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Abstract: Computing the worst-case spectral abscissa of a system with uncertain parameters
allows to decide whether it is robustly stable in a given parameter range. Since this problem is
NP-hard, we use a heuristic local optimization method based on a bundle trust-region strategy to
compute good lower bounds. Then we employ branch-and-bound to certify the global maximum.
A specific frequency sweeping technique is used to accelerate the global optimization.
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1. INTRODUCTION

We consider a parameter-dependent linear time-invariant
system

ẋ = Ax+Bp
q = Cx+Dp
p = ∆q

(1)

with x(t) ∈ Rn, p(t), q(t) ∈ Rr, where A,B,C,D are real
matrices of appropriate sizes, and where ∆ is an r × r
diagonal matrix of the form

∆ = diag [δ1Ir1 , . . . , δmIrm ] (2)

with Iri an identity matrix of size ri and r = r1 + · · ·+rm.
Assuming that the matrix A is stable, we ask whether the
system (1) remains stable for all choices δ ∈ [−1, 1]m of
the uncertain real parameters. If we consider the matrices
∆ in (2) in one-to-one correspondence with δ ∈ Rm, then
this amounts to checking wether

ẋ =
(
A+B∆(I −D∆)−1C

)
x (3)

is stable for every δ ∈ [−1, 1]m. We assume throughout
that I − D∆ is invertible for every δ ∈ [−1, 1]m, i.e.,
that (1) is robustly well-posed over [−1, 1]m. All rational
parameter variations in a nominal system ẋ = Ax can be
represented via a suitable LFT of the form (1).

Recall that the spectral abscissa of a square matrix A
is α(A) = max{Re(λ) : λ eigenvalue of A}, and that
stability of A is equivalent to α(A) < 0. The problem of
robust stability of (1) over δ ∈ [−1, 1]m can therefore be
addressed by the optimization program

α∗ = max
δ∈[−1,1]m

α (A(δ)) , (4)

where A(δ) = A + B∆(I − D∆)−1C. As soon as the
global optimum satisfies α∗ < 0, the system (1) is certified
robustly stable over δ ∈ [−1, 1]m, while a solution δ∗ of (4)
with α∗ > 0 gives a destabilizing choice of the uncertain
parameters, which may represent valuable information for
parametric robust synthesis, see Apkarian et al. (2014).
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When α∗ < 0 every solution x(t) of (3) decays at least as
fast as eα

∗t, in which case −α∗ > 0 is also known as the
minimum stability degree of (1).

2. BRANCH AND BOUND STRATEGY

In this section we present the main ingredients of our
branch and bound algorithm for (4). The differences with
earlier work by Gaston et al. (1988), Sideris et al. (1989),
and Balakrishnan et al. (1991) are (i) the use of a so-
phisticated local solver which gives an improved lower
bound, (ii) an evaluation procedure which avoids comput-
ing explicit upper bounds, and (iii) a new element which
integrates frequency information in the setup. We will
explain these improvements as we go.

2.1 Basic setup

For every subbox ∆ =
∏m
i=1[ai, bi] of [−1, 1]m with −1 6

ai < bi 6 1 we consider the subproblem

α∗(∆) = max
δ∈∆

α (A(δ)) (5)

of (4) associated with ∆. During the algorithm we main-
tain a finite list L of subproblems specified by pairwise
non-overlapping subboxes, called the list of doables. The
algorithm stops as soon as the list L has been worked off.
The list is initialized with the box [−1, 1]m. When a box
∆ ∈ L comes up for evaluation, we call a decision proce-
dure P, called a pruning test, which decides whether or
not ∆ can be pruned. When pruned, ∆ simply disappears
from the list L . When P decides that pruning is not
possible, then ∆ is divided into two successor boxes ∆′,
∆′′ of half volume, ∆ is removed from the list and ∆′,
∆′′ are added, so that L grows by one. Usually we cut
the box in two halves along a longest edge.

2.2 Lower bound

We use a local optimization method based on a bundle
trust-region strategy Apkarian et al. (2015a,b) to compute
a lower bound α 6 α∗ of the global optimum. Suppose the



local optimum is attained at δ ∈ [−1, 1]m, then δ is our
candidate for the solution, called the incumbent. Since the
local solver is fast, it is re-started within ∆ whenever a
new subproblem ∆ ∈ L is evaluated. This may lead to
an improved lower bound and incumbent. The information
provided within ∆ is also used to rank the boxes in the
list of doables L . A detailed description of the local solver
can be found in Apkarian et al. (2015a,b). For the current
analysis it is enough to know that when the algorithm is
started with initial guess δ0 ∈∆, then it always ends with
a local maximum δ ∈∆ satisfying α (A(δ)) > α (A(δ0)).

2.3 Pruning test

Following standard terminology, a function α(·), defined
on boxes ∆, is called an upper bound if α∗(∆) 6 α(∆).
Given the current lower bound α and a tolerance ε > 0,
the standard pruning test with upper bound α(·) is

Pub :

{
if α(∆) 6 α+ ε then pruning ∆
otherwise not−pruning

(6)

The idea is that the decision pruning is only issued when
α∗(∆) 6 α(∆) 6 α+ ε, in which case the present incum-
bent cannot be further improved within the tolerance ε by
investigating subboxes of ∆. Hence ∆ can be eliminated.

It turns out that in order to reach the decision (6) it is not
necessary to compute an upper bound. Any method which
allows to certify that α∗(∆) 6 α + ε will be sufficient to
reach the same decision. This is captured by the following

Definition 1. A decision procedure P which, given a box
∆ and a reference value α on entry, and being allowed
a tolerance ε > 0, issues a decision between pruning ∆
and not−pruning is called a pruning test if the decision
pruning ∆ is only issued when it is certified that α∗(∆) 6
α+ ε. �

We shall use the shorthand P(∆, α, ε) = pruning, respec-
tively, P(∆, α, ε) = not−pruning. In order to succeed, a
pruning test P has to satisfy the following property:

Definition 2. A pruning test P is consistent if for every
ε > 0 there exists η > 0 such that for every box ∆
with diameter < η and for every α > 0 the decision
P(∆, α∗(∆) + α, ε) = pruning is made. �

The explanation is that sufficiently small boxes will get
pruned when the global lower bound α is better than their
value α∗(∆) within the allowed level of tolerance ε. For the
classical pruning test (6) consistency amounts to requiring

lim
∆→0

α∗(∆)− α(∆) = 0.

In section 3 we shall present several consistent pruning
tests, which do not require computing an upper bound
α(·). This leads to an advantage in speed.

2.4 Presentation of the algorithm

In this section we present the algorithm by way of the
pseudo-code given below. The principal property of the
algorithm can be summarized by the following

Theorem 1. Suppose algorithm 1 is operated with a con-
sistent pruning test P and tolerance level ε > 0. Then
it terminates with an empty list L after a finite number
of steps, and on exit the returned lower bound α satisfies

Algorithm 1. Branch and bound for program (4).

1: Lower bound. Call local solver to compute lower
bound α. Initialize list L = {[−1, 1]m}.

2: while L 6= ∅ do
3: Choose first element ∆ ∈ L for evaluation
4: Call local solver in ∆ to update lower bound α.
5: Call pruning test P.
6: if P(∆, α, ε) = pruning then
7: Remove ∆ from L
8: else
9: Remove ∆ and replace it by two successors

10: ∆′, ∆′′ in L
11: end if
12: Update ordering of L
13: end while
14: Return δ and α.

α∗ 6 α + ε. In particular, if α + ε < 0, then a robust
stability certificate for (1) is obtained.

Proof. 1) Let α(n) be the best lower bound found after
iteration n. Then α(n) 6 α(n+1) → α 6 α∗. Now suppose
first the algorithm ends finitely at iterate n, then at some
stage k 6 n a box ∆ containing a global maximum δ∗ has
been pruned. This box satisfies α∗(∆) = α∗, and since the
pruning test was based on α(k), we have α∗ = α∗(∆) 6
α(k) + ε 6 α + ε. That gives the estimate claimed in the
statement.

2) It obviously suffices to show that there exists η > 0 and
an iteration counter n0 such that for all counters n > n0

boxes with diam(∆) < η are automatically pruned when
evaluated.

3) Since α is a continuous function, δ 7→ α (A(δ)) is
uniformly continuous on [−1, 1]m by the hypothesis of
robust well-posedness, hence there exists η > 0 such that
for all all boxes with diam(∆) < η and all δ, δ′ ∈ ∆ we
have |α (A(δ)) − α (A(δ′)) | < 1

2ε. That means as soon as
a box with diam(∆) < η is evaluated, the local optimizer
finds a value α(∆) such that |α∗(∆)−α(∆)| < 1

2ε. If this
evaluation occurs at iteration n, then α∗(∆) 6 α(∆) +
1
2ε 6 α(n) + 1

2ε 6 α + 1
2ε, because the lower bound is

regularly updated.

4) Using consistency of P, by reducing η found in 3), we
can further assume that P(∆, α∗(∆) + α, 1

2ε) = pruning
for every α > 0 and every box with diam(∆) < η.

5) Now assume the algorithm does not terminate. Then
there exist boxes ∆k of diameter 6 ηk → 0, ηk <
η, which are evaluated at counter nk, but not pruned.
Then α∗(∆k) 6 α(nk) + 1

2ε, hence P(∆k, α
(nk), ε) =

P(∆k, α
(nk) + 1

2ε,
1
2ε) = P(∆k, α

∗(∆k) + ak,
1
2ε) =

pruning by consistency, where ak = α(nk)+ 1
2ε−α

∗(∆k) >
0. This contradicts the assumption that ∆k was not
pruned and completes the proof. �

3. CENTRALIZING LOOP TRANSFORMATION

In order to prepare our pruning tests we follow Balakr-
ishnan et al. (1991) and apply a loop transformation to
the system (A,B,C,D) with uncertainty δ ∈ ∆ such

that the transformed system (Ã, B̃, C̃, D̃) has its uncer-



tainty δ̃ with the same structure (2) in [−1, 1]m. Assuming
∆ =

∏m
i=1[ai, bi], and putting

K = 1
2diag [(a1 + b1)Ir1 , . . . , (am + bm)Irm ] ,

F = 1
2diag [(b1 − a1)Ir1 , . . . , (bm − am)Irm ] ,

(7)

we define

Ã = A+B(I −KD)−1KC, B̃ = B(I −KD)−1F 1/2,

C̃ = F 1/2(I −DK)−1C, D̃ = F 1/2D(I −KD)−1F 1/2.
(8)

This is indeed what is required because we have the
following

Lemma 2. (Balakrishnan et al. (1991)). Let ∆ =
∏m
i=1[ai, bi]

and α ∈ R, then the following are equivalent:

i. α
(
A+B∆(I −D∆)−1C

)
< α for every δ ∈∆;

ii. α
(
Ã+ B̃∆̃(I − D̃∆̃)−1C̃

)
< α for ever δ̃ ∈ [−1, 1]m.

Here ∆̃ ↔ δ̃, ∆ ↔ δ via (2). Moreover, the uncertainties

∆, ∆̃ are in one-to-one correspondence via

∆̃ = F−1/2(∆−K)F−1/2, ∆ = K + F 1/2∆̃F 1/2. (9)

�

4. PRUNING VIA µ-UPPER BOUNDS

Due to the centralization in Lemma 2 we can now use
overestimates of the structured singular value µ∆ of Sa-
fonov (1980) and Doyle (1982) to define pruning tests. We
introduce the notation Mα(s) = C(sI−(A−αI))−1B+D,

and similarly M̃α(s) = C̃(sI − (Ã − αI))−1B̃ + C̃ for

the shifted system (7), (8). If Ã − αI is stable, and since
(1) is robustly well-posed over [−1, 1]m, we can write the
structured singular value as

µ∆(M̃α) = sup
{
σ(∆̃)−1 : Ã− αI + B̃∆̃(I − D̃∆̃)−1C̃

unstable, ∆̃↔ δ̃ via (2)
}
. (10)

Replacing uncertainties ∆̃ as in (2) by unstructured per-

turbations Ξ̃ of the same size leads to a first rather con-
servative µ-upper bound µ̃∆(M) = sup{σ(Ξ)−1 : |I −
M(s)Ξ| = 0}, which we can express as

µ̃∆(M̃α) = (11)

sup
{
σ(Ξ̃)−1 : Ã− αI + B̃Ξ̃(I − D̃Ξ̃)−1C̃ unstable

}
,

and which has the advantage that it can be evaluated fast

as µ̃∆(M̃α) = ‖(Ã − αI, B̃, C̃, D̃)‖∞, where ‖ · ‖∞ is the
H∞-norm. This leads to the following pruning test.

Pµ̃ :

{
if µ̃∆(M̃α+ε) < 1 then pruning ∆
otherwise not−pruning

(12)

We consider the less conservative µ-upper bound of Fan
et al. (1991),

µ̂∆(M̃α) = inf
G∆=∆G, D∆=∆D

sup
ω

inf
{
β > 0 : M̃H

α DM̃α + j(GM̃α − M̃H
α G)− β2D � 0

}
.

This bound satisfies µ∆ 6 µ̂∆ 6 µ̃∆, and the correspond-
ing pruning test is

Pµ̂ :

{
if µ̂∆(M̃α+ε) < 1 then pruning ∆
otherwise not−pruning

(13)

Proposition 3. Suppose (1) is nominally stable over [−1, 1]m.
Then Pµ̃ and Pµ̂ are consistent pruning test.

Proof. 1) In view of µ∆ 6 µ̂∆ 6 µ̃∆ the decision pruning

is only issued when µ∆(M̃α+ε) < 1. That means M̃α+ε

is robustly stable over [−1, 1]m, hence α(Ã − (α + ε)I +

B̃∆̃(I − D̃∆̃)−1C̃) < 0 for every δ̃ ∈ [−1, 1]m, hence

α(Ã + B̃∆̃(I − D̃∆̃)−1C̃) < α + ε for every δ̃ ∈ [−1, 1]m,
hence by Lemma 2 α(A + B∆(I −D∆)−1B) < α + ε for
every δ ∈∆, hence α∗(∆) 6 α+ε. Hence Pµ̃ is a pruning
test, and so is Pµ̂.

2) It suffices to prove consistency of Pµ̃. We have to
find η > 0 such that when diam(∆) < η, α > 0, then
Pµ̃(∆, α∗, ε) = pruning, where α∗ := α∗(∆) + α. By

(12) the latter means µ̃∆(M̃α∗+ε) < 1, where M̃α = (Ã−
αI, B̃, C̃, D̃) is the shifted system (7), (8) for ∆ and α. For
the proof we may assume α∗ = α∗(∆). Now the structured

singular value of M̃α∗+ε may be expressed as (10), while

the upper bound µ̃∆(M̃α∗+ε) may be expressed as (11).
Suppose the statement is incorrect, then there exist boxes

∆ of arbitrarily small diameter such that µ̃∆(M̃α∗+ε) > 1.

Pick a complex Ξ̃ such that 1/σ(Ξ̃) > 1 and Ã − (α∗ +

ε)I+ B̃Ξ̃(I− D̃Ξ̃)−1C̃ unstable. Applying the inverse loop
transformation (9) shows that there exists a complex Ξ
such that A − (α∗ + ε)I + BΞ(I − DΞ)−1C is unstable

and Ξ = K + F 1/2Ξ̃F 1/2. Then A := A − (α∗ + ε)I +

BΞ(I − DΞ)−1C is also unstable. Now pick δ̃ ∈ [−1, 1]m

such that α(Ã+ B̃∆̃(I−D̃∆̃)−1C̃) = α∗ = α∗(∆), and let

∆ = K+F 1/2∆̃F 1/2 be its inverse transform. Then δ ∈∆
by construction, and α(A+B∆(I −D∆)−1C) = α∗. Now
we may decompose the unstable matrix A as

A = A(∆) + B(Ξ,∆)

where A(∆) :=
[
A+B∆(I −D∆)−1C − α∗I − εI

]
satis-

fies α(A(∆)) = −ε, and B(Ξ,∆) = BΞ(I − DΞ)−1C −
B∆(I − D∆)−1C. Since this works for arbitrarily small
boxes ∆, we can pick K,F → 0 such that B(Ξ,∆) → 0,
α→ α∞ for some limit, and A(∆)→ A−α∞I − εI. Then
A → A−α∞I−εI, which has spectral abscissa = −ε. This
contradicts the fact that each A is unstable. �

5. LMI-BASED PRUNING TEST

The test (12) is easy to compute, but rather conservative.
Test (13) is less conservative but computationally more
demanding. The following test is yet another alternative
with reduced conservatism, now based on LMIs. We use
the following

Lemma 4. (Graham et al. (2006)). Fix 0 < ω0 <∞. Sup-
pose there exist Hermitian matrices Z1, Z2 � 0 commuting
with the ∆, Hermitian matrices Y1, Y2 commuting with the
∆, and complex matrices F,G such that



[
C̃HZ1C̃ C̃HZ1D̃ − jC̃HY1

∗ D̃HZ1D̃ − Z1 + jY1D̃ + ∗

]
+ (14)

+

[
F
G

] [
(−Ã+ αI) − B̃

]
+ ∗ ≺ 0

[
C̃HZ2C̃ C̃HZ2D̃ − jC̃HY2

∗ D̃HZ2D̃ − Z2 + jY2D̃ + ∗

]
+ (15)

+

[
F
G

] [
(jω0I − Ã+ αI) − B̃

]
+ ∗ ≺ 0

and there exist Hermitian matrices Z3, Z4 � 0, Hermitian
matrices Y3, Y4, all commuting with the ∆, and complex

matrices F̃ , G̃ such that

[
C̃HZ3C̃ C̃HZ3D̃ − jC̃HY3

∗ D̃HZ3D̃ − Z3 + jY3D̃ + ∗

]
+

[
F̃

G̃

]
[jI 0] + ∗ ≺ 0

(16)

[
C̃HZ4C̃ C̃HZ4D̃ − jC̃HY4

∗ D̃HZ4D̃ − Z4 + jY4D̃ + ∗

]
+ (17)

+

[
F̃

G̃

] [
(jI − ω−1

0 Ã+ ω−1
0 αI) − ω−1

0 B̃
]

+ ∗ ≺ 0.

Then α∗(∆) < α.

Proof. Indeed, if the LMIs (14), (15) are satisfied for
Z1, Z2, Y1, Y2, F,G, then by Theorem 1 of Graham et al.
(2006) (applied with η = 1, ω1 = 0, ω2 = ω0) we have

µ∆(M̃α(jω)) 6 1 for every ω ∈ [0, ω0], where M̃α = (Ã−
αI, B̃, C̃, D̃). Similarly, if the LMIs (16), (17) are satisfied,
then by Theorem 2 of Graham et al. (2006) (applied with

η = 1, γ1 = 0, γ2 = 1/ω0) we have µ∆(M̃α(jω)) 6 1 for
every ω ∈ [ω0,∞]. Combining both, we have µ∆ 6 1,

which gives robust stability of (Ã − αI, B̃, C̃, D̃) over
[−1, 1]m. Hence

α
(
Ã− αI + B̃∆̃(I − D̃∆̃)−1C̃

)
< 0

for every δ̃ ∈ [−1, 1]m, hence α
(
Ã+ B̃∆̃(I − D̃∆̃)−1C̃

)
<

α for every δ̃ ∈ [−1, 1]m, so α
(
A+B∆(I −D∆)−1C

)
< α

for every δ ∈∆ by Lemma 2. �

Note that (14), (15) are coupled through F,G, and (16),

(17) are coupled through F̃ , G̃, but both blocks can be
checked independently. In particular, if the first one fails,
then we do not have to check the second one in order to
reach our decision:

PLMI :

{
if (14)-(17) are satisfied pruning ∆
otherwise not−pruning

(18)

If we want to allow a tolerance ε > 0, we have but to
use α + ε in (14)-(17). We conclude with the following
immediate consequence of Lemma 4.

Lemma 5. PLMI is a consistent pruning test.

Proof. Since PLMI is less conservative than Pµ̃, the
result follows from the properties of Pµ̃. �

6. FREQUENCY SWEEP

The pruning tests (12), (13), (18) may provide useful
information even when the decision is P = not−pruning.

Lemma 6. Suppose (1) is robustly well-posed. Let ∆ be

a subbox of [−1, 1]m. Let M = (A,B,C,D), M̃α = (Ã −
αI, B̃, C̃, D̃) the shifted system (7), (8) for ∆, and suppose
α > 0. Let ω0 be a frequency such that µ∆(M(jω0)) < 1.

Then also µ∆(M̃α(jω0)) < 1.

Proof. Suppose µ∆(M̃α(jω0)) > 1, then µ∆(M̃(jω0)) >
1, because α > 0 and µ∆ is decreasing with respect to

α. Hence there exists a structured perturbation ∆̃ as in

(2) such that I − M̃(jω0)∆̃ is singular and 1/σ(∆̃) > 1.
Since (1) is robustly well-posed I −M(jω0)K is regular.

Then M̃(jω0) = F 1/2(I −M(jω0)K)−1M(jω0)F 1/2 and

∆̃ = F−1/2(∆−K)F−1/2, hence

I − M̃(jω0)∆̃

= I − F 1/2(I −M(jω0)K)−1M(jω0)(∆−K)F−1/2

= F 1/2
[
I − (I −M(jω0)K)−1M(jω0)(∆−K)

]
F−1/2

= F 1/2(I −M(jω0)K)−1(I −M(jω0)∆)F−1/2.

Therefore I −M(jω0)∆ is singular. But σ(∆̃) 6 1, so δ̃ ∈
[−1, 1]m, hence δ ∈ ∆, hence σ(∆) 6 max{|ai|, |bi|} 6 1.
That implies µ∆(M(jω0)) > 1/σ(∆) > 1. �

Remark 7. The same holds for any ∆ with α and any

subbox ∆′ with α′ > α. In other words, if M̃α is the

shifted system for ∆ with α, and M̃α′ for ∆′ with α′ > α,

then µ∆(M̃α(jω0)) < 1 implies µ∆(M̃α′(jω0)) < 1. �

We can now improve the pruning test (18). With every
∆ ∈ L we associate pointers ∆ → ω[ and ∆ → ω] such
that when ∆ enters the list L , it is already known that

µ∆(M̃α)(jω) < 1 holds for every ω ∈ [0, ω[], and for every

ω ∈ [ω],∞]. Then, if ∆ is evaluated, it suffices to test
robust stability on the frequency band [ω[, ω]]:

PLMI(ω
[, ω]) :

{
if (20)-(21) hold pruning ∆
otherwise not−pruning

(19)

where[
C̃HZ1C̃ C̃HZ1D̃ − jC̃HY1

∗ D̃HZ1D̃ − Z1 + jY1D̃ + ∗

]
+ (20)

+

[
F
G

] [
(jω[I − Ã+ αI) − B̃

]
+ ∗ ≺ 0

[
C̃HZ2C̃ C̃HZ2D̃ − jC̃HY2

∗ D̃HZ2D̃ − Z2 + jY2D̃ + ∗

]
+ (21)

+

[
F
G

] [
(jω]I − Ã+ αI) − B̃

]
+ ∗ ≺ 0

Suppose for a given ∆ this test gives not−pruning. Then,
before dividing ∆, we try to improve the frequencies ω[, ω]

for ∆ in the sense ω[ → ω[+∆ω[, ω] → ω]−∆ω], so that
the successors ∆′, ∆′′ of ∆ get an even smaller frequency
band on which µ∆ < 1 has to be checked.



7. EXPERIMENTS

In this section we present the results achieved by our
branch and bound algorithms on 32 benchmarks given in
Table 1. The tests were realized using MatlabR2014b and
on a 64-bit PC with 2.70GHZ dual-core and 16, 0 Go RAM.

] Benchmark n Structure ndec

1 Beam3 11 133111 338

2 Beam4 11 133111 338

3 Dashpot system1 17 16 534

4 Dashpot system2 17 16 534

5 Dashpot system3 17 16 534

6 DC motor3 7 1122 162

7 DC motor4 7 1122 162

8 DVD driver2 10 11331131 542

9 Four-disk system3 16 113514 1112

10 Four-disk system4 16 113514 1112

11 Four-disk system5 16 113514 1112

12 Four-tank system3 12 14 268

13 Four-tank system4 12 14 268

14 Hard disk driver3 22 132414 1258

15 Hard disk driver4 22 132414 1258

16 Hydraulic servo3 9 19 266

17 Hydraulic servo4 9 19 266

18 Mass-spring3 8 12 112

19 Mass-spring4 8 12 112

20 Missile3 35 1363 3174

21 Missile4 35 1363 3174

22 Missile5 35 1363 3174

23 Filter3 8 11 92

24 Filter4 8 11 92

25 Filter-Kim3 3 12 32

26 Filter-Kim4 3 12 32

27 Satellite3 11 116111 460

28 Satellite4 11 116111 460

29 Satellite5 11 116111 460

30 Mass-spring-damper3 13 11 212

31 Mass-spring-damper4 13 11 212

32 Mass-spring-damper5 13 11 212

Table 1. Benchmarks; Apkarian et al. (2015b).

In Table 1 column n shows the number of states in (1),
while column structure allows to retrieve the uncertain
structure [r1, . . . , rm]. For instance [133111] = [1 1 1 3 1] =
[r1 r2 r3 r4 r5] in benchmark Beam 3, and [132414] =
[1 1 1 2 2 2 2 1 1 1 1] = [r1 . . . r11] in benchmark Hard-Disk-
Driver 4. The number of decision variables in (14)-(17) and
(20)-(21) is given in column ndec.

In Table 2, column α gives the best lower bound achieved
by the local solver during B&B with P = Pµ̂, where
ranking pushes those ∆ to the end of the list, in which
a δ realizing the current α occurs. Column α gives the
value α = α + ε = α + |α| · tol, where ε is scaled to α
such that the relative error is tol ≈ 0.01. On exit the
algorithm believes that the global maximum is α, and
certifies that the true global maximum α∗ lies between α
and α = α+|α|·tol = α+ε. The CPU times are t if the local
solver is run as stand-alone to achieve the value α, and t∗

for the branch-and-bound solver to achieve α∗ ∈ [α, α].

We also tested the algorithm with P = Pµ̃. This cor-
responds to an improved version of Balakrishnan et al.
(1991). Here the CPU is exceedingly long due to the strong

] α α tol t∗

1 −1.23e− 7 −1.23e− 7 0.01 2.03

2 −1.75e− 7 −1.74e− 7 0.01 0.73

3 0.0188 0.0186 0.01 588.45

4 −1.0e− 6

5 −0.99e− 6 −1.0e− 6 0.01 0.71

6 −0.99e− 3 −1e− 3 0.01 1.68

7 −0.99e− 3 −1e− 3 0.05 1.79

8 −0.0165

9 0.0102 0.0089 0.15 669.84

10 −7.5e− 7 −7.5e− 7 0.01 4.12

11 −1e− 7 −1e− 7 0.01 5.35

12 −6.0e− 6 −6.0e− 6 0.01 0.67

13 −6.0e− 6 −6.0e− 6 0.01 0.25

14 272.03 266.7 0.02 3578.4

15 −1.57 −1.6026 0.02 1.52

16 −0.297 −0.3000 0.01 0.57

17 −0.297 −0.3000 0.01 0.72

18 −0.0053 −0.0054 0.01 21.3

19 −0.0365 −0.0368 0.01 5.0

20 22.86 22.6302 0.01 39.43

21 −0.49 −0.5000 0.01 17.32

22 −0.49 −0.5000 0.01 22.55

23 −0.0146 −0.0148 0.01 0.1

24 −0.0146 −0.0148 0.01 0.1

25 −0.247 −0.2500 0.01 13

26 −0.242 −0.2500 0.03 13.2

27 4.2e− 5 3.9e− 5 0.05 1557.7

28 −0.0255 −0.0269 0.05 0.45

29 −0.0265 −0.0269 0.01 0.45

30 0.2042 0.2022 0.02 0.24

31 −0.099 −0.1000 0.01 0.16

32 −0.099 −0.1000 0.01 0.2

Table 2. Results obtained with Branch-and-
Bound algorithm I when P = Pµ̃

conservatism of the pruning test, with the effect that only
very tiny boxes are pruned. We do not report the CPUs.

The algorithm was then tested with the frequency sweep
P(∆, α, ε, ω[, ω]) in (19). For cases 20-22 the LMI solver
failed to compute ω[, ω] due to the large number of
decision variables (see Table 1, column ndec). In the
other cases, the search for ω[ and ω] turned out time
consuming. For example, in benchmark 1 computing these
frequencies for ∆ = [−1, 1]5 takes 20.22 respectively
204.87 seconds, leading to ω[ = 0.05 and ω] = 0.1.

Subsequently, ∆′ =

[
[−1 0]
[−1 1]4

]
, ∆′′ =

[
[0 1]

[−1 1]4

]
are pruned

rapidly, because P(∆′, α, ε, 0.05, 0.1) = pruning and
P(∆′′, α, ε, 0.05, 0.1) = pruning. The final t∗ for the first
two benchmarks are 228.43 and 234.2 instead of 2.03 and
0.73 seconds reported in Table 2.

The last test was algorithm 1 with P = Pµ̃ and frequency

sweep. Frequencies ω[ and ω] were computed by bisection
and evaluation of the H∞-norm on the low- and high-
frequency bands. We observed that evaluation of ω[ and
ω] was considerably faster than with the LMI method,
but µ̃ computed on [ω[, ω]] remained very conservative,
so that pruning occurred only for tiny boxes. Except for
cases 23-24 and 30-32, which have a very simple uncertain
structure, t∗ was extremely large and we do not report
the result here. In contrast, we observed that pruning by



the LMI method, and evaluation of ω[ and ω] by the H∞-
norm method reduced t∗ considerably. For the first two
benchmarks, t∗ improved to 45.8 and 42.9 seconds.

We also tested two alternative global optimizers, the meth-
ods of Zheng et al. (1995), and Lasserre (2001), Henrion
et al. (2004). In table 3 the Zheng-method computes αZM

in tZM, Lasserre’s method αLMI in tLMI seconds, and both
are compared to α obtained in t seconds when the local
solver was used as stand-alone. This value α is used to
initialize the B&B.

Algorithm 2 . Zheng-method for α∗ = max
x∈∆

f(x)

1: Initialize. Choose initial α < α∗.
2: Loop. Compute α+ =

∫
[f≥α]

f(x) dµ(x)
/
µ[f ≥ α].

3: Stopping. If progress of α+ over α is marginal, stop,
otherwise α→ α+ and goto step 2.

] α αZM αLMI t tZM tLMI

1 -1.2e-7 -1.2e-7 x 0.19 32.70 x

2 -1.7e-7 -1.7e-7 x 0.04 33.00 x

3 0.0186 0.0185 x 0.23 90.25 x

4 -1.0e-6 -1.0e-6 x 0.39 39.63 x

5 -1.0e-6 -1.0e-6 x 0.08 39.63 x

6 -0.0010 -0.0010 x 0.02 20.63 x

7 -0.0010 -0.0010 x 0.02 20.74 x

8 -0.0165 -0.0165 x 0.04 49.29 x

9 0.0089 0.0089 x 0.10 159.91 x

10 -7.5e-7 -7.5e-7 x 0.29 73.86 x

11 -1.0e-7 -1.0e-7 x 0.29 74.63 x

12 -6.0e-6 -6.0e-6 x 0.02 26.03 x

13 -6.0e-6 -6.0e-6 x 0.02 26.2 x

14 266.7 -1.60 x 0.2 1252.5 x

15 -1.6026 -1.6026 x 0.06 80.4 x

16 -0.3000 -0.3000 x 0.04 51.41 x

17 -0.3000 -0.3000 x 0.02 50.95 x

18 -0.0054 -0.0054 x 0.01 31.59 x

19 -0.0368 -0.0370 x 0.01 16.94 x

20 22.6302 22.1682 x 0.07 104.18 x

21 -0.5000 -0.5000 x 0.07 51.78 x

22 -0.5000 -0.5000 x 0.07 52.24 x

23 -0.0148 -0.0148 x 0.06 7.05 x

24 -0.0148 -0.0148 x 0.02 6.89 x

25 -0.2500 -0.2500 -0.2475 0.01 12.83 0.25

26 -0.2500 -0.2500 -0.2475 0.01 12.9 0.26

27 3.9e-5 3.9e-5 x 0.02 44.02 x

28 -0.0269 -0.0269 x 0.02 26.02 x

29 -0.0268 -0.0268 x 0.02 26.08 x

30 0.2022 0.2022 x 0.01 8.30 x

31 -0.1000 -0.1000 x 0.01 6.91 x

32 -0.1000 -0.1000 x 0.01 6.94 x

Table 3. Comparison of global solvers.

Lasserre’s method solves the BMI problem (4) by a hi-
erarchy of LMIs. Following Henrion et al. (2004), robust
stability of Mα over ∆ is certified when the value of the
following polynomial optimization problem is > 0:

minimize det(H(δ))
subject to δ ∈∆

(22)

where H(δ) is the so-called Hermite-matrix of Mα. The
method uses GloptiPoly, and Maple 14 to compute
det(H(δ)). In table 3 αLMI improves over α in cases 25,

26, but in the remaining cases no certificate could be
obtained even when feasibility of the SDP-solver SeDuMi
was enlarged to 103, and a large number of LMIs was
considered. The bottleneck of Lasserre’s method is slow
convergence of the LMI approximation, that lower bounds
cannot be taken into account, and the necessity to com-
pute det(H(δ)) formally. For instance, for n = 7 Maple
produces 75 pages output for det(H(δ)).

8. CONCLUSION

We presented a branch and bound algorithm to compute
the worst-case spectral abscissa of a system with uncertain
parameters. A bundle trust-region solver was used to
compute good lower bounds, and a frequency sweeping
technique increased the efficiency of the pruning test,
which gives our method a decisive advantage over previous
approaches such as Gaston et al. (1988), Sideris et al.
(1989), or Balakrishnan et al. (1991). The method was
tested on a bench of 32 systems with up to 35 states, 4
uncertain parameters, and 4 repetitions. The results where
matched with those of two alternative global solvers.
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