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Résumé

This paper is concerned with the design of a gain-scheduled controller for the atti-
tude control of a launcher in atmospheric flight. The design problem is characterized by
classical requirements such as satisfactory phase/gain margin constraints and flexible
modes attenuation as well as time-domain constraints in the form of an upper bound on
the angle of attack in the presence of wind disturbance. Moreover, these requirements
must be fulfilled over the full atmospheric flight.

In order to achieve this goal, we exploit a recently available Linear Parameter-
Varying (LPV) technique suitably extended to discrete-time systems. The advantage
of this technique is that both time-invariant constraints and the gain-scheduling phase
are incorporated into a single design procedure and neither interpolation nor extensive
simulations are required to accomplish the overall design task.

An important ingredient in the proposed technique is the Cross Standard Form for-
mulation which allows to incorporate the various specifications of the launcher problem
in a streamlined manner. It leads to a specific control standard form which can be
immediately handled by the LPV design technique under consideration.
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1 Introduction

In this paper,we consider the low-level control loop of a non-stationary launcher during
atmospheric flight. Only the yaw attitude is explored : the problem is formulated in terms of
angle of attack regulation in face of a typical wind profile (disturbance rejection problem) and
consumption reduction. Robustness specifications are expressed in the frequency domain for a
set of operating instants regularly spaced along the flight path : the open loop transfer (L(s) =
K(s)G(s)) must satisfy templates on the Nichols chart for various critical configurations
sampled in the uncertain parameter space. Uncertain parameters are the main dynamic
parameters on the rigid mode (aerodynamic coefficient, thruster efficiency,...) and on the
bending modes (natural pulsations, modal participation factors).

With respect to the pure stationary synthesis problem at one flight instant, there is
no methods, to our knowledge, that can handle a set of specifications (time-domain perfor-
mance and open-loop frequency-domain specifications) in a streamlined manner. Although
our approach is also indirect, its capability to take advantage of know-how is particularly
highlighted in this application: the time-domain performance specification (angle-of-attack
peak amplitude in response to typical wind profiles) is handled by a non-conventional LQG
synthesis in which the LQ state feedback is computed in a two-step procedure based on
physical considerations. Then, this synthesis is incorporated into a standard H,, problem in
order to meet frequency-domain templates. The final H,, synthesis meets all the specifica-
tions and produces a low-order compensator in regard to alternative approaches applied on
the same problem ([1, 2, 3]). Our method is based on the CSF (Cross Standard Form) [4]
presented as a generalization of the LQ inverse problem to the Hy; and H, inverse problem.
The CSF allows to formulate a standard problem from which an initial compensator can
be obtained by H; or H,, synthesis. The CSF is used to mix various synthesis techniques
in order to satisfy the different specifications of the launcher control problem. Indeed, the
general idea is to perform a first synthesis to reach some specifications, mainly performance
specifications. Then, the CSF is applied to this first solution to initialize a standard problem
which will be gradually completed to handle frequency-domain or parametric robustness
specifications.

Considering the non-stationary problem, we design the LTV plant as a linear interpola-
tion of the H,, problems of control constructed for different points on the flight envelope.
We use a linear interpolation, because the LTV model of the launcher is the result of a linear
interpolation of the physical parameters. The construction of the H,, problems presented
in this paper is the discrete-time version of the method proposed in our previous paper [4].
This discrete-time version produce a simpler control law. Given the LTV model of the laun-
cher, the overall control law is designed using the LPV synthesis technique introduced in [5]
suitably extended to discrete-time systems. Hence the full launcher flight envelope is dealt
with in a single phase which overcomes the need for repeated syntheses and simulations.

The paper is structured as follows. Some notations and prerequisites are introduced in
Section 2. Section 3 is devoted to the characterization and the construction of gain-scheduled
controllers. In Section 4, we briefly discuss the CSF concept which is used in the launcher
control problem. The launcher control problem considered in this paper and described Section
5 is the same as presented in [3] and [1]. Section 6 is devoted to the standard form construction
and its use to merge together the various design specifications. Finally, Section 7 discuses
the results obtained through the proposed methodology.



2 Notations and State-Space Setup

The notation used in the paper is fairly conventional.

AT Transposed of matrix A

& Time derivation (& = dz/dt)

s LAPLACE variable

T Sampling period

zy, or z(k) Discrete-time value of z (z(t)|s=xT,)

21 delay operator

G(9) := [%’%] state-space realization of transfer G(8): G(6) = D+ C (61 — A)™'B
(6 =sorz)

For real symmetric matrices M, M > 0 stands for “positive definite” and means that
all the eigenvalues of M are positive. Similarly, M < 0 means “negative definite” (all the
eigenvalues of M are negative) and M > 0 stands for “nonnegative definite” (the smallest
eigenvalue of M is nonnegative). We shall also use the LFT notation. For appropriately
My My

and assuming the inverses exist, the upper
M21 M22:| g I pp

dimensioned matrices K and M = [

LFT is defined as

Fy(M,K) = My + My K(I — M1 K)™* M. (1)
Similarly, the lower LF'T is defined as
Fi(M,K) = My + MjpK(I — My K) ™' My,. (2)

The L, norm of a signal w(t) on [0, 00) is defined as

[o's) o0
|wl|Z, ::/0 w(t t)dt or Zw kT) .
k=0

Acronyms
CSF Cross Standard Form
LFT Linear Fractional Transformation
LPV Linear Parameter-Varying
LQ Linear Quadratic
LQG Linear Quadratic Gaussian
LTI Linear Time Invariant
LTR Loop Transfer Recovery
LTV Linear Time-Varying

3 Output-Feedback Synthesis

In this section we recap some known results on the LPV gain-scheduling technique with
bounded parameter variations rates. The reader is referred to [5] for a detailed discussion
on this technique and also to references [6, 7, 8] for details, insights and applications of
analogous gain-scheduling techniques.



The problem addressed by this technique is the following. Suppose we are given an LPV
plant G(#) with state-space realization

Tp+1 — A(@)xk + Bl(9)wk + Bz(@)uk

ZEk = Cl (9)$k + D11 (G)wk + D12(0)uk (3)
Yk = Cz(H)xk + D21(9)'wk ,
where
AeRY™™, Dy, € RRP™ and Dy € RP2*™
define the problem dimension. The time-varying parameter 6 := (0y,---,0.)T is assumed
bounded as follows, )
— each parameter 6; ranges between known extremal values 6, and 6;:

The first assumption means that the parameter vector € is valued in a hypercube ©. An
important assumption made throughout is the following:

(A1) We will assume throughout that the evolutions of the system are well modeled
by a sequence of LTI systems. Therefore, the scheduling variable # is time-invariant. This
somewhat surprising assumption is motivated by the fact that the launcher is a mildly non-
stationary system and most design specfications are of time-invariant nature (gain/phase
margins, flexible modes attenuation, etc.). The design problem is thus based on a sequence
of linear models along the trajectory of the launcher. We will however keep the terminology
LPV system or LPV design with a slight abuse.

With these definitions in mind, the gain-scheduled output-feedback control problem
consists of finding a dynamic LPV controller, K (), with state-space equations

zx(k+1) = Ag(0)zx(k)+ Bx(0)y(k) (5)
u(k) = Ck(f)zx(k) + Dr(0)y(k) ,

which ensures internal stability and a minimal Ly-gain bound + for the closed-loop operator
(3)-(5) from the disturbance signal w to the error signal z. Note that A and Ax have the
same dimensions, since we restrict the discussion to the full-order case. Denoting z. the
states of the closed-loop system (3)-(5), that is,

o T
cl Tk )

the formulation of such controllers can be handled via the Bounded Real Lemma with qua-
dratic parameter-dependent Lyapunov functions V(zq,0) = zP(6)zq [5]. Note that the
controller state-space matrices are allowed to depend explicitly on the derivative of the time-
varying parameter 6.

Except the usual smoothness assumptions on the dependence on 6, the problem data
and variables will be unrestricted hereafter. The basic characterization of gain-scheduled
controllers with guaranteed Lo-gain performance is presented in the next theorem where the
dependence of data and variables on # has been dropped for simplicity.
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Theorem 3.1 (Basic Characterization [5]) Consider the LPV plant governed by (3),
with parameter trajectories constrained by (4) and the assumption (A1) in force. There
exists a gain-scheduled output-feedback controller (5) enforcing internal stability and a bound
v on the Ly gain of the closed-loop system (8) and (5), whenever there exist parameter-
dependent symmetric matrices Y and X and a parameter-dependent quadruple of state-space
data (AK, BK, CK, Dg) such that for all § in © the following infinite-dimensional LMI pro-
blem holds,

-X * * *

—I -Y * *

(XA+ Bch) (A+ BaDgCo)T -X * * *
AT (AY + B,Ck)T —I —Y x *

(XB; + BKDzl)T (B1 + BaDg Dop)T 0 0o —~I *
0 0 C1+ D12DgC> C1Y + D12Ck D11+ D12DgDa1 —v

(6)
In such case, a gain-scheduled controller of the form (5) is readily obtained with the
following two-step scheme :

— solve for N, M, the factorization problem
I-XY=NM".
— compute Ak, Bg, Cx with
Ag = N"Y(XY + NMT + Ag — X(A — ByDgC,)Y — BgCyY — XByCx )M T (7)
Bx = N™'(Bx — XB,Dx) (8)
Cx = (Cx — DxCY)M™T. (9)

Note that since all variables are involved linearly, the constraints (6) constitute an LMI
system. This system is, however, infinite due to its dependence on # ranging over ©. Using
the Projection Lemma, detailed in [9], the controller variables can be eliminated, leading
to a characterization involving the variables X and Y, only. This is presented in the next
theorem.

Theorem 3.2 ( Projected Solvability Conditions [5]) Consider the LPV plant gover-
ned by (3), with parameter trajectories constrained by (4) and the assumption (A1) in force.
There exists a gain-scheduled output-feedback controller (5) enforcing internal stability and a
bound vy on the Ly gain of the closed-loop system (3) and (5), whenever there exist parameter-
dependent symmetric matrices Y (0) and X (0) such that for all 6 in © the following infinite-
dimensional LMI problem holds,

ATXA-X ATX B, Cct

Nx |0 BYXA  —~4I+BYXB; ‘ D{l Nx |0 < 0 (10)
0 |7 o 5 =i 0 | I
1 11 - | -
[ AYAT —Y Ay CT B 1 -

[ASY ?] C,Y AT —I +CYCT Dy, A(/)‘Y% < 0 (11)
BT D, | - | .

H s o a

_I—

<0



where Nx and Ny designate any bases of the null spaces of [ Cy Do ] and [ BI D, ],
respectively.

Note again that the characterization above is an infinite-dimensional LMI problem. It can
be turned into a conventional LMI problem by a gridding of the parameter space © and by
selecting basis functions for the matrices X (0) and Y (6) [8, 5]. This will be discussed more
in-depth in the launcher application below. Also, when the matrix-valued functions X (6)
and Y (@) are determined, one can use explicit formulas to compute the controller data (5) as
functions of the scheduling variables . This allows online implementation of the controller
as required by the gain-scheduling task. The reader is referred to [5] for more details on the
controller construction.

4 The Cross Standard Form (CSF)

The CSF, previously detailed in [4] for continuous-time systems, is defined in this sec-
tion for discrete-time systems. The CSF is based on an LQG controller structure or more
generally on compensators involving a state observer (with an estimation gain Ky), a state
feedback (with a gain K.) and a dynamic Youla’s parameter Q(z). In discrete-time, one can
distinguish 2 LQG structures: the predictor structure and the estimator structure (see [10]
for more details). The discrete predictor LQG structure, and the Youla parameterization
of all stabilizing controllers based on it, are analogous to the continuous-time case. All the
results presented in this paper concerns the discrete estimator LQG structure. The structure
of a such controller is depicted in Figure 1. Note that the direct feed-through D is ignored
for simplicity. Also recall that this structure allows to parameterize all stabilizing controllers.
The authors in [10] proposed a procedure to compute the parameters K., K and Q(z) which
characterize this structure from a controller K (z) of arbitrary order nx and a system G(z)
of order n.

The plant G(z) is defined by the general state-space representation (n states with n < ng,

m inputs, p outputs):
Tyl A|B T
= 1
[yk} [C\DHW] 19)

The state-space representation of the controller K (z) associated with this structure (Fi-
gure 1 and considering the direct feed-through D) reads:

QA?k_H :Aik + Buk + AKf(yk — Cf?k — D’U,k)
ka—H = AQCE({k + BQ(yk — Cik — Duk) A (14)
Ug = _chk + CQka + (DQ — Kch)(yk — C.’Bk — Duk)

where Ag, Bg, Cg and Dg are the 4 matrices of the state-space realization of Q(z) associated
to the state vector zg.

Proposition 4.1 The CSF, P,(z), associated with the compensator defined by (14), such
that :
Fi(Py(2), K(2)) =0 (15)



Q(2)

Youla parameter

State feedback

FIGURE 1: The discrete YOULA parameterization on the estimator LQG structure.



reads :

A 0 AK; B
o 4 B, 0
Py(z) = K, —Cq|—-Dg+K.Ky|Ip (16)
C 0 I, D
Proof: See [11] for the discrete-time version or [4] for the continuous-time version.
O

Practical use : This result can be considered as a generalization, for Hy and H, criteria and
for dynamic LQG output feedbacks, of the solution to the L@ inverse problem, extensively
discussed in the Sixties and Seventies and which consisted in finding the LQ cost whose
minimization restores a given state feedback. This CSF used as such is not of interest since
it is necessary to know gains K, and K; and the Youla parameter Q(z) to set up the problem
P,(z) and to finally find the initial augmented LQG compensator. On the other hand, from
an arbitrary compensator satisfying some time-domain specifications, one can compute an
observer-based realization (i.e. K., Ky and Q(z)) of this compensator using the technique
in [10]. The CSF is then immediately useful to initialize a standard setup which will be
completed by dynamic weightings to take into account frequency-domain specifications.

5 Launcher control problem

5.1 Description
This application considers the launcher inner control loop.

Vr \V; X

v X

=

B

FIGURE 2: Launcher simplified representation.

According to Figure 2, we will use the notation:

— G : the center of gravity,

— 4: the launcher angle of attack,

— 1 : the deviation angle around axis with respect to the guidance attitude reference,
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— V and V, : respectively the absolute and the relative velocities,
— w: the wind velocity,
— [ the thruster deflection angle.

The rigid model strongly depends on 2 uncertain dynamic parameters Ag (aerodynamic

efficiency) and K; (thruster efficiency).
From Figure 2 and under small angle assumption, one can derive the angle of attack equation:

Z—w

=Y+ v

(17)

where Z represents the lateral drift rate.

The discrete-time validation model considered in this paper, that is the full-order model
Gy(z), is characterized by the rigid dynamics , the thrusters dynamics, the sensors and
the first 5 bending modes. The launcher is aerodynamically unstable. The characteristics of
bending modes are uncertain. The parameters are kown as continuous time functions along
the flight envelope of the launcher.

5.2 Objectives

The available measurements are the attitude angle (1) and the velocity (¢). The control
signal is the thruster deflection angle 5. Launcher control objectives for the whole atmos-
pheric flight phase are as follows:

— performance with respect to disturbances (wind). The angle of attack peak, in res-
ponse to the typical wind profile w(t) (depicted in dashed plot in Figure 3), must
stay into a narrow band (= imaz),

— closed-loop stability with sufficient stability margins. This involves constraints on
the rigid mode but also on the flexible modes. In fact, the first flexible mode is
“naturally” phase controlled (collocation between sensors and actuator) while the
other flexible mode must be gain controlled (roll-off). So, the peaks associated with
the flexible mode (except for the first) on the frequency response of the loop gain
(L(s) = K(s)G(s)) must stay below a specified level Xgp for any parametric configu-
rations (see Figure 7 as an example). From the synthesis point of view, the flexible
modes are not taken into account in the synthesis model. But a roll-off behavior with
a cut-off frequency between the first and the second flexible modes must be specified
in the synthesis,

— robustness with respect to parameter uncertainties. This concerns both rigid (aero-
dynamics, propulsion, position of center of mass, inertia) and bending modes.

— one sampling period of delay margin.

All the objectives must be achieved for all configurations in the uncertain parameter
space (22 uncertain parameters), particularly in some identified worst cases. In this paper,
the robustness analysis is limited to these worst cases as the experience shown they are
quite representative of the robustness problem. A more complete p-analysis on stationnary
launcher control problem is presented in [12].



6 Design of the LTI controller for the launcher

First of all, we will be interested in the stationnary launcher control design. For the
different point of synthesis the method will be always the same. The approach we propose
to satisfy all these objectives proceeds in 2 steps: the first one aims to satisfy time-domain
specification (angle of attack constraint) and the second one is a H,, synthesis based on the
CSF allowing the frequency-domain specifications (roll-off, stability margins) to be met.

The models used for the synthesis are discrete models including a zero-order hold. The
computation of the first step of the synthesis is directly derived from the continuous-time
synthesis [4].

6.1 First synthesis: non conventional LQG/LTR synthesis

6.1.1 State feedback on the rigid model

The rigid problem is characterized by 2 controlled outputs ¢ and 2, 2 measurements 1
and 1, 1 control signal 8 and 1 exogenous input w (disturbance). This standard problem
reads:

w‘r

1 A Bl 32 z"

z = | C1| Dy | Do w (18)

Y Cs | Doy | Do B

Y
Then, we compute the gain K, such that the discrete control law 3, = — K, =}, minimize the
following continuous-time LQ) criterion:

J = / (az? + i +rB%) dt (19)
0

The discrete-time model can be written as z},; = Aqx} + B2,8:. The model and the perfor-
mance index are discretized by taking into account the zero-order hold at the input §; and
are computed using the Van Loan’s Formula [13].

In the sequel, we adopt the notation:

Ka=[Ky, Ky, K2 (20)
The gain Ky can be used to built a servo-loop of the measured variable 1), that is:

Br = Ky(Wrep, — ) — Kb — Ky (21)
where 1y, is the input reference.

6.1.2 Augmented state with wind dynamic

The wind dynamics is modelled by a stable filter and is then discretized with the zero-
order hold method:
Wr+1 = Awwk + ’lz)k .
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This rough model introduces a new tuning parameter A,. The discrete-time augmented
problem corresponding to the state vector z¢ = [z", w]? then reads:

- R A T A

% | =\ DoTo Dy | | B |=|Li] 0 [Do | | & (22)
gk Cy Dy | 0] Doy Br C3| 0 | Dy Bk

k

with: By, = fOTS eAn B, dn.

To compute the new state feedback gain Kj associated with the state z%, we consider
the equation (21) where 9y, is computed, via the angle of attack equation (17), to cancel
this angle of attack, that is: '

Wy — 2k
¢refk = %
Then, the term ZV’“ is ignored because it can introduce unstabilizing couplings in the lateral
motion. Finally, the gain K§ is obtained as:

Ki=[Ks -3¢ ] (23)
Following this procedure, we ensure that the LQ state feedback closed-loop dynamics are
stable and satisfy :

spec(Ag — By Kg) = spec(Ay — By, Kq) Uspec(A,,)

6.1.3 Kalman’s filter with LTR tuning

To compute the gain G of the Kalman’s filter on the augmented model (A9, B3,, C3,
Dys), we consider an LTR tuning based on the continuous one (see also [4]). That is, the
state noise is composed of 2 disturbing signals: one on the wind model input (@) and one
on the control input 3 through a gain ,/p (LTR effect):

_ [ pB:B" 0 I I
W—[ 0 I and V =w 0 w]% .

W and V are the covariance matrices of continuous-time noises for the state vector (z%)
and for the measurement vector ([¢), 1]7), respectively. Therefore the Kalman filter tuning
depends on 3 parameters: p (LTR weighting), v (measurement to state noise ratio) and
wy (rd/s) (rate to position measurement noise ratio). wy represents the pulsation beyond

which it is better to integrate the rate measurement v to estimate the position ¥ than to
use the measurement position ¢ directly.

This non conventional LQG/LTR design yields a compensator K;(z) defined by the gains
Kg and G and the four matrix of the augmented model (A3, B5,, C3, Da2).

The results obtained so far are presented in Figures 3 and 4.

We observe in Figure 3 that the performance requirements (angle of attack) are quite
satisfied for all worst cases. In Figure 4, one can also note that the template for low frequency
stability margins is satisfied (depicted in Figure 4 with the vertical line on the first critical

11
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Ti l

FIGURE 3: angle of attack i(t) (solid) and wind profile w(t) (dashed).

Flexible modes n. 3,4,5,2,1

Xdb

I I
-540 -180 180

FIGURE 4: K;(z)G¢(z): Nichols’s plots for parametric worst cases.

12



point on the right-hand side) and the first flexible mode stays away between two critical
points for all worst cases (phase control). But the roll-off effect is not strong enough: the
template for gain margins about flexible modes number 2 and 3 (depicted on Figure 4 with
the horizontal line at X dB) is not satisfied for all worst cases. We can also observe that
the flexible modes 4 and 5 are aliasing with respect to half sampling frequency and are not
significant.

6.2 Second synthesis: H,, synthesis using CSF for frequency-domain
specifications

In order to satisfy this last frequency domain requirement (template for gain margins
around flexible modes number 2 and 3), we now perform an H, synthesis with the standard
problem depicted in Figure 5:

21
F(z)
4
2
+tn’ K:il
W
L G?l -
u y
B‘zld ++Q 2z I Cza %$+
Ag
+
s

D22

FIGURE 5: Py(z): setup for the final H, synthesis.

This standard problem can be described as follows:

— between inputs w and uw and outputs 2o and y, we recognize the CSF presented
in section 4 which will inflect the solution towards the previous pure performance
compensator (LQG/LTR design),

— the output 2; is introduced to specify the roll-off behavior with a filter F(z).

Then, the H,, synthesis provides a 6th-order compensator K»(z). Analysis results are
displayed in Figures 6 and 7. In Figure 6, we can see that the performance specifications are
still met, and in the Nichols plot (Figure 7). Also stability margins are good enough for all
worst cases and the roll-off behavior is quite satisfactory.
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FIGURE 6: angle of attack i(¢) (solid) and wind profile w(t) (dashed) with second controller.

Xdb

FIGURE 7: K5(2)G(z): NICHOLS plot for parametric worst cases with second controller.

We used the same procedure to compute the LTI controller for the whole atmospheric
flight phase. We can see on Figure 8 that for each point the LTI controller achieved the
stationnary specification.

14
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FIGURE 8: Specification balance graph w.r.t time for LTI compensators.

7 Linear Time Varying Launcher Control

We consider a set of synthesis points and construct the LTI standard problem for each
of theses points using the previous approach. We compute the LTV problem of control (see
equation 3, where # = t) through a linear interpolation of the LTI standard problems. Now,
we must choose a functional dependence for the Lyapunov functions solution of the LMI
constraints (10-12).

The rigid dynamic is naturally defined by 6 time functions [14]: the aerodynamic coeffi-
cients Ag and K, the velocity V', and the parameters of the drift equation ay, as and as3. So,
the functional dependence (24) of X and Y is chosen to duplicate the natural dependancy
of the rigid launcher:

X(t) = X() + AGXAe + KlXKl + VXV + alXa1 + (12Xa2 + a3Xa3 (24)
Y(t):=Yy + AgYu, + K1Yk, + VYy + a1Ys, + a2Y,, + asY,,

To evaluate the possible distorsions of the performance, we compute the H,, norm on a
very dense time-domain gridding. The Figure 9 displays the evolution of 7. On this Figure,
we have also represented the H,, norm for the controller obtained as a linear interpolation
of the LTI compensators.

The evolution of the singular value of Kppy(z,t) with respect to time ¢ is depicted in
Figure 10. We can note that the reponse is very smooth.

Figure 11 depicts the evolution of the stability margins during the whole atmospheric
flight. We represent the variation in percent with respect to time ¢ the desired margins
(corresponding to the templates in the Nichols chart): the low frequency gain margin, the
high frequency gain margin, the attenuation of the flexible modes below X g and the delay
margin.

15



Figure 12 depicts the time-domain simulation for the whole atmospheric flight.
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FIGURE 9: H,, performance.
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