipulator,
is the torque applied to the joints, is the sym-

metric positive definite inertia matrix of the links,
is a matrix representing Coriolis and centrifugal effects,

is the gravitational torques, and
represents dynamics whose constant or slowly-varying uncer-
tain parameter appears nonlinearly in the system. Note that

can be any component of the system state, for instance
.

We focus on the case where the uncertainties admit a general
multiplicative form, i.e.,

(2)

Here stands for the th joint of the manipulator and functions
, are assumed nonlinear and Lipschitzian

in . As it will be discussed
later, a typical example of uncertainty admitting this form
is the Stribeck effect of frictional forces in joints of robot
manipulators [1].

The Lipschitzian condition for functions is recalled first.
Definition 1: Functions and

are said to be Lipschitzian in
if there exist continuous functions such
that the following inequalities:

hold true.
Here and after, denotes the standard Euclidean norm.

Note that all smooth or convex/concave functions satisfy the
previously mentioned Lipschitz condition.

Next, for system (1), the following properties are very impor-
tant [3].

Property 2.1: The inertia matrix is positive definite and
satisfies , with

, where are minimal and maximal eigenvalues of
.

Property 2.2: The matrix is skew-sym-
metric.

Property 2.3: The sum of the first three terms in the LHS
of (1) are expressed linearly with respect to a suitable set of
constant dynamic parameters

(3)

where is a nonlinear matrix function and
is a vector of unknown dynamic parameters.

The following result of [13] will be frequently used in subse-
quent developments.

Lemma 1: Given Lipschitzian functions ,
let and be defined as

(4)

then, for , the following inequalities:

(5)

hold true for any .
Proof: See Appendix A.

Our goal is to control the rigid manipulator to track a
given trajectory by designing a nonlinear adaptive
control to compensate for all uncertainties which are either
LP uncertain dynamics according to Property 2.3 or NP as
defined by (2), in system (1). For simplicity of the deriva-
tions throughout the brief, it is assumed that , i.e.,

. At the end of Section III-B, we
will see that the general case can be easily retrieved
from our results. While traditional adaptive controls can be
effectively applied only in the context of LP [11], Lemma 1
reveals an ability to approximate the NP by its certain part plus
a part of LP. We will use the key property (5) to design a novel
nonlinear adaptive control for the system.

III. MAIN RESULTS

Define vector as a “velocity error” term

(6)

where is an arbitrary posi-
tive definite matrix, is the position tracking
error, and is called the “reference ve-
locity.” According to Property 2.3, the dynamics of the system
(1) can be rewritten in terms of the “velocity error” as

(7)

with the identity
used.

By definition (6), the tracking error obtained from
through the previous designed first-order low-pass filter is
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where is the tracking error of joint th of the robot ma-
nipulator at the time . If , then

(8)

The relation (8) means that whenever
. Therefore, in the next development, the

model (7) is used for designing a control input which
guarantees the velocity error under LP uncertainty
and NP uncertainty . As shown before, such performance of

ensures the convergence to 0 of tracking error when
.

A. Discontinuous Adaptive Control Design

Consider a quadratic Lyapunov function candidate

By Property 2.2, its time derivative can be written as

where the notations on are neglected for sim-
plicity. In view of relation (5), it follows that

(9)

With the definitions

(10)

the inequality (9) can be rewritten as

(11)

Therefore, the control input

(12)

results in

(13)

where and are parameter errors and
is an arbitrary positive definite matrix.

To derive update laws for the parameter estimates, we employ
the following Lyapunov function:

(14)

where are arbitrary positive definite matrices. It follows
from (13) that

(15)
Therefore, the following update laws:

(16)

yield

(17)

The last inequality implies that is decreasing, and
thus is bounded by . Consequently, and
must be bounded quantities by virtue of definition (14). Given
the boundedness of the reference trajectory , one
has from the system dynamics (7). Also, rela-
tion (17) gives ,
i.e., , where denotes the minimum
eigenvalue of . Applying Barbalat’s lemma [11] yields

. However, the control (12) is still discon-
tinuous at , and thus is not readily implemented.
As a next stage, we make the control action continuous by a
standard modification technique which leads to a practically
implementable control law.

B. Continuous Adaptive Control Design

A continuous control action can be derived by modifying
the velocity error . First, introduce a new variable by
setting

(18)
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Fig. 1. Smooth function � �� �.

where

(19)

with , for
.

It is standard to show that such is continuously differ-
entiable in time (see also Fig. 1). Using Property 2.3, the dy-
namics of system (1) in terms of the modified “velocity error”

is expressed by

(20)

where
.

Now, take the following Lyapunov function

(21)

Like (11), it is clear that

(22)

where let us recall that is already defined by formula (10).
Note that whenever , one has

and for

(23)

Hence, introducing the saturated function

when

when
(24)

and taking (22) and (23) into account, the following continuous
control input:

(25)

with

together with the update laws

(26)

yield

Finally, by a similar analysis, as done in Section III-A,
the error of the system converges to 0, or equivalently

. From relation
(8), the tracking error converges to
as . We are now in a position to sum up our results.

Theorem 1: The adaptive controller defined by (18), (19), and
(24)–(26) enables system (1) to asymptotically track a desired
trajectory within a precision of

.
Remark 1: In the general case where , it follows in

a straightforward manner from Lemma 1 that

Therefore, with a Lyapunov function defined in (21), where

Theorem 1 remains valid for .
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Remark 2: The framework of this brief together with the ap-
proach of [13] can provide a construction technique for a broad
class of nonlinearly parameterized uncertainties not only in mul-
tiplicative form, but also in fractional form and their combina-
tions thereof.

Remark 3: The new variable (18) and the function (19) are
properly designed to make the stabilizing control (12) contin-
uous. Of course, there are other appropriate choices other than
the variable (18) and the function (19), which also make the sta-
bilizing control (12) continuous, too.

C. 1-D Estimator

In the design of Sections III-A and III-B, the dimensions of
estimators are equal to the number of unknown parameters in
the system, i.e., . Thus, increasing the number
of links may result in estimators of excessively large dimen-
sion. Tuning updating gains for those estimators then
becomes a very laborious task. In this section, we show that it
is possible to design an adaptive controller for system (1) with
simple 1-D estimators independently of the dimensions of
the unknown parameters and .

For that purpose, first consider the term in (9), where
. It is clear that

Also note from (10) that

As a result, the inequality (11) can be rewritten as follows:

where

Note that is the function whose notations on variables
are neglected for simplicity. Therefore, with the

definitions

the following control input:

(27)

where and are arbitrary positive scalars, together with the
following Lyapunov function:

(28)

yield

Therefore, the discontinuous control (27) results in the conver-
gence to 0 of velocity error , which ensures the convergence
to 0 of tracking error when . As in Section III-B, we
can alter the discontinuous control (27) into a continuous one as
follows:

(29)

where

Then the continuous control (29) ensures the convergence to
of the tracking error as

.

IV. NONLINEAR FRICTION COMPENSATION

In this section, we examine how effectively our designed
adaptive controllers can compensate for the frictional forces in
joints of robot manipulators.

A. Friction Model and Friction Compensators

Frictional forces in system (1) can be described in different
ways. Here, we consider the well-known Amstrong–Helouvry
model [1]. For joint , the frictional force is described as

(30)

where are coefficients characterizing the Coulomb
friction, static friction, and viscous friction, respectively, and
is the Stribeck parameter. Note that the friction term (30) can be
decomposed into a linear part and a nonlinear part as

(31)
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where

(32)

with , and

(33)

Practically, the frictional coefficients are not exactly known. In
such a case, the frictional force can be compensated by a tra-
ditional adaptive control for LP. However, the situation becomes
nontrivial when there are unknown parameters appearing non-
linearly in the model of .

The NP friction term of joint , can be expressed in the
form (2) with

(34)

where

Clearly, and are Lipschitzian in with Lipschitzian co-
efficients . Also, we have

. Therefore, by Theorem 1, the following adap-
tive controller enables the system (1), (30), and (34) to asymp-
totically track a desired trajectory within a precision of

:

(35)

where

(36)

Note that with the control (35), the term compensates for
the LP frictions .

B. Simulations

A prototype of a planar 2DOF robot manipulator is built to
assess the validity of the proposed methods (see Fig. 2). The
dynamic model of the manipulator and its linearized dynamics
parameter are given in Appendix B.

The manipulator model is characterized by a real parameter
, which is identified by a standard technique (See Table III in

Appendix B). The parameters of friction model (30) are chosen
such that the effect of the NP frictions are significant, i.e.,

Fig. 2. Prototype of robot manipulator.

TABLE I
PARAMETERS OF THE CONTROLLERS FOR SIMULATIONS

In order to focus on the compensation of nonlinearly parame-
terized frictions, we have selected the objective of low-velocity
tracking. The manipulator must track the desired trajectory

.
Clearly, the selected trajectory contains various zero velocity
crossings.

For comparison, we use the following two different con-
trollers to accomplish the tracking task.

• A traditional adaptive control based on the LP structure to
compensate for uncertainty in dynamic parameter of the
manipulator links and the linearly parameterized frictions

(32) in joints of motors

(37)

The gains of the controller are chosen as in Table I,
.

• Our proposed controller (35) with the same con-
trol parameters for LP uncertainties. Additionally,

for NP friction
compensation, .

Both controllers start without any prior information of
dynamic and frictional parameters, i.e.,

.
Tradition LP Adaptive Control Versus Proposed Control: It

can be seen that the position error is much smaller with the
proposed control (see Fig. 3), especially at points where ma-
nipulator velocities cross the value of zero. Indeed, the position
error of joint 1 decreases about 20 times. The position tracking
of joint 2 is improved in the sense that our proposed control
obtains a same level of position error as the one of LP, but the
bound of control input is reduced about three times. This means
that the nonlinearly parameterized frictions are effectively com-
pensated by our method.

1-D-Estimators: The performances of the controller with
1-D-estimators (29) is shown in Fig. 4. One estimate is
designed for the manipulator dynamics , one is for
the LP friction parameters , and one is for the NP
friction parameters . Thus, by using 1-D-estimators,
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Fig. 3. Simulation results: (left) Tracking errors of joints and (right) characteristics of control inputs. (a) Traditional LP adaptive controller (37). (b) Proposed
controller (35).

Fig. 4. Simulation results for proposed 1-D-estimators (29): (left) Tracking errors of joints (right) the adaptation of the estimates and characteristics of
control inputs. (1) ��; (2) ����; (3) ����.

the estimates dimension reduces from 11 to 3. The resulting
controller benefits not only from a simpler tuning scheme, but
also from a minimum amount of online calculation since the
regressor matrices reduce to the vectors
in this case. Indeed, under the current simulation environment

(WindowsXP/MATLAB Simulink), controller (29) requires a
computation load 0.7 time less than the one of controller
(35) and only 1.2 times bigger than the one of tradition LP
adaptive control (37). Also, it can be seen in Fig. 4 that
these advantages result in a faster convergence (just few
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Fig. 5. Experimental results for traditional LP adaptive controller (37): (left) Tracking errors of joints and (right) characteristics of control inputs.

Fig. 6. Experimental results for proposed controller (35): (left) Tracking errors of joints and (right) characteristics of control inputs.

instants after the initial time) of the tracking errors to the
designed value (0.0035 rad in this simulation). Note that the
estimates converge to constant values since the adaptation
mechanism in controller (29) becomes standstill whenever the
tracking errors become less than the design value. However,
it is worth noting that the maximum value of control inputs
of controller (29), which is required only at the adaptation

process of the estimates, is about six times bigger than the
one of controller (35). It can be learned from the simulation
result that controller (29) can effectively compensate the NP
uncertainties in the system provided that there is no limitation
to the control inputs. Therefore, controller (35) can be a good
choice for practical applications whose the power of actuators
are constrained.
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Fig. 7. Experimental results: Estimates of unknown parameters with traditional LP adaptive controller (37). (a) Estimate ��: (1)—�� , (2)—�� , (3)—�� . (b) Esti-
mate ����: (1) �� ; (2) �� ; (3) �� ; (4) �� .

Fig. 8. Experimental results: Estimates of unknown parameters with proposed controller (35). (a) Estimate ��: (1) �� ; (2) �� ; (3) �� . (b) Estimate ����: (1) �� ; (2)
�� ; (3) �� ; (4) �� . (c) Estimate ����: (1) �� ; (2) �� ; (3) �� ; (4) �� .

C. Experiments

All joints of the manipulator are driven by YASKAWA
dc motors UGRMEM-02SA2. The range of motor power is

Nm. The joint angles are detected by potentiometers
(350 ). Control input signals are sent to each dc motor
via a METRONIX amplifier ( 35 V, 3 A). The joint veloc-
ities are also calculated from the derivation of joint positions
with low-pass filters. Designed controller is implemented on
ADSP324-00A, 32-bit DSP board with 50 MHz CPU clock.
I/O interface is ADSP32X-03/53, 12 bit A/D, D/A card. The
DSP and the interface card are mounted on Windows98-based
PC. The sampling time is 2 ms.

Here again, the performances of controller (37) and the pro-
posed control (35) are compared. The gains of the controllers are

chosen as in Table II. The additional control parameters for NP
friction compensation with (35) are

.
Fig. 5 depicts the performances of LP adaptive controller

(37). The fact that the trajectory tracking error of joint 2 be-
come about twice smaller as shown by Fig. 6 highlights how
effectively the NP frictions are compensated by the proposed
controller. The estimates of unknown parameters with adapta-
tion mechanisms in LP adaptive controller (37) and proposed
controller (35) are shown by Figs. 7 and 8, respectively. Since
the adaptation mechanism of LP adaptive controller (37) can not
compensate for the NP friction terms, its estimates can not con-
verge to any values able to make the trajectory tracking errors
converge to 0. For the proposed controller, a better convergence
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Fig. 9. Experimental results: FFT of trajectory tracking errors for (left) traditional LP adaptive controller (37) and (right) proposed controller (35).

TABLE II
PARAMETERS OF THE CONTROLLERS FOR EXPERIMENTS

of the estimates can be observed. That the motion of the ma-
nipulator has lower frequencies in case of the proposed control
(see Fig. 9) shows its more robustness in face of noisy inputs.
These results can be obtained because the NP frictions are com-
pensated effectively.

Remark 4: The non-zero mean value of the tracking errors is
caused by the presence of unknown disturbances or unmodeled
dynamics. These dynamics, therefore, may cause the drift in the
parameter estimates. Other well-known techniques using prior
information or update law modification [10] may be additionally
applied for robustness improvement of the adaptive schemes.

Remark 5: The experiment using the controller with 1-D-
estimators is not reported here because the power required for
the execution of the control inputs was higher than the maximum
power of the robot actuators.

V. CONCLUSION

We have developed a new adaptive control framework which
applies to any nonlinearly parameterized system which satis-
fies a general Lipschitzian property. This allows us to extend
the scope of adaptive control to handle very general control
problems for robot manipulators since Lipschitzian parameter-
izations include as special cases convex/concave and smooth
parameterizations. As byproducts, the approach permits also

to treat uncertainties in fractional form, multiplicative form,
and their combinations thereof. When the structure of adaptive
control for NP is exploited to redesign the traditional adaptive
control for LP, we have shown how an adaptive control with
low-dimensional estimators (1-D-estimators) can be designed.
This means system designers will have more freedom to design
their tuning schemes by balancing the dimension of the design
estimators and the power required by system control inputs.
This brief opens an approach to implement adaptive controls for
robot manipulators as well as facilitates the tuning of practical
control systems.

APPENDIX

A. Proof of Lemma 1

Useful properties for adaptation of NP to Lipschitzian func-
tions appearing in multiplicative form can be found in [13].
Here, we give a brief proof for Lemma 1. Since

it is sufficient to prove that

(38)
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TABLE III
PARAMETERS OF THE 2DOF MANIPULATOR

where are defined in (4) and note that the subscripts
is neglected for simplicity.
Actually

(39)

and

(40)

leads to (38).

B. Model and Parameters of the Manipulator

The equation of motion in joint space for a planar 2DOF ma-
nipulator is

or

(41)

where

are the masses of link and motor , respectively.
are the moment of inertia relative to the center of mass

of link and the moment of inertia of motor . is the distance
from the center of the mass of link to the joint axis. is the
length of link . is the gear reduction ratio of motor .

A constant vector of dynamic parameters can be
defined as follows:
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