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Abstract: Performance criteria of great practical interest in classical controller design are often
expressed as constraints on specific frequency bands. This leads to a difficult design problem due
to its inherent nonsmoothness and nonconvexity. In this paper, we present a rigorous approach
based on constrained mathematical programming. The efficiency of our design technique is
demonstrated with the practically difficult control of an uncertain flexible structure.
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1. INTRODUCTION

Frequency shaping control design, also referred as multi-
band design, consists in the simultaneous minimization of
a finite family of closed-loop performance functions

f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii
, (1)

where K is the feedback controller, s 7→ Twi→zi(K, s)
stands for the ith closed-loop performance channel, and
‖Twi→zi(K)‖Ii

denotes the peak value of the transfer
function maximum singular value norm on a prescribed
frequency interval Ii:

‖Twi→zi(K)‖Ii
= sup

ω∈Ii

σ (Twi→zi(K, jω)) .

The frequency band Ii is typically a closed interval Ii =
[ωi

1, ωi
2], or more generally, a finite union of intervals:

Ii = [ωi
1, ωi

2] ∪ . . . ∪ [ωi
qi

, ωi
qi+1

],

where right interval tips may take infinite values. Mini-
mizing f(K) for a single channel, N = 1 and I1 = [0,∞],
reduces to standard H∞ synthesis.

Multi-band design is of great practical interest since per-
formance criteria are often expressed as constraints on
specific frequency bands. Currently these bands are han-
dled indirectly by introducing weighting functions. This
is inconvenient since finding the appropriate functions is
time-consuming and prone to failure. Also, those functions
increase the plant order and thereby the controller order, a
potential source of numerical trouble and undesirable for
hardware implementation. Our approach dispenses with
weighting functions and thus avoids those difficulties.
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Despite its importance, only few methods for multi-band
synthesis are reported in the literature. In Iwasaki and
Hara [2005], an extension of the Kalman-Yakubovich-
Popov Lemma is developed for band restricted frequency
domain constraints, but a fairly conservative convexify-
ing procedure is adopted so that standard semidefinite
programming solvers can be used. The QFT method
[Horowitz, 1982] may be used to solve band limited syn-
thesis problems, but it is no longer suited if additional
structural constraints on the controller have to be satisfied.
Similar comments could be made about synthesis methods
based on the Youla parametrization, which generally lead
to high-order controllers [Boyd et al., 1990]. Other tools,
as the classical Bode, Nyquist and Nichols plots, and more
recently in Toivonen and Totterman [2006], unfortunately
are mainly limited to single-input single-output systems.

Our multi-band algorithm expands on the nonsmooth H∞

synthesis method of Apkarian and Noll [2006]. As a sub-
stantial part of the computations is carried out in the
frequency domain, where the plant state dimension only
mildly affects algorithmic complexity, it allows highly effi-
cient function and gradient calculations. Also, nonsmooth
optimization avoids the presence of Lyapunov variables
that leads to large size optimization programs as soon as
systems get sizable and is one of the principal difficulties
of linear or bilinear matrix inequalities.

The algorithm proposed here models closed-loop stabil-
ity as a programming constraint, whenever the frequency
bands used for performance do not fully cover the fre-
quency axis, as will be clarified later. That means that it
does not require the management of penalty or homotopy
parameters as was still necessary in Apkarian and Noll
[2007], and represents a more rigorous approach.

The efficiency of our design technique is demonstrated in
a practically difficult case study involving the control of



a flexible telescope system. Frequency-domain constraints
arise naturally in such systems due to the presence of
flexible modes. While in traditional approaches the plant
and weighting functions are assembled into an unique
synthesis interconnection, our approach allows to keep
each frequency band constraint explicitly, and to address
the problem in a direct and natural way.

NOTATION
Let R

n×m be the space of n × m matrices, equipped
with the corresponding scalar product 〈X,Y 〉 = X •
Y := Tr(XT Y ), where XT is the transpose of the matrix
X, TrX its trace. For complex matrices, XH denotes
the conjugate transpose. For Hermitian or symmetric
matrices, X ≻ Y means that X − Y is positive definite,
X � Y that X − Y is positive semi-definite. The symbol
H

m stands for the set of Hermitian matrices of size m.
We let λ1 denote the maximum eigenvalue of a symmetric
or Hermitian matrix. The notation ‖.‖ will refer to the
singular value matrix norm σ, unless stated otherwise. The
convex hull operation is denoted by co{.}. For a locally
Lipschitz function f : R

n → R, ∂f(x) denotes its Clarke
subdifferential or generalized gradient at x, f ′(x; d) the
Clarke directional derivative [Clarke, 1983]. For functions
of two variables f : R

n×R
m → R, the notation ∂1f(x, y) is

used to denote its Clarke subdifferential with respect to x
at (x, y). In the sequel, each Twi→zi is a smooth operator
defined on the open domain D ⊂ R

(m2+k)×(p2+k) of kth
order stabilizing feedback controllers

K :=

[
AK BK

CK DK

]
, AK ∈ R

k×k

with values in the infinite dimensional space RH∞ of
rational stable transfer function matrices.

2. MULTI-BAND FREQUENCY DOMAIN DESIGN

We consider a plant P in state-space form

P (s) :

[
ẋ
y

]
=

[
A B
C D

] [
x
u

]

together with N concurring performance specifications,
represented as a family of plants P i(s) described as

P i(s) :




ẋi

zi

yi


 =




Ai Bi
1 Bi

2

Ci
1 Di

11 Di
12

Ci
2 Di

21 D







xi

wi

ui


 , i = 1, . . . , N,

(2)

where xi ∈ R
ni

is the state vector of P i, ui ∈ R
m2 the

vector of control inputs, wi ∈ R
mi

1 the vector of exogenous
inputs, yi ∈ R

p2 the vector of measurements and zi ∈

R
pi
1 the controlled or performance vector associated with

the ith input wi. The performance channels typically
incorporate frequency filters which create new states xi

containing the state x of P , so that the matrices Ai contain
the original system matrices A, etc. The difference with
the usual multi-channel synthesis is that each Twi→zi is
only tested on a specific frequency band Ii. Without loss
of generality, it is assumed throughout that D = 0.

The multi-band synthesis problem consists in designing a
dynamic output feedback controller ui = K(s)yi for the
plant family (2) with the following properties:

• Internal stability: The controller K stabilizes the
original plant P in closed-loop.

• Performance: Among all internally stabilizing con-
trollers, K minimizes the worst case performance
function f(K) = max

i=1,...,N
‖Twi→zi(K)‖Ii

.

The controller K has the frequency domain representation:

K(s) = CK(sI − AK)−1BK + DK , AK ∈ R
k×k, (3)

where k is the order of the controller, and where the case
k = 0 of a static controller K(s) = DK is included. The
synthesis problem may then be represented as

minimize f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii

subject to K stabilizes (A,B,C).
(4)

Often practical considerations require additional struc-
tural constraints on the controller K. For instance, it may
be desired to design low-order controllers (0 ≤ k ≪ ni)
or controllers with prescribed-pattern, PID control struc-
tures, and much else. Such structures are easily incorpo-
rated into program (4) as nonlinear programming con-
straints. Refer to Apkarian et al. [2007a] for an example.

A difficulty in (4) is that stability is not a constraint in
the usual sense of mathematical programming, because
the set D of closed loop stabilizing K is open, and an
element K on the boundary ∂D is not a valid solution of
the control problem. Since an optimization algorithm for
(4) eventually converges to a solution on the boundary of
D, we have to modify this constraint in order to avoid
numerical failure. Program (4) is therefore replaced by

minimize f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii

subject to g(K) = ‖(sI −A(K))−1‖∞ − β−1 ≤ 0
(5)

where A(K) is the closed-loop system matrix, and β is
a small parameter. Notice that constraint g(K) ≤ 0 will
force the controller iterates to remain in the stabilizing
region in the course of the algorithm. The value of β > 0 is
the smallest distance to instability we allow the closed-loop
system. In our experiments we usually choose β ≈ 10−9.

A normalization of practical interest for f(K) in (5) is

f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii
/γi,

where the scalars γi are introduced to weigh the relative
importance of the channels. In fact, if each γi is chosen as
the maximum allowable value for the ith channel norm,
then a final value f(K) ≤ 1 indicates that an acceptable
solution has been found.

3. NONSMOOTH MINIMIZATION TECHNIQUE

In this section we give a concise presentation of our
optimization method. For a more detailed introduction to
the salient features we refer the reader to Simões et al.
[2007]. Our goal is to minimize a function of the form

f(K) = max
i=1,...,N

fi(K),

where each fi(K) is a nonsmooth and nonconvex function
of the form

fi(K) = sup
ω∈[ωi1,ωi2]

λ1(Twi→zi(K, jω)Twi→zi(K, jω)H).



Notice in this last expression that we have conveniently
replaced f, fi, g in (5) by their squares. In order to al-
leviate notation, we will henceforth write fi(K,ω) =
λ1(Twi→zi(K, jω)Twi→zi(K, jω)H), Ti := Twi→zi , and
Si(K,ω) = Ti(K,ω)Ti(K,ω)H .

Computing function values of each fi(K) can be based on
the Hamiltonian algorithm of Boyd et al. [1989], which can
be applied with minor changes to the case where the search
for imaginary-axis Hamiltonian eigenvalues is restricted
to the frequency band of interest. The Hamiltonian al-
gorithm has to be applied to each fi(K), g(K) separately.
It computes the function value, and the finite set of active
frequencies or peaks in each window [ωi1, ωi2].

The subgradients of fi(K) are of the form [Apkarian and
Noll, 2006]

Φi
Y = 2

∑

ω∈Ωi(K)

Re{Gi
21(K, jω)Ti(K, jω)H

QωYωQH
ω Gi

12(K, jω)}T , (6)

where Gi
12 and Gi

21 are transfer functions computed
through state-space realizations, and Ωi(K) ⊂ [ωi1, ωi2]
is the finite set of active frequencies of the ith chan-
nel Ti in the variable ω. Here Qω is a matrix whose
columns form an orthonormal basis of the eigenspace of
Ti(K, jω)Ti(K, jω)H associated with its maximum eigen-
value, and Yω � 0,

∑
ω∈Ωi(K)Tr(Yω) = 1. The subgradient

is for convenience indexed by Y = (Yω : ω ∈ Ωi(K)). In
order to compute subgradients of f , we now have to take
into account which of the indices i = 1, . . . , N is active in
the sense that fi(K) = f(K). Writing this set as I(K), we
obtain the subgradients ΦY,τ ∈ ∂f(K) as

ΦY,τ =
∑

i∈I(K)

τiΦ
i
Y ,

∑

i∈I(K)

τi = 1, τi ≥ 0,
∑

ω∈Ωi(K)

Tr(Y i
ω) = 1, Y i

ω � 0. (7)

Having explained in which way subgradients of the ob-
jective and constraint functions f(K) and g(K) are com-
puted, let us now consider the program

min{f(K) : g(K) ≤ 0} (8)

and investigate the generation of search steps. Following
an idea in Polak [1997], we introduce the so-called progress
function for (8):

F (K+,K) = max{f(K+) − f(K) − µg(K)+;

g(K+) − g(K)+},

where µ > 0 is some fixed parameter, and where u+ =
max{u, 0}. We think of K as the current iterate, K+ as
the next iterate or as a candidate to become the next
iterate. The following properties of the progress function
are crucial for the understanding of our method. For a
proof we refer to Apkarian et al. [2007b].

Lemma 1. a) Suppose K̄ is a local minimum of program
(8), then K̄ is also a local minimum of F (·, K̄). In partic-
ular, this implies 0 ∈ ∂1F (K̄, K̄).

b) If K̄ satisfies the F. John necessary optimality condi-
tions for (8), then 0 ∈ ∂1F (K̄, K̄).

c) Conversely, if 0 ∈ ∂1F (K̄, K̄), then K̄ is either a F. John
critical point of (8), or it is a critical point of constraint
violation.

We have used ∂1 to denote the Clarke subdifferential with
respect to the first variable. Notice here that K̄ is called
a critical point of constraint violation of (8) if g(K̄) ≥ 0
and 0 ∈ ∂g(K̄). The interpretation of this is as follows. If
g(K̄) > 0, the constraint is violated. Moreover, 0 ∈ ∂g(K̄)
says that K̄ is a local minimum (a critical point), so no
progress toward the constraint can be made by moving
from K̄ to some nearby point K̄ + dK. In other words,
a point with these characteristics means failure to solve
program (8). The case g(K̄) = 0, 0 ∈ ∂g(K̄) is of course
the limiting case of the above. Here the point K̄ is feasible,
but we cannot further optimize f(K) in the neighborhood
of K̄, because the constraint will not let us move, as it
becomes infeasible as soon as we try.

A consequence of Lemma 1 is that we should look for
points K̄ satisfying 0 ∈ ∂1F (K̄, K̄). For this we apply some
sort of linearization procedure to the functions f and g.
Writing fi(K) in the form

fi(K
+) = max

ω∈Ii

λ1(Si(K
+, ω))

we introduce a first-order approximation of f in the
neighbourhood of K:

f̃i(K
+,K) = sup

ω∈Ii

λ1(Si(K,ω) + S′

i(K,ω)(K+ − K))

= sup
ω∈Ii

sup
Zω,i∈Bi

Zω,i • [Si(K,ω) + S′

i(K,ω)(K+ − K)],

where S′

i(K,ω) is the Fréchet derivative of Si(·, ω) at K,
Bi = {Z ∈ H

mi : Z � 0,Tr(Z) = 1}, and where mi is the
size of Si = TiT

H
i . Associating g̃ with g in a similar fashion,

we obtain a first-order approximation for F (K+,K):

F̃ (K+,K) = max

{
max

i=1,...,N
f̃i(K

+,K) − f(K) − µg(K)+;

g̃(K+,K) − g(K)+
}

.

Notice that F̃ (K,K) = F (K,K), and that F̃ (K+,K)
is close to F (K+,K) for K+ in a neighbourhood of K.

Moreover, ∂1F̃ (K,K) = ∂1F (K,K), so we keep looking

for points K̄ with 0 ∈ ∂1F̃ (K̄, K̄). It is convenient to write

F̃ somewhat differently. We put

αi(Zω,i, ω) = Zω,i • Si(K,ω) − f(K) − µg(K)+,

Φ(Zω,i, ω) = S′

i(K,ω)⋆Zi

for i = 1, . . . , N , and

αN+1(Zω,N+1, ω) = Zω,N+1 • SN+1(K,ω) − g(K)+,

ΦN+1(Zω,N+1, ω) = S′

N+1(K,ω)⋆Zω,N+1.

Then, putting G = co{(αi(Zω,i, ω),Φi(Zω,i, ω)) : ω ∈
Ii, Zω,i ∈ Bi, i = 1, . . . , N + 1}, we have

F̃ (K+,K) = max{α + 〈Φ,K+ − K〉 : (α,Φ) ∈ G}.

Since G is an infinite set, our last step is now to replace
it by a finitely representable (and therefore computable)

approximation Ĝ. This corresponds to replacing F̃ (K+,K)

by the approximation F̂ (K+,K) defined as

F̂ (K+,K) = max{α + 〈Φ,K+ − K〉 : (α,Φ) ∈ Ĝ}.

The role of Ĝ is to render the tangent program numerically
tractable. It consists in choosing a finite set of frequencies,



ω ∈ Ωi
e(K) ⊂ Ii, and letting the Zω,i ∈ Bi take a specific

form.

We construct Ĝ as follows. Define fN+1(K) := g(K) and
for every i = 1, . . . , N + 1 take the finite set Ωi(K) of
active frequencies of fi(K) at K. In other words, fi(K) =
fi(K,ω) for ω ∈ Ωi(K). Now for every i add finitely many
nearly active frequencies to those in Ωi(K) to obtain an
extended set of ω ∈ Ωi

e(K). Notice that fi(K,ω) < fi(K)
for ω ∈ Ωi

e(K) \ Ωi(K). Now pick for each i and for every
ω ∈ Ωi

e(K) an orthonormal basis Qω,i of the eigenspace
of fi(K,ω) = λ1 (Si(K,ω)) at K, so that ∂fi(K,ω) =
{S′

i(K,ω)⋆[Qω,iYω,iQ
H
ω,i] : Yω,i � 0,Tr(Yω,i) = 1}. In

other words, Zω,i = Qω,iYω,iQ
H
ω,i reduces the degrees of

freedom from mi(mi + 1)/2 in the class of all Zω,i to
the smaller size of Yω,i. Include all these elements Φ =
S′

i(K,ω)⋆[Qω,iYω,iQ
H
ω,i] with their corresponding terms

αi(Zω,i, ω) among Ĝ. As the matrix Qω,i is fixed, it is
convenient to index them as Φi(Yω,i, ω) and αi(Yω,i, ω),
where ω ∈ Ωi

e(K) and Yω,i � 0, Tr(Yω,i) = 1 has the
appropriate size, and i = 1, . . . , N +1. The index i = N +1
adds the corresponding elements for the constraint g.

Having defined Ĝ and therefore F̂ (K+,K), we solve the
tangent program

min
dK

F̂ (K + dK,K) +
δ

2
‖dK‖2. (9)

Refer to Simões et al. [2007] for an detailed discussion on
how (9) is solved. The solution being dK, we check whether
K+ = K + dK is acceptable. If this is not the case, we
perform a backtracking linesearch until K+ = K + tdK
satisfies the Armijo condition

F (K + tdK,K) − F (K,K) < γtF ′(·,K)(K; dK) < 0

for some fixed 0 < γ < 1. The crucial facts about (9) have
been established in Apkarian and Noll [2006], and we state
them here without proof:

• As soon as the solution dK of (9) is nonzero, dK is a
descent direction of F (·;K) at K. On the other hand,
if the solution is dK = 0, then 0 ∈ ∂1F (K,K).

• The Armijo line search can be arranged to find a
successful step after finitely many trials.

Finally, our nonsmooth algorithm can be summarized as:

Algorithm 1 Nonsmooth algorithm for program (8)

Parameters: δ > 0, 0 < β, γ < 1.
1: Initialize. Choose closed-loop stabilizing K1.

2: Stopping test. If 0 ∈ ∂1F̂ (Kj ,Kj) then stop. Other-
wise continue.

3: Compute descent direction. At counter j solve
tangent program

min
dK

F̂ (Kj + dK,Kj) +
δ

2
‖dK‖2.

Solution is the search direction dK.
4: Line search. Find t = βν , ν ∈ N, satisfying the

Armijo condition

F (Kj +tdK,Kj)−F (Kj ,Kj) ≤ γtF ′(·,Kj)(Kj , dK).

5: Update. Put Kj+1 = Kj + tdK, increase counter j
by 1 and loop back to step 2.

Notice that this algorithm is in the class of so-called phase-
I-phase-II methods. As long as the constraint g(K) ≤

0 is not satisfied, the second term in F̂ is dominant

and reducing F̂ amounts to reducing constraint violation.
This is phase I, which ends successfully once a feasible
iterate g(Kj) < 0 has been found. This is where phase
II begins. From now on iterates stay feasible, and the
objective function is minimized at each step. In that case
the algorithm converges toward a critical point of (8). If
g(Kj) > 0 for all j, then the algorithm converges to a
critical point of constraint violation. In that case which
occurs rarely in practice when constraints are feasible, a
restart becomes necessary.

4. LINE-OF-SIGHT REGULATION OF A FLEXIBLE
STRUCTURE

The case study we consider now involves the continuous
control of the elevation axis of the telescope mock-up
described in Alazard et al. [1996], consisting of a gimbal
system mounted on flexural pivots. The primary objective
is Line-of-Sight(LOS) regulation in an inertial reference
coordinate system against motions of the supporting base.

The block diagram representation of the set-up is shown
in Fig. 1, where θs and θ̇s are the inertial position and
velocity of the supporting base, θp, θ̇p and θ̈p are the
inertial position, velocity and acceleration of the telescope,
u is the control torque, θm

p and θ̈m
p are the measured

inertial position and acceleration of the telescope, and
θ̈0 represents the accelerometer bias. In the structural
dynamic model, g(s) is an identified transfer function of
order 40, comprising the flexible modes of the telescope.
The stiffness and friction feedbacks, kb and fb, model the
flexible bearings. Magnitudes of the open-loop transfer
functions u → θ̈m

p and u → θm
p are shown in Fig. 2.

Fig. 1. block-diagram representation of the telescope

Design specifications for this application are very demand-
ing. In order to assure high quality LOS stabilization, the
controller must achieve good disturbance rejection over
a wide frequency range. Secondly, the closed-loop system
must be robust to uncertainties due to the identification
phase and to variations of the mechanical impedance of
the supporting base. Also, accelerometer bias should be
rejected. Finally, a simple low-order controller is sought to
facilitate on-board implementation.
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In traditional H2 or H∞ syntheses, performance and ro-
bustness specifications have to be gathered into a single
criterion, which requires appending inputs and outputs
of all channels. This introduces artificial crossed channels
that do not reflect useful specifications. Since these cross
channels are optimized along with the genuine intercon-
nections, this approach increases conservatism. Also, tra-
ditional synthesis methods yield only full-order controllers,
so that whenever simplicity is of prior importance, either a
reduced plant model must be constructed or the controller
has to be reduced afterwards. A further weakness of the
classical approach is that weighting functions must be
knitted to achieve flexible modes attenuation and reject
the accelerometer bias.

With our proposed multi-band technique, each of the de-
sign specifications can be addressed individually. Since the
controller order and structure can be specified explicitly
and are independent of the system dimension, there is
no need to reduce plant or controller. The performance
and robustness specifications are simply expressed through
band-restricted performance constraints:

• LOS regulation: decoupling with respect to motions
of the supporting base can be achieved by forcing
the magnitude of the disturbance transfer function
Tθs→θp

= θp (s) /θs (s) to be very small on the
frequency range of interest:

|Tθs→θp
| ≤ −70 dB, for ω ∈ I1 := [0, 2e3] rad./s.

• Robustness: robustness to unstructured uncertain-
ties in the intermediate frequency range is achieved by

frequency shaping of the sensitivity function S̃ = (I+
KP )−1, where P is the plant in Figure 1. As is well
known, the magnitude of the sensitivity function

∣∣∣S̃
∣∣∣ =

∣∣(I + KP )−1
∣∣ =

1

|1 + KP |

represents the inverse of the distance to the critical

point, so that minimizing
∣∣∣S̃

∣∣∣ turns out equivalent

to maximizing the stability margin. The associated
restricted-band constraint is given as

|S̃| ≤ 1.5 , for ω ∈ I2 := [10, 400] rad./s.
• Attenuation of flexible modes: by a similar rea-

soning, the magnitude of the sensitivity function is
limited in the frequency range of the flexible modes:

|S̃| ≤ 1.3 , for ω ∈ I3 := [400, 2e4] rad./s.

However, this constraint alone is not enough to guar-
antee robustness with respect to variation of the flexi-
ble modes, because sensitivity reduction often induces
pole-zero cancellation. This is clearly unacceptable
since identified flexible modes are subject to uncer-
tainties and also since the mechanical impedance of
the supporting base may undergo large deviations.
This is taken into account by prescribing a maximum
roll-off in the frequency range of interest: a channel
w → zu is defined as:

Pu(s) :




ẋ
zu

[
θm

p

θ̈m
p

]


 =




A 0 B2

0 0 1

C2

[
0
1

]
D




[
x
w
u

]
,

closed-loop the channel w → zu will be equivalent
to the transfer function θ̈m

p → u of the controller.
This is motivated by the fact that the flexible modes
are relevant only through the accelerometer channel
u → θ̈m

p , as can be seen in Fig. 2. Thus, robustness
with regard to flexible modes can be achieved by
forcing the transfer function θ̈m

p → u of the controller
to be very small in the flexible modes frequency range:
|Tw→zu

| ≤ −50 dB, for ω ∈ I4 := [5e2, 2e3] rad./s.

We note that the last specification above is equivalent to
imposing a constraint directly on the controller gain, a
thing which is not possible with more traditional Riccati
or LMI H∞ techniques. Such highly practical constraints
are easy to handle with our nonsmooth optimization
technique.

The first structural constraint imposed on the controller
is its reduced order. A controller of order 14 is chosen.
Secondly, the controller is forced to have a washout effect
in the channel θ̈m

p → u in order to reject the accelerometer
bias. Finally, the controller is chosen strictly proper for
better disturbances attenuation.
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Our telescope system in Fig. 1 has 45 states, structural
and sensor dynamics included. Thus, the set comprising
the 4 performance channels and the stability constraint
correspond to a synthesis plant counting 225 states. The
initial and final values of the normalized band-restricted
norms γi for each performance channel are given in Table
1, while their evolution along the first 150 iterations is
shown in Fig. 3. The algorithm takes 355 iterations in 26



minutes cpu to reach a local minimum within the allowed
tolerance. However, a feasible solution meeting all design
constraints is already available after 175 iterations.

We observe that the performance levels coalesce at the end
of the iteration sequence, a strong indication that local
optimality is reached. We also notice that the stability
constraint ‖(sI − A(K))−1‖∞ ≤ 109 is not active and
can probably be removed without much harm, which if
done from scratch leads to significant speed-up. Numerical
experience reveals that the stability constraint is only
useful for problems involving few band constraints. It
can usually be discarded when a sufficiently rich set of
simultaneous specifications is considered.
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perturbed system)

The closed-loop transfer function Tθs→θp
is shown in Fig.

4. We observe an attenuation of 70 dB as specified. Fig.
5 shows the Nichols diagram for the closed-loop system.
These figures also show the closed-loop responses of a
21-order perturbed model obtained by identification. The
nominal and perturbed models differ significantly in the
flexible modes range. However, since the magnitude of the
transfer function θ̈m

p → u has been forced below −50 dB on
the critical interval, and since the contribution of flexible
modes through the channel u → θm

p is negligible, the open-
loop transfer function has magnitude always lower than
unity, and the closed-loop system remains stable in both
cases. See the Nichols plot in Fig. 5. All band restricted
performances were achieved in the sense that f(K) ≤ 1.

|Tθs→θp
| |S̃|I2 |S̃|I3 |Tw→zu | ||Tstab||∞

Initial 8.39 1.0863 24.533 51.65 548
Final 0.97966 0.98543 0.97776 0.98756 262

Table 1. final multi-band performances

5. CONCLUSION

We have discussed a nonsmooth algorithm for design prob-
lems subject to several band-restricted frequency domain
constraints. Our approach is flexible in as much as it by-
passes the difficult phase of selection of weighting function,
and allows to handle a large variety of controller struc-
tures of practical interest. Application to the line-of-sight
stabilization of a flexible telescope system demonstrates
that the approach is an efficient practical design tool in
challenging situations.
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