
SECOND-ORDER NONSMOOTH

OPTIMIZATION FOR H∞ SYNTHESIS

Vincent Bompart ∗ Dominikus Noll ∗∗

Pierre Apkarian ∗∗∗

∗ ONERA-CERT, 2 av. Edouard Belin, 31055 Toulouse,

France

and Université Paul Sabatier, Institut de Mathématiques,

118 route de Narbonne, 31062 Toulouse, France,

bompart@cert.fr
∗∗ UPS-Institut de Mathématiques, noll@mip.ups-tlse.fr
∗∗∗ ONERA-CERT and UPS-Institut de Mathématiques,

apkarian@cert.fr

Abstract: We consider optimization programs which arise in automatic control
applications for H∞ controller synthesis. We optimize functions which are finite or
infinite maxima of smooth functions, or of semismooth functions like the maximum
eigenvalue functions. From a nonsmooth semi-infinite problem formulation, a
second-order algorithm is developed. Our method is tested on several examples
in controller synthesis.

Keywords: H∞ synthesis, semi-infinite programming, sequential quadratic
programming (SQP), nonsmooth optimization, trust-region.

1. INTRODUCTION

We consider a linear time-invariant plant de-
scribed in standard form by the state-space equa-
tions

P (s) :





ẋ
z
y



 =





A B1 B2

C1 D11 D12

C2 D21 0p2×m2









x
w
u



 ,

where x ∈ R
n, w ∈ R

m1 , u ∈ R
m2 , z ∈ R

p1 and
y ∈ R

p2 .

Let u = Ky be a static, internally stabilizing
output feedback, K ∈ R

m2×p2 . We denote by
Tw→z(K) the closed-loop transfer function of the
performance channel from w to z for a fixed static
controller K. We use the more compact notation

T (K,ω) = Tw→z(K)(jω).

Denoting by λ1 the maximum eigenvalue function
on the space of Hermitian matrices, and by σ̄ the

maximum singular value of p1 ×m1 matrices, we
define

f(K,ω) = λ1(T (K,ω)HT (x, ω)) = [σ̄(T (K,ω))]
2
.

where XH stands for the conjugate transpose of
a complex matrix X .

The square of the H∞ norm is then defined as

‖T (K)‖2
∞ = max

ω∈[0,∞]
f(K,ω).

Consequently, we are interested in the function
f(K) = maxω∈[0,∞] f(K,ω), which is nonsmooth
with two possible sources of nonsmoothness: (a)
the infinite max-operator, and (b) the nonsmooth-
ness of λ1, which may lead to nonsmoothness of
f(·, ω) for fixed ω.

The H∞-synthesis problem is now the optimiza-
tion program

min
K∈Rm2×p2

max
ω∈[0,∞]

f(K,ω). (1)

Using standard substitutions (as specified in
(Apkarian and Noll, 2006b), for example), a sim-
ilar cast is obtained for the synthesis of dynamic
controllers K.

First-order nonsmooth optimization methods for
(1) have been developed in (Apkarian and Noll,
2006b). Since first-order methods sometimes con-
verge slowly in the neighborhood of a local mini-
mum, a second-order approach should be used to
speed up the minimization process at the end. The
purpose of this contribution is to present such a
second-order method, and to combine it with the
first-order algorithm (Apkarian and Noll, 2006b).

2. APPROACH VIA SEMI-INFINITE
PROGRAMMING

In this section, we focus on the unconstrained
program (1). In order to comply with the usual
notation in nonlinear optimization, we replace the
unknown controller data K by a suitable vector
x ∈ R

m2p2 , respectively, for a dynamic controller
K of order k, by x ∈ R

(m2+k)(p2+k).

We assume that for every given controller x,
the set of active frequencies Ω(x) := {ω ∈
[0,∞] : f(x) = f(x, ω)} attaining the maxi-
mum f(x) is finite. This hypothesis is satisfied
in all practical cases, see e.g. (Boyd and Balakr-
ishnan, 1990), (Bompart et al., 2006). Moreover,
to simplify the outset, we will focus during the
following on the case where the multiplicity of
λ1(T (x, ω)HT (x, ω)) is one at all active frequen-
cies ω. This simplification is motivated by our
experience, which shows that nonsmoothness (b)
rarely occurs in practical cases. Extension to the
general nonsmooth case follows the same lines,
and is presented in the full version of this paper
(Bompart et al., 2006), see also (Noll and Apkar-
ian, 2005).

It is useful to cast program (1) as an equivalent
semi-infinite program

minimize t
subject to f(x, ω) − t ≤ 0, ω ∈ [0,∞]

(2)

with decision variable (x, t). Three classes of nu-
merical methods for solving semi-infinite pro-
grams are discussed in (Hettich and Kortanek,
1993): exchange of constraints, discretization, and
local reduction. Here we use a local reduction
method. The main ideas are presented below, see
also (Jongen et al., 2004) for this approach.

Let (x̄, t̄), with t̄ = f(x̄), be a local solution of (2).
Indexing the active frequencies ω̄1, . . . , ω̄p at x̄, we
suppose that the following conditions are satisfied

(i) f ′
ω(x̄, ω̄i) = 0, i = 1, . . . , p.

(ii) f ′′
ωω(x̄, ω̄i) < 0, i = 1, . . . , p.

(iii) f(x̄, ω) < f(x̄), for every ω /∈ {ω̄1, . . . , ω̄p}.

These three conditions express the fact that the
frequencies ω̄i ∈ Ω(x̄) are the strict global max-
imizers of f(x̄, ·). Notice that condition (iii) is
the finiteness hypothesis already mentioned, while
condition (ii) is slightly conservative, because the
necessary optimality condition only tells us that
f ′′

ωω(x̄, ω̄i) ≤ 0.

Conditions (i) and (ii) allow for the implicit func-
tion theorem, according to which we can find
a neighborhood U of x̄, and neighborhoods Vi

of ω̄i (i = 1, . . . , p), together with C1-functions
ωi : U → Vi, such that the following conditions
are satisfied

(iv) ωi(x̄) = ω̄i, i = 1, . . . , p.
(v) f ′

ω (x, ωi(x)) = 0, i = 1, . . . , p.
(vi) Whenever x ∈ U and ω ∈ Vi satisfy

f ′
ω(x, ω) = 0 then ω = ωi(x).

The first two conditions are consequences of the
implicit function theorem. By f ′′

ωω(x̄, ω̄i) < 0,
and shrinking U if required, we may arrange that
f ′′

ωω (x, ωi(x)) < 0 for x in U , so that ωi(x)
are local maxima of f(x, ·). Moreover, by (vi),
ωi(x) is the only critical point of f(x, ·) in Vi.
By second-order optimality, it is therefore a local
maximum. Altogether, we have shown that for
x ∈ U , f(x, ω) ≤ t for all ω ∈ [0,∞] is equivalent
to f (x, ωi(x)) ≤ t for i = 1, . . . , p. In other words,
(1) is locally equivalent to the finite constrained
program

minimize t
subject to f (x, ωi(x)) − t ≤ 0, i = 1, . . . , p

(3)

This allows us to compute x̄ via an SQP method
applied to (3). In the next section we will discuss
how this should be organized, and how the jet
information can be computed efficiently.

Remark. Notice that f(x, ·) is twice differen-
tiable at each active frequency ωi ∈ Ω(x), even
without the hypothesis that the maximum sin-
gular value of T (x, ωi) has multiplicity 1. This
holds because the maximum singular value func-
tion ω 7→ σ̄(H(jω)) of a stable transfer matrix
H is twice continuously differentiable at its local
maxima (Boyd and Balakrishnan, 1990).

3. SOLVING WITH SQP

3.1 Quadratic tangent subproblem

In order to derive the tangent quadratic program
for (3), let us write Gi(x, t) = f (x, ωi(x)) − t,
F (x, t) = t. The Lagrangian of (3) is then

L(x, t; τ) = F (x, t) +

p
∑

i=1

τiGi(x, t),

so that, using condition (vi) above

L′
x(x, t; τ) =

p
∑

i=1

τif
′
x (x, ωi(x))

L′
t(x, t; τ) = 1 −

p
∑

i=1

τi

L′′
xt(x, t; τ) = L′′

tt (x, t; τ) = 0

L′′
xx(x, t; τ) =
p

∑

i=1

τi

[

f ′′
xx (x, ωi(x)) + f ′′

ωx (x, ωi(x))ω
′
i(x)

⊤
]

Differentiating condition (vi) gives

0 = f ′′
ωx (x, ωi(x)) + f ′′

ωω (x, ωi(x))ω
′
i(x),

which allows us to express ω′
i(x) through deriva-

tives of f . Altogether,

L′′(x, t; τ) =

[

H(x, t; τ) 0
0 0

]

with H(x, t; τ) =

p
∑

i=1

τi

[

f ′′
xx (x, ωi(x))

− f ′′
ωx (x, ωi(x)) f

′′
ωω (x, ωi(x))

−1 f ′′
ωx (x, ωi(x))

⊤
]

.

The tangent quadratic program is now

min
δt,δx

δt+
1

2
δx⊤H(x, t; τ)δx

s.t. f (x, ωi(x)) + f ′
x (x, ωi(x))

⊤
δx− t− δt ≤ 0,

i = 1, . . . , p
(4)

3.2 First and second derivatives formulae

The exact first and second derivatives formulae
of f are derived from matrix perturbation theory,
as derivatives of a non-degenerate eigenvalue and
an associated eigenvector. General formulae may
be found in (Golub and Loan, 1989). We specialize
them to the case of a Hermitian matrix depending
on real parameters.
Recall that x = vec(K), δx = vec(δK). We note
eigenvalues of T (K,ω)HT (K,ω) as λ1 > λ2 ≥
λ3 ≥ · · · ≥ λm1

and an orthonormal set of
associated eigenvectors as (qi)1≤i≤m1

(we drop the
dependency on K and ω for ease of notation).

f ′
K(K,ω).δK = 2 Re

(

qH
1 T H(T ′

K .δK)q1
)

f ′
ω(K,ω) = 2 Re

(

qH
1 T HT ′

ωq1
)

f ′′
KK(K,ω).(δK1, δK2) =

2 Re

[

qH
1

(

(T ′
K .δK2)

HT ′
K .δK1

+ T HT ′′
KK .(δK1, δK2)

)

q1

+

m1
∑

i=2

(

(λ1 − λi)
−1

· qH
1

(

T HT ′
K .δK1 + (T ′

K .δK1)
HT

)

qi

· qH
i

(

T HT ′
K .δK2 + (T ′

K .δK2)
HT

)

q1

)

]

f ′′
ωω(K,ω) =

2 Re
[

qH
1

(

T ′
ω

H
T ′

ω + T HT ′′
ωω

)

q1

]

+ 2

m1
∑

i=2

∣

∣

∣
qH
1

(

T HT ′
ω + T ′

ω
H
T

)

qi

∣

∣

∣

2

λ1 − λi

f ′′
ωK(K,ω).δK =

2 Re

[

qH
1

(

(T ′
K .δK)HT ′

ω + T HT ′′
ωK .δK

)

q1

+

m1
∑

i=2

(

(λ1 − λi)
−1qH

1

(

T HT ′
ω + T ′

ω
H
T

)

qi

· qH
i

(

T HT ′
K .δK + (T ′

K .δK)HT
)

q1

)

]

The transfer function and its derivatives can be
expanded with the state-space matrices in closed-
loop A(K), B(K), C(K), D(K) :

T = D(K) + C(K)F (K,ω)B(K)

T ′
K .δK = G12(K,ω)δKG21(K,ω)

T ′′
KK .(δK1, δK2) = G12(K,ω)[δK2G22(K,ω)δK1

+ δK1G22(K,ω)δK2]G21(K,ω)

T ′
ω = −jC(K)F (K,ω)2B(K)

T ′′
ωω = −2C(K)F (K,ω)3B(K)

T ′′
ωK .δK = −j(G12(K,ω)δKC2F (K,ω)2B(K)

+ C(K)F (K,ω)2B2δKG21(K,ω)).

Here, we use the transfer matrices

F (K,ω) = (jωIn −A(K))
−1

G12(K,ω) = D12 + C(K)F (K,ω)B2

G21(K,ω) = D21 + C2F (K,ω)B(K)

G22(K,ω) = C2F (K,ω)B2.

Remark. The frequency response T(w1,w2)→(z1,z2)

of the plant




ẋ
z1
z2



 =





A(K) B(K) B2

C(K) D(K) D12

C2 D21 0p2×m2









x
w1

w2



 ,

can be used to compute all the jet elements of tan-
gent program (4). Indeed, it suffices to partition
in order to get T , G12, G21 and G22.
Hessenberg reduction (Laub, 1981) is well adapted
to the evaluation of T(w1,w2)→(z1,z2) on the set
Ω(K). The jet information for (4) may be com-
puted using the Matlab control toolbox.

Similar formulae are obtained for dynamic con-
trollers using the substitutions previously evoked.

3.3 Globalisation via trust-region

Program (3) is dependent on the characteristics
of the local solution (x̄, t̄) of (2). If the computed
Newton step is too large, even the number p
of active frequencies may vary. Using Helly type

theorems, an upper bound for p may be derived,
see e.g. Thm. 4.2. in (Hettich and Kortanek,
1993). For a k-order controller, we expect p ≤
(m1 + k)(p1 + k) peaks, but this is pessimistic
as a rule. By adding a trust-region constraint
‖δx‖2 ≤ ∆k to the tangent quadratic subproblem
(4), we can often assure that x + δx remains in
the domain of validity of the local model, and we
avoid the possibility of an unbounded correction.

In order to control quality of the step computed
at a given primal-dual pair (xk, tk; τk), we use the
following ℓ1-merit functions φ1 and ψ1, respec-
tively associated with the local program (3) and
the tangent program (4)

φ1(x, t;µ) = t+
1

µ

p
∑

i=1

[f (x, ωi(x)) − t]
+

ψ1(δx, δt;µ) = δt+
1

2
δx⊤H(xk, tk; τk)δx

+
1

µ

p
∑

i=1

[

δx⊤∇f (xk, ωi(xk)) − δt

+ f (xk, ωi(xk)) − tk

]+

The agreement between the actual reduction and
the predicted reduction is measured by the ratio

ρk =
φ1(xk, tk;µ) − φ1(xk + δx, tk + δt;µ)

ψ1(0;µ) − ψ1(δx, δt;µ)
(5)

Then the trust-region radius is managed according
to the algorithm given on the next page, based
on a model trust-region algorithm from (Conn et

al., 2000).

In the inner loop j, the penalty parameter µj is
initialized with µ0 = (‖τk,1‖∞+α)−1 and updated
according to the following rule for j ≥ 1, with a
chosen constant α > 0

µj =

{

µj−1 if µ−1
j−1 ≥ ‖τk,j+1‖∞ + α,

(‖τk,j+1‖∞ + 2α)
−1

otherwise.

In this way, µj < ‖τk,j+1‖
−1
∞ and the ℓ1 merit

function ψ1 is exact (Nocedal and Wright, 1999).

Notice that the trust region procedure in the in-
ner loop j between steps 4 and 6 follows stan-
dard lines, but is based on the guess p and
{ω1(x), . . . , ωp(x)} of model (3), so a few com-
ments are in order here. Namely, since the model
may be incorrect, the following phenomenon may
be observed. The Newton step may be successful
with regard to (3), i.e., with regard to the inner
loop, but may nevertheless fail when matched
with reality in step 7. This is when the first-order
step xC takes over. In the worst case, our method
therefore converges with the speed of the under-
lying first-order technique (Apkarian and Noll,
2006b). Alternative first-order methods could be
used instead (Apkarian and Noll, 2005b; Apkarian
and Noll, 2005a). A second phenomenon, which

also arises due to the necessity to guess p, is
addressed in step 3. It may happen that the new
xk+1 ∈ {xN , xC} is no longer consistent with the
old model used in the previous step, because the
number p had to undergo a change, or because a
first-order step xC had to be taken. The multiplier
estimate τk+1 = τk,j+1 from the last instance
of step 6 is then of little use. We then restart
multipliers afresh, or we recycle the old ones.

Finally, when p and ωi(K) have been estimated
correctly, the quadratic model will ultimately pro-
duce steps with quadratic progress. This means
the test in step 8 will ultimately accept the New-
ton step, showing that our method has a fair
chance to give local quadratic convergence.

4. TECHNICAL ASPECTS

4.1 Identifying peak frequencies

Our approach assumes that, for any given closed-
loop stabilizing controller x ∈ R

m2p2 respectively
x ∈ R

(m2+k)(p2+k), we can compute the finite set
of maximizers of the frequency curve ω 7→ f(x, ω)

Ω(x) = {ωi(x) ≥ 0 | 1 ≤ i ≤ p}.

Computing peak frequencies can be based on a
classical algorithm for estimating the L∞ norm
of a transfer matrix G(s) = D + C(sI − A)−1B
explained in detail in (Boyd and Balakrishnan,
1990). This algorithm detects in the first place the
peak frequencies Ω(K), but may also be used to
estimate secondary peaks (i.e. local but not global
maxima of f(x, ·)).
Basically, an increasing sequence of lower bounds
γk is built. The algorithm terminates as soon as
an Hamiltonian matrix H(γ) has pure imaginary
eigenvalues for γ = γk, and none for γ = (1+ε)γk.
Then ‖G‖∞ lies in the range [γk, (1 + ε)γk). In
that case,

Ωk(x) = {ω ≥ 0 | (H(γk) − jωI) is singular}

is the set of frequencies ω where γk is a singu-
lar value of G(jω). As the algorithm terminates,
the set Ωk(x) is an approximation of Ω(x) with
a relative tolerance ε on the maximum singular
value. We may have |Ωk(x)| > |Ω(x)|, because
Ωk(x) may contain both lower and upper approx-
imations of some peak frequencies. Furthermore,
Ωk(x) does not contain secondary peaks.
A direct way to estimate both primary and sec-
ondary peaks is to compute the subset of the
spectrum of H ((1 + ε)γk) contained in the first
orthant of the complex plane. By continuity, the
imaginary parts ω̂i of the eigenvalues near the
imaginary axis give approximations of the peak
frequencies in Ω(x). Our experience shows that
this method computes primary peaks with high

Fix 0 < η1 ≤ η2 < 1, 0 < θ < 1.

1. Initialize. Find an initial closed-loop stabilizing controller x0. Fix t0 =
f(x0), p0 and τ0 ∈ R

p0

+ , and set counter for outer loop k = 0.
2. Peak estimation. Given current xk and τk ∈ R

pk−1

+ , estimate number
pk and positions of primary and secondary peaks {ω1(xk), . . . , ωpk

(xk)}.
3. Model inconsistency. If pk differs from pk−1, or if last step taken was

Cauchy step, then modify old τk ∈ R
pk−1

+ or create a new consistent
multiplier vector τk ∈ R

pk

+ .
4. Initialize Newton method. Put xk,0 = xk, τk,0 = τk, ∆0 = 1, and set

counter for inner loop j = 0.
5. Newton step. Use current iterate xk,j , multiplier estimate τk,j and trust

region radius ∆j to solve (4) and generate Newton trial step xk,j+1, with
associated multiplier estimate τk,j+1 ∈ R

pk

+ .
6. Decision. Compare predicted progress in the local quadratic model ψ1 to

progress in φ1 using progress ratio ρj in (5). There are two cases:
Step accepted: ρj ≥ η1. If even ρj ≥ η2 and ‖xk,j − xk,j+1‖
= ∆j , then double radius ∆j+1 = 2∆j . Otherwise keep ∆j+1 = ∆j .
Put xN = xk,j+1 and pN := f(xk) − f(xN). Goto step 7.
Step refused: ρj < η1. Put ∆j+1 = ‖xk,j − xk,j+1‖/2, increase
counter j, and go back to step 5.

7. Cauchy step. Given the current iterate xk, compute a Cauchy step xC

away from xk using the first-order method (Apkarian and Noll, 2006b).
Let pC := f(xk) − f(xC) ≥ 0 be the first-order progress. If pN ≥ θpC let
xk+1 = xN , and τk+1 = τk,j+1, otherwise put xk+1 = xC .

8. Stopping test. If accepted step xk+1 ∈ {xN , xC} offers no progress
over xk, stop. Otherwise increase counter k and go back to step 2.

precision, while still giving a reasonably good ap-
proximation of secondary peak frequencies. This
is satisfactory, because knowing ωi(x) to a high
precision if f(x, ωi(x)) < f(x) is not necessary, as
the constraint is currently inactive. The closer a
secondary peak comes to being active, the higher
the precision to which it is computed. The delicate
point is the choice of a tolerance to select the
eigenvalues with small enough real part. To this
end, the derivatives f ′

ω(x, ω) and f ′′
ωω(x, ω) can be

helpful. They are computed by the exact formu-
lae given in section 3.2. Namely, it makes sense
to keep only those frequencies where ω̂i where
f ′

ω(x, ω̂i) ≈ 0 and f ′′
ωω(x, ω̂i) < 0.

Remark. Our approach is robust with respect to
the estimation of the cardinality p of the unknown
set Ω(x̄) in the sense that if we overestimate p,
we create a program (3), where some constraints
remain inactive near x̄, a situation which is auto-
matically dealt with by the SQP solver.

4.2 Stopping criteria

We implemented two stopping tests in order to
check convergence. The first tests criticality of the
iterate (xk, tk) with multipliers τk, through the
absolute test

‖L′
(x,t)(xk, tk; τk)‖ < ε1,

where ‖ · ‖ is a norm on R
m2p2+1.

The second stopping condition checks the relative
progress of the steps via

‖(xk, tk) − (xk−1, tk−1)‖ =

‖(δx, δt)‖ < ε2(1 + ‖(xk−1, tk−1)‖)

As some SQP iterates may become infeasible for
problem (3), we also check if f(x, ωi(x)) − t < ε
for all i = 1, . . . , p. The algorithm stops as soon
as the current iterate is feasible and one of the
stopping tests is satisfied.

5. NUMERICAL RESULTS

The results presented here were obtained with the
algorithm described in section 3.3. The examples
are taken from (Leibfritz, 2003). We used the
first-order nonsmooth algorithm from (Apkarian
and Noll, 2006b) in order to find a stabilizing
controller close enough to a local minimum. This
first step is recommended, because our second-
order method is defined in a neighborhood of a
local solution of (2), and needs a stable number
of active frequencies to avoid too many restarts.
The initial multipliers were set to τ0i = 0 for
i = 1, . . . , p, and the termination tolerances to
ε1 = ε2 = 10−5. In our tests we compare the
speed of convergence of the first and second-order
methods.

The first table shows that the second-order algo-
rithm can be used to improve accuracy in cases
where the first-order method already meets its
convergence criteria.

problem γ0 γ1 iter1 γ2 iter2 |Ω(x)|

AC8 1.71e2 2.005018 15⋆ 2.005012 4⋆ 4
AC10 2.01e2 1.325374e1 15⋆ 1.323655e1 8⋆ 5
REA3 4.09e2 7.425130e1 2⋆ 7.425130e1 9⋆ 1

Column “γ0” shows the performance of the initial
controller x0 = vec(K0), which is stabilizing and
computed by the method in (Apkarian and Noll,
2006a). Column “γ1” shows the result obtained
by the first-order method, the number of steps
is given in column iter1. Similarly, column “γ2”
gives the performance obtained by the second-
order method, iter2 gives the number of Newton
steps. The last column shows the number p of
active frequencies at the optimal solution.
The first two examples (AC8 : 9 states, 1 input,
5 outputs; AC10 : 55 states, 2 inputs, 2 outputs)
are aircrafts models. The third example (REA3,
12 states, 1 input, 3 outputs) is a reactor model.
In all cases, the second-order method terminated
with a positive definite reduced Hessian.

The second table illustrates how the second-order
method can speed up convergence when the first-
order method gives little progress. In the exper-
iment we fixed a maximum of 200 iterations for
each run.

problem γ0 γ1 iter1 γ2 iter2 |Ω(x)|

HE2 9.95 4.317234 200
HE2 9.95 4.593448 100 3.914219 100 2
HE2 9.95 5.223048 30 3.898566 170 2

HE2 is a helicopter model, with 4 states, 2 inputs
and 2 outputs. Here the first-order algorithm
does not reach convergence after 200 iterations.
Switching to the second-order method after 100
first-order steps gives significantly better results,
as seen in the second line of the table. We observed
that the reduced Hessian was positive definite
from the 18th iteration onwards.
The last line shows that it is possible to switch to
the second-order algorithm even earlier, namely,
as soon as one gets a first-order iterate whose peak
frequencies are close enough to those expected at
the optimum. In particular, the correct number
of peaks has to be guessed or overestimated. In
this example, two peak frequencies p = 2 became
clearly visible after 30 first-order steps.

6. CONCLUSION

We have developed and tested a second-order
method to compute static and reduced-orderH∞-
controllers and more general synthesis problems
with structural constraints on the controller. Our
approach avoids the use of Lyapunov variables
and therefore leads to small or medium size opti-

mization programs even for large systems (AC10
with 55 states). We use a methodology from semi-
infinite programming to obtain a local nonlinear
programming model and apply a trust region SQP
method. A first-order nonsmooth spectral bundle
method is used to initialize the second-order algo-
rithm in the neighborhood of a local solution. Our
numerical testing indicates that speed of conver-
gence and numerical reliability may be improved
by using the second-order method.

REFERENCES

Apkarian, P. and D. Noll (2005a). Nonsmooth
optimization for multiband frequency domain
control design. To appear.

Apkarian, P. and D. Noll (2005b). Nonsmooth
optimization for multidisk H∞ synthesis. To

appear.
Apkarian, P. and D. Noll (2006a). Controller de-

sign via nonsmooth multi-directional search.
SIAM Journal on Control and Optimization

44(6), 1923–1949.
Apkarian, P. and D. Noll (2006b). NonsmoothH∞

synthesis. IEEE TAC 51(1), 71–86.
Bompart, V., D. Noll and P. Apkarian (2006).

Second-order nonsmooth optimization for
H∞ synthesis. Full paper submitted.

Boyd, S. and V. Balakrishnan (1990). A regularity
result for the singular values of a transfer ma-
trix and a quadratically convergent algorithm
for computing its L∞-norm. System and Con-

trol Letters 15(1), 1–7.
Conn, A., N. Gould and Ph. Toint (2000). Trust-

Region Methods. MPS-SIAM Series on Opti-
mization. Philadelphia.

Golub, G. and C. Van Loan (1989). Matrix Com-

putations. second ed.. Johns Hopkins Univer-
sity Press. Baltimore and London.

Hettich, R. and K. Kortanek (1993). Semi-infinite
programming: theory, methods, and applica-
tions. SIAM Review 35(3), 380–429.

Jongen, H.Th., K. Meer and E. Triesch (2004).
Optimization theory. Kluwer Academic Pub-
lishers.

Laub, A. (1981). Efficient multivariable fre-
quency response computations. IEEE TAC

26(2), 407–408.
Leibfritz, F. (2003). Compleib: COnstrained

Matrix-optimization Problem library - a col-
lection of test examples for nonlinear semidef-
inite programs, control system design and re-
lated problems. Technical report. University
of Trier.

Nocedal, J. and S. Wright (1999). Numerical op-

timization. Springer. New York.
Noll, D. and P. Apkarian (2005). Spectral bundle

methods for nonconvex maximum eigenvalue
functions: second-order methods. Mathemat-

ical Programming Series B 104(2), 729–747.

