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Abstract

This paper is concerned with the design of gain-scheduled controllers for uncertain Linear Parameter-
Varying systems. Two alternative design techniques for constructing such controllers are discussed.
Both techniques are amenable to Linear Matrix Inequality problems via a gridding of the parameter
space and a selection of basis functions. These problems are then readily solvable using available tools
in convex semi-definite programming. When used together, these techniques provide complementary
advantages of reduced computational burden and ease of controller implementation. The problem
of synthesis for robust performance is then addressed by a new scaling approach for gain-scheduled
control. The validity of the theoretical results are demonstrated through a two-link flexible manipu-
lator design example. This is a challenging problem that requires scheduling of the controller in the
manipulator geometry and robustness in face of uncertainty in the high frequency range.

1 Introduction

The gain-scheduling problem has been the subject of a great deal of research over recent years, both from
theoretical and practical viewpoints. This renewed interest probably stems from the development of new
techniques and software which allow for a more rigorous and systematic treatment of the gain-scheduling
problem. The classical approach to this problem essentially consists of repeated design syntheses associ-
ated with some scheduling strategy connecting locally designed controllers. Such schemes, however, lack
supporting theories that guarantee the behavior of the scheduled controller. A significant contribution
toward the elimination of such weaknesses is the formulation of the gain-scheduling problem in the con-
text of convex semi-definite programming [1], an elegant and solidly based branch of optimization theory
[2, 3, 4]. Expressed in terms of Linear Matrix Inequalities (LMIs), the gain-scheduling problem is readily
and globally solved using currently available efficient optimization software [5]. LMI techniques now
appear as very natural mechanisms for the formulation of gain-scheduling problems as well as for a vast
array of other problems in the control field. Reference [6] gives an overview of the scope of application
of such techniques.

As emphasized in H, control theory, a key stage in the characterization of gain-scheduled controllers
is the search for adequate Lyapunov functions that establish stability and a performance bound for the
closed-loop system. The Linear Fractional Transformation (LFT) gain-scheduling techniques in [7, 8, 9,
10] or the so-called quadratic gain-scheduled techniques in [11, 12] make use of a fixed Lyapunov function,
as opposed to one which depends on the scheduled variables, to characterize stability and performance.
According to [13], such approaches are potentially very conservative because they allow for arbitrary rates
of variation in the scheduled variables. More dramatically, it has been shown in [13] that some systems are
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not even quadratically stabilizable, that is, are not stabilizable on the basis of a single Lyapunov function.
A significant improvement over such techniques can be obtained by exploiting the concept of parameter-
dependent Lyapunov functions. This is discussed in the context of robustness analysis and synthesis in
[14, 15, 16] and for the gain-scheduling problem in [13, 16]. Parameter-dependent Lyapunov functions
allow the incorporation of knowledge on the rate of variation in the analysis or synthesis technique, and
therefore lead to much less conservative answers. The reader is referred to [17, 13] for earlier work related
to the approaches considered here. The discretization of continuous-time gain-scheduled controllers is
considered in [18].

In this paper we investigate two different techniques: [19, 20, 21] and an extension of [22, 23] to the
gain-scheduling problem. These techniques impose no restriction on the plant and provide a simple and
streamlined treatment of the gain-scheduling problem. Moreover, the technique in [19, 20] allows the
incorporation of multiple specifications into the design problem such as Hy — H,, pole clustering, or
control effort constraints. The second technique is more restrictive but offers computational advantages.
The focus of this work is on the computational effort for controller calculation and on the practical issues
of controller implementation. A special emphasis is placed on the development of scaling techniques
which take advantage of the problem’s structural properties and thus reduce the conservatism of the
gain-scheduling approach. It is further shown that combining the capabilities of both techniques provides
a comprehensive and effective methodology, encompassing all components of the gain-scheduling task
from theoretical constructions to real-time implementations.

The paper is structured as follows. Sections 2 to 4 give a thorough discussion of gain-scheduling
synthesis techniques together with some refinements and improvements in Section 5. Finally, the validity
and applicability of concepts and techniques are demonstrated for a two-link flexible manipulator appli-
cation in Section 6.

The notation used in the paper is fairly conventional. For real symmetric matrices M, M > 0 stands
for “positive definite” and means that all the eigenvalues of M are positive. Similarly, M < 0 means
“negative definite” (all the eigenvalues of M are negative) and M > 0 stands for “nonnegative definite”
(the smallest eigenvalue of M is nonnegative). In large symmetric matrix expressions, terms denoted x
will be induced by symmetry. For instance, with S symmetric

S+M+N+(*) x| _[S+M+MT+N+NT QT
Q Pl Q P

We shall also use the matrix notations
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For appropriately dimensioned matrices K and M = [ v v
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the upper LFT is defined as

] and assuming the inverse exists,

Fu(ﬂ/l, I() = Moy + Afglff(l — Alllff)_llwlg. (1)



2 Owutput-Feedback Synthesis with guaranteed L)-gain Performance

In this section we recap some known results on the gain-scheduling technique with bounded parameter
variations rates and point out connections between different approaches. We first give a general char-
acterization of gain-scheduled controllers, the solution to which involves both intermediate controller
matrices and Lyapunov variables X and Y. This formulation will be referred as the basic characteriza-
tion, emphasizing the fact that it can be easily extended to multiple objective problems, pole clustering
problems, etc... [19, 20]. Next, a second formulation of gain-scheduled controllers is presented. It will be
referred as the projected characterization, as the intermediate controller matrices have been eliminated
through projections [22]. Reconstructing the controller state-space data from the projected conditions
has been addressed in [22, 23] for the customary H,, control problem. The reconstruction procedure
is again described here, in the case of the gain-scheduling problem, for completeness of the discussion.
The reader is referred to [17, 24, 13] for details, insights and applications of analogous gain-scheduling
techniques.

The problem addressed throughout the paper is the following. Suppose we are given a Linear
Parameter-Varying (LPV) plant G(6) with state-space realization

& = A(f)z+ B1(0)w + Bz(0)u

zZ = Cl(g).’E + D11(0)’w + D12(0)u (2)
Yy = Cg(e).f + D21(0)w 5
where
Ac Rnxn, Dqy € Rplxm2,a11d Doy € RP2X™1
define the problem dimension. The time-varying parameter § := (8y,---,05)" as well as its rates of

variation @ are assumed bounded as follows,

(a) each parameter #; ranges between known extremal values 8, and 6;:

0:(t) € 16,,60;], Vt>0 (3)

(b) the rate of variation f; is assumed well-defined at all times and satisfies
0:(t) € [vi, 7, V120 (4)
where v; < p; are known lower and upper bounds on 02

The first assumption means that the parameter vector 6 is valued in a hypercube ©. Similarly, (4) defines
a hypercube @4 of R” with vertices in

T = {(Tl,...,TL)T = {gi,ﬂi}} . (5)

The gain-scheduled output-feedback control problem consists of finding a dynamic LPV controller,
K(0), with state-space equations

i = Ag(0, é)xK + Bk (6, 0)?/ (6)
U = Ck(0,0)ex + Dk(6,0)y,

which ensures internal stability and a guaranteed L;-gain bound + for the closed-loop operator (2)-(6)
from the disturbance signal w to the error signal z, that is

T T
/ Zzdr < 72/ wlwdr, YT >0
0 0



and all admissible trajectories (6, f) and zero state initial conditions. Note that A and Ax have the same
dimensions, since we restrict the discussion to the full-order case. The formulation of such controllers can
be handled via an extension of the Bounded Real Lemma with quadratic parameter-dependent Lyapunov
functions V(zq,0) = xﬂP(@)xd where x, stands for the state vector of the closed-loop system. See
[13, 14, 15, 19] for details. Note that the controller state-space matrices are allowed to depend explicitly
on the derivative of the time-varying parameter 8. Different techniques to remove the dependence on 6
will be extensively discussed in Section 3, see also [24].

Except the usual smoothness assumptions on the dependence on 8, the problem data and variables will
be unrestricted in the subsequent derivations. The basic characterization of gain-scheduled controllers
with guaranteed Ly-gain performance is presented in the next theorem where the dependence of data and
variables on # and § has been dropped for simplicity.

Theorem 2.1 (Basic Characterization) Consider the LPV plant governed by (2), with parameter
trajectories constrained by (3), (4). There exists a gain-scheduled output-feedback controller (6) enforcing
internal stability and a bound v on the Ly gain of the closed-loop system (2) and (6), whenever there exist
parameler-dependent symmelric malrices Y and X and a parameter-dependent quadruple of state-space
data (Ax, Bk ,Ck,Dk) such that for all pairs (6,0) in © x Q4 the following infinite-dimensional LMI
problem holds,

X + XA+ BgCy + (%) * * * ]
AL +A+B:DkCy =Y +AY + BoCk + (%) * * < 0 ™
(XBy + Bg Dyy)? (B1+ B2DK1221)T -1 *
C1+ D12 Dk Cy ChY + D12Ck D1+ D12Dg Dy —vI
X T]
I Y] > 0. (8)

In such case, a gain-scheduled controller of the form (6) is readily obtained with the following two-step
scheme:

e solve for N, M, the factorization problem

I-XYy=nNMm"T,

o compute A, Bg, Cx with

AI( = J\/Y_I(AXY + JVA.IT + 11]{ — AX(A - BZDIX"C?)Y
—BrCyY — XByC )M~ T (9)
Bx = N~Y(Bg — XByDg) (10)
Cxk = (Cx - DrCyY)M™T, (11)
Proof: See [19, 20]. u

Note that since all variables are involved linearly, the constraints (7) and (8) constitute an LMI system.
This system is, however, infinite due to its dependence on (8, 0) ranging over © X Q4. Using the Projection
Lemma, detailed in [22], the controller variables can be eliminated, leading to a characterization involving
the variables X and Y, only. This is presented in the next theorem.

Theorem 2.2 (Projected Solvability Conditions) Consider the LPV plant governed by (2), with
parameter trajectories constrained by (3) and (4). There exists a gain-scheduled output-feedback controller
(6) enforcing internal stability and a bound v on the Ly gain of the closed-loop system (2) and (6),



whenever there exist parameler-dependenl symmelric malrices Y (0) and X(0) such that for all pairs
(6,0) in © x O4 the following infinite-dimensional LMI problem holds,

A [0 ]

r[ X+XA+4TX XxB, | cf
Nx |0 BT X ~I | DT 0 12
0 |1 1 —7 11 0 171 < (12)
Cy D1y -1 | -
[ —Y+YAT+Ay vl | B ¢ 7
[Agy H LY —~I | Dy Agy % <0 (13)
BlT Dipl -1 ] -
X TI]
[I Y| > 0. (14)

where Nx and Ny designate any bases of the null spaces of [Cy Doy ] and [BY DL, respectively.

Proof: This is a straightforward application of the Projection Lemma [22] to the LMI (7), with respect
to the matrix variable - ~
Ak + (A ‘}‘ABQDKCQ)T BK]
Ck Dk |~

Theorem 2.2 only provides existence conditions for controllers of the form (6). These conditions
become necessary and sufficient if we confine the involved Lyapunov functions to the set of quadratic
forms

V(za,b):= m;TlP(H)a:d, with Ty = [ v ] .

TK
As an immediate extension of the results in [23], the next theorem provides for controller construction.

Once again, the dependence on 6 has been dropped to facilitate manipulations. It is further assumed
that

e (H1) Dy, and Dy are full-column and full-row rank, respectively.

This assumption is without restriction and greatly simplifies the presentation. The construction is easily
extended to the singular case along the lines of [23].

Theorem 2.3 (Controller Construction from Projections) Assume the conditions of Theorem 2.2
hold for a pair (X, Y') and some performance level v. Then a gain-scheduled controller can be constructed
for any pair (6,0) in © X O4 by the following sequential scheme:

o compute D solution to
Umaa:(Dll + DIQDI{D?I) <7, (15)

and set ch = D11 + DlgD[{Dgl.

e compute BK and CA'K solutions to the linear matriz equations

0 D21 0 7 BT 02
o, 1 of | [PK] - Bx | (16)
0 Dy —71] Ci+ D12DkCy
0 D%—‘Q O - Bg
Ckl _
D12 —7[ ch % :| = - C1Y (17)
0 DI —Il" (Bi + B2Dic D))"




e compule
Ag = —(A+ BaDrCy)'+
i . —~I DY,
[XBy + B Dy (Cy + D12DgCo)T] [ / -

! (Bl+B2DKlZ21)T . (18)
Dc[ _FF/I

ChY + D1oCk

e solve for N, M, the factorizalion problem

I-Xy=nNm"T,

e finally, compute Ax, Br and Ck with the help of (9)-(11)
|

It should be noted that in spite of their different structures, the characterizations given in Theorems 2.1
and 2.2-2.3 are equivalent and can virtually be used interchangeably for controller synthesis. In contrast,
when the focus is on computational complexity or practical implementation, these techniques exhibit
significant differences. This is discussed in Section 4. Finally, the case where only some parameters 6; are
subject to constraints on their derivatives is easily handled by removing the unconstrained parameters
from the matrix functions X(.) and Y(.).

2.1 Extensions to Multi-Objective Problems

A useful practical advantage of the basic technique is that it easily extends to multi-objective problems.
Various channels of the closed-loop system can be specified independently with a rich list of specifications.
See [25, 21] for a thorough discussion. As an example, it is possible to specify an Ly gain bound with
regional pole constraints on the closed-loop dynamics of the underlying LTI systems (6 frozen). Such
constraints consist of vertical and horizontal strips, disks, conic sectors, parabolas, ..., or intersections of
such regions. The LMIs (7)-(8) must then be complemented with

T
< 0. (19)

), Y I . AY‘I‘BQ@]{ A+ By D Cy . AY-I-BQCA'K A4+ ByDgCy
iklopox | TRk Ax X A+ B C, d A XA+ ByC,

7

where the data Aj;; and py; defines the geometry of the region.

3 Practical Validity of Gain-Scheduled Controllers

It must be stressed that an LPV controller derived from Theorem 2.1 or Theorems 2.2-2.3 is not gain-
scheduled in the usual sense of the term. Its implementation requires not only the real-time measurement
of the parameter 6, but also of its time-derivative . This is generally prohibitive, since parameter
derivatives either are not available or are difficult to estimate during system operation. Gain-scheduled
controllers that do not require a measurement of 8 will be called practically valid hereafter. As discussed in
[17], there is no systematic and tractable approach for removing the dependence on 6 while maintaining
the generality of Theorems 2.1 or 2.2-2.3. As suggested by the controller formula (9), a simple but
conservative approach has been proposed in [24]. It consists of restricting the variable Y (8) to Y =0,
that is, Y not depending on 6. This operation amounts to using a fixed Lyapunov function for the
parameter-dependent control problem described in (13). It thereby sacrifices some performance, resulting
in a higher 7.

Keeping in mind that the dependence of the controller data on 6 stems from the term XY + NMT,
(9), the general characterization of Theorem 2.3 offers additional freedom that is worth pointing out.
The discussion is summarized in the next table.



Variables X, Y Variables N, M Practical Validity
& = X =X(0),Y=Y(0)| NMT=T-X(0)Y(0) Yes
& €04 X =X(0)Yy:=v(0)| NMT=1-X(0)Y(0) No
2 €0y X:=X(0),Y =Yy | N:=T—X(0)Yo, M =1 Yes
® €0y X:=Xo,Y =Y(0) |[N:=1I, M:=1-Y(0)X, Yes
Z—f unbounded X =X,,Y =Y, NMT =T — X,V Yes

Table 1: Selection of variables in the gain-scheduled control problem

Row #1 of the table simply says that if the scheduled variable is assumed constant in time, a practi-
cally valid gain-scheduled controller can theoretically be constructed using Theorem 2.1 or alternatively
Theorems 2.2-2.3, for any matrix functions X(.) and Y(.) of #. Such an approach ignores possible time
variations of @ and provides neither performance nor stability guarantees for the closed-loop system in
the face of time-variations. With the same choice of matrix functions X(.) and Y'(.), but the rate of vari-
ations of @ being confined to a compact @4, row #2 says that there is no known techniques to compute a
practically valid gain-scheduled controller. In rows #3 and #4, we have assumed the conservative choices
that X or Y are constant matrix variables. In both cases, the gain-scheduling problem with bounded
rate of variations admits practically valid controller solutions, provided the variables NV and M are ade-
quately selected in Theorems 2.1 and 2.3. With further conservatism, that is, 8 is unbounded, row #5
says that the problem is again tractable and solvable using the same techniques. The case of time-varying
parameters with bounds on the rate of variation can be constructively handled by the choices of rows #3
and #4. However, due to the loss of duality in the variables X and Y, such choices are not equivalent.
As a consequence, there are some problems for which it is better to take a parameter-dependent X and
a constant Y while others will require the converse. Hence, both alternatives must be tried to get a less
conservative design . In the controller construction scheme, the variables N and M are subject to the
algebraic constraint I — XY = NM7 from which one easily infers the identity

XY 4+ NMT = —(xy + NMT).

In light of this identity, a practically valid gain-scheduled controller in the cases of rows #3 and #4 can
be derived using the same formulas (10) and (11), but with Ax suitably updated to

Ag = N"NAg — X(A = ByDyCq)Y — BgCyY — XByCi )M~ T (20)

The same formulas are still valid for the case of frozen-in-time parameters, row #1, and for arbitrarily
varying parameters, row #5, the variables X and Y being replaced by their constant values Xy and Yy, in
the latter case. Summing up, Table 1 displays all options to handle any situations from the frozen-in-time
parameters to arbitrarily time-varying parameters. However, the case in which both X and Y depend
on 0 with a bounded @ still resists a convex formulation for a practically valid controller.

4 Reduction to Finite-Dimensional Problems

Even with the simplifications of Table 1 in place, the characterizations of Theorems 2.1 or 2.2-2.3 involve
the solution of a convex but infinite-dimensional and infinitely constrained problem. This is the price
to pay for allowing a general parameter dependence in the plant (2). Generally speaking, there is no
systematic rule for selecting the functional dependence of the matrix functions X and Y on 8. We are
therefore led to some simple heuristics in order to simplify the computation of solutions to the LMI
problems (7)-(8) or (12)-(14). A simple but practical technique has been proposed in [13]. The key
idea is to “mimic” the parameter dependence of the plant in the Lyapunov function variables X and
Y. Interestingly, the same idea can be used in the more general context of the basic characterization of
Theorem 2.1. In return, this offers new potential approaches for the synthesis of gain-scheduled controllers



with multiple objective constraints (mixed Hy; — H, pole clustering, and others still to find). To be
more specific, consider the class of plants (2) having an LFT dependence on nonlinear functions of the
scheduled variable, that is, whose state-space data further satisfy

A, B, B B
Cp Dpp Dpl Dp2

N
G(0) .= F, ,diag(p;(0)1,. , 21
Q 0 | ding(po)r) (21)
Cy Dy Dy 0
where p;(.),7 = 1,..., N are differentiable functions of #. Note that such a description encompasses

many practical situations, since most systems in aeronautics and robotics can be represented as an LFT
in nonlinear functions of the time-varying parameters. Copies of the plant’s nonlinear functions, p;(.),
can be introduced into the quadruple (Ax(.), Bk(.),Ck(.), Dk(.)) and the pair (X(.),Y(.)) in an affine
fashion,

N N N R R R N R
Ag(0) = Ago+ X pi(0)AK.; Bk(0) := Bro+ X pi(0)Bk,
=1 =1
(22)
N N N N N
Cr(8) = Crot 2 pi(0)Ck; Di(0) = Dro+ 2 pi(0)Dry
i=1 =1
and
N N
X(0):= Xo+ > _pi(0)X;; Y(0):=Yo+ > pi(0)Y;. (23)
=1 =1

The functional dependence of X and Y being fixed, the matrices 111(70, XKJ-,..., play the role of decision
variables in the infinitely constrained LMI problems (7)-(8) or (12)-(14). A simple remedy for turning
such problems into a finite set of LMIs is to grid the value set of @ [13]. Since the derivative G appears
linearly in the LMIs (7) and (12)-(13), there is only need to check the extreme points of the set O,
denoted 7, for all admissible values of 8. The overall procedure can be described as follows.

step 1 define a grid G for the value set of 6,
step 2 minimize vy subject to the LMI constraints associated with G x 7 ,
step 3 check the constraints with a denser grid,

step 4 if step 3 fails, increase the grid density and return to step 2.

Computing solutions (22) and (23) to the LMI system associated with G x 7 is a convex optimization
that can be solved by polynomial-time algorithms [2, 26] and the software [5]. Such problems generally
require a large number of variables and constraints that today limit the scope of application of such
techniques. With this considered, available solvers are still efficient for problems of reasonable size, say
for up to 15 states and 2 or 3 scheduled variables. LMI-based gain-scheduling techniques have proven
very powerful in a number of delicate applications [13, 17, 24, 12].

When restricted to the parameterization (22) and (23), the basic and projected characterizations are
no longer equivalent. In the first one, we have further restrictions on the structure of the quadruple
(Ag(.), Bk (.),Ck(.), Di(.)). As a result, the first approach is generally more conservative, although we
have observed very little difference in practice. See the application Section 6 for comparisons. From a
complexity viewpoint, the first technique requires a larger number of scalar variables to be optimized;
the number of additional variables being approximately n(n + mg + p2)L, where L is number of blocks
in the LF'T (21). Its scope of application is therefore more restricted. In contrast, the controller equa-
tions resulting from the basic characterization are significantly less complex than those resulting from



the projected characterization. Note that such controller constructions are essentially dominated by
matrix inversions and QR decompositions in (9)-(11) and (16)-(18). At each sampling time, the basic
characterization essentially requires

¢ 1 matrix inversion,
whereas the projected characterization will require
¢ 2 QR decompositions and 3 matrix inversions for problem (15),
¢ 2 matrix inversions for the computation of Agx, Bx, C'x by exploiting partitioning.

Thus, in the light of these comments and because the expressions (22) essentially reduce to scalar-by-
matrix multiplications, controllers resulting from the first technique are more easily implemented for
rapidly varying LPV systems. In addition, these controllers have an LFT representation in terms of the
nonlinear functions, p;(.), and hence are computationally comparable to those of the LF'T gain-scheduling
approaches in [7, 8]. Note also that for both techniques, the most computationally demanding step comes
from the inversion of the term I — X (6)Y (), typically a large matrix. It is sometimes possible to exploit
rank deficiencies in the X;’s and the Y;’s to further reduce computational efforts, for instance, by using
inversion with rank correction formulas. A simple case that does not require the inversion of I — X (8)Y ()
is when the LFT system (21) depends on a single nonlinear function p;(#). Noting that

1] =[0TG

the inverse of I — X (8)Y (#) can be computed from the lower-left block in the above expression. Moreover,
if we assume without restriction that 0 is in the image set of p1(.), then

X 1] [Xo 1 X: 0 . Xo 1
IR W R A B e (24)

The positive condition in (24) ensures that the matrices

Xo 17 X; 0

I Yy’ 0 Y
are simultaneously diagonalizable. Hence there exists a congruence transformation 7" and a diagonal
matrix Ay, computed off-line, such that for any value of the map p4(.),

x 117! _
[I Y] =T+ pA)~ 7T (25)
Therefore, a cheap way of computing (I — XY )™! at each sample of time is simply to invert the diagonal
matrix in (25) and perform multiplications of corresponding blocks.
Since they offer complementary advantages, the techniques described above can be used together to
yield a more effective methodology. Confirmed by practical experience, the following rules have proven
useful.

1. All necessary tunings, requiring repeated computations should be based on the less costly projected
technique.

2. The procedure is completed by running the basic technique, for controller implementation purposes.

Though the last phase may be very slow, it is run only once in the whole design process.



4.1 Bypassing the gridding phase

As discussed earlier, there is no direct technique to bypass the gridding phase, hence making the design
more direct. Under special circumstances, LFT, affine or polynomial parameter dependence of data and
variables or polytopic approximation of the original plant, techniques such as the S-procedure or multi-
convexity concepts can be used repeatedly to get a finite number of (sufficient) LMI conditions. See the
conference version of the present paper [27] and also [15, 14] and references therein.

5 Reducing Conservatism by Scaling

As is common in robust control theory, it is possible to further enhance the design procedure by exploiting
structural informations on the operator relating the signals w and z. The conditions of Theorems 2.1 or
2.2 also provides robust stability conditions in face of

e multiplicative memoryless time-varying uncertainties

w(t) = AD(),  Tmas( A1) <

=2 |~

1> 0

e non-expansive dynamic uncertainty (for instance LTI) [6]

T 1 5T
w = A(z), 7/ whwdr < / adr, T>0.
0 0

-~

!

This description, however, ignores potential structures of the operator A. We therefore assume, hereafter,
that the plant is governed by (2) with w and z subject to

[wl(t)T, .. .,wN(t)T]T = A(t) [zl(t)T, .. .,zN(t)T]T , (26)
where A is a multiplicative memoryless time-varying operator with structure
A(1) = diag(Ai(1), ..., An(1)), (27)

and confined to the compact set

1
~
The set of scalings associated with the structure (27) is defined as

Sa:=4{9:5>0, SA@)=A@1)S, Vi>0} (29)

Tman(A(L)) < —, VL > 0. (28)

We have implicitly assumed, without restriction, that the problem has been squared so that my = p; in
the subsequent derivations. With these notations in mind, a scaled version of the Bounded Real Lemma
can be established.

Lemma 5.1 (Structured Robust Stability) The LPV system governed by
= A(f)z + B()w

C(0)z + D(O)w

and (26)-(28), with parameter trajectories 8(t) constrained with (3) and (4), is internally stable whenever

there exists a parameter-dependent symmetric matriz P(0) and a parameter-dependent scaling S(6) in

Sa such that P(6) > 0 and
P(8) + A(6)T P() + P(A)A() P(6)B(h) c(’
B(&)T P(6) —v5(8) DT < 0 (31)
C(9) Do)  —S(6)~!

(30)

z

holds for all admissible values of the parameter vector 8 and of its time derivative 9.

10



Proof: See Appendix A. [ |

Note that Lemma 5.1 provides robust stability conditions for non-expansive uncertain operators A;.
These conditions also guarantee a robust Lo-gain performance bound 7 with respect to any input/output
channel (w;, z;), with the remaining channels corresponding to uncertainties of the form described earlier.
See for instance [6] for details. Other Extensions to repeated-scalar uncertainties A; = §;1;, are straigt-
forward. Also important is the fact that the scaling matrix S(0) is allowed to vary with 6. Hence, the
conservatism of the gain-scheduling technique can potentially be reduced for all values of 8 independently.
As an immediate consequence of the above Lemma, the gain-scheduling techniques in Theorems 2.1 and
2.2-2.3 are readily extended to handle the structural constraint (26)-(27). Such extensions simply follow
from the following substitutions

[ -1 * ] . -5 * ]
D11+ D12 Dg Doy =1 D114 D19Dg Dy =571

in Theorems 2.1 and 2.3 and

[—’71 Dﬁ]_}[—'ys Dipl ]

—vI Dy . -85~ Dn
Dy -1 Dy —ySTH ’

DY, Al D -5

in Theorem 2.2.

Owing to the dependence of the modified characterizations on both § and S~!, they are no longer
standard LMI problems. Such problems are in the class of LMI problems with rank reduction constraints
hence difficult to solve. Here, we adopted a simple computational scheme in the spirit of g synthesis
techniques.

Recall that the LMI (7), with the scaling 5(#) in place, can take the form

X 4+ XA+ BgCy + (%) * * *
A§+A+BAQDKCQ —Y + AY + B3Ck + (%) * * <0 (32)
SYXBy + BxDs1)'  S7H(B1 + ByDg D1)* —yS~* * '
Ci1+ D1sDgCy ChY + D1:Ck (D11 + D1aDg Dap)S™t  —yS571

Note that this is an LMI in the variables S7!, Y, EK and CA.'K provided that the variables X, IAS’K and
Dy are maintained fixed. Therefore, coupled with Theorem 2.1, this result suggests a first scheme to
compute a best possible S~1. Now, our goal is to obtain the counterpart of the projected characteriza-
tion Theorem 2.2 for computing S~!. In view of the discussion of Section 4, this will be at a reduced
computational cost. Interestingly, such a scheme cannot be directly derived from the LMIs (12)-(13). We
shall make use of a partially projected characterization, as follows.

Applying the Projection Lemma [22], with respect to the (2,1) free term in (32), equivalent LMI
conditions are

X—l—XA—l—EIXCQ—l—(*) * * ]
S~YX By + Bg D)t —y571 * < 0; (33)

Ci1+4+ D12 D Cy (D11 + D12DI«(D21)5_1 -5 ]

—Y 4+ AY + ByCr + () * *x
S™Y(B1 + By D D))" —yS~1 * < 0. (34)

C1Y 4+ D1:Ck (D11 + D13DgDop)S™t — 8571 ]
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Assuming now that (33) holds and projecting again with respect to the controller variable Cg in (34),
the following equivalent LMI condition is obtained

T —Y +YAT + AY ycr
l /\(f)y (; ] coy g * l /\gy (; < 0. (35)
S~YBy + BoDg D)t S™Y Dy + DD D)t ‘ —7571

Gathered together with (14), the matrix inequalities (33) and (35) form an LMI system in the variable
Y and §~! with fixed X, Bx and Dg. It turns out that the conditions (32) and (8) on one side or the
conditions (14), (33), and (35) on the other side form the basis of two possible schemes for iteratively
reducing the conservatism of the gain scheduling techniques of Section 2. Such schemes proceed as follows.

step 0 setting S(#) = I, minimize v with the basic or the projected technique,

step 1 compute a scaling S(#)~! minimizing v with the help of (32) and (8) or alternatively (33),
(35), and (14),

step 2 with S(6) being fixed, perform a gain-scheduling synthesis with the basic or projected tech-
nique,

step 3 iterate over steps 1 to 3 until convergence.

As before, we are using a grid of the set © to perform the optimizations and a user-defined functional
dependence of S~1 on 6. For LFT plants of the form (21), a practical choice is the affine expansion

L
5_1(0) = Yo+ sz(e)zz .

It is important to mention that the previously described iterative procedure, though not giving a
global solution to the problem, has proven very efficient in practice. A demonstration is given in the
following section. Unlike the standard D — K iteration procedure, it involves not only scalings and
Lyapunov variables, but also some controller variables in the same optimization step. In our opinion,
this is a central factor favoring convergence, both in speed and accuracy.

6 Control of a Two-Link Flexible Manipulator

6.1 Problem description

The gain-scheduled control of a two-link flexible manipulator is a nontrivial problem. The dynamics of
such a system include both rigid body and lightly damped structural modes. The problem is complicated
by uncertainty in the high frequency dynamics of the system and by the variation of dynamics with
manipulator geometry. The first of these complications drives the requirement for closed-loop robust
stability while the second drives the requirement for gain-scheduling. In addition, a rapid closed-loop
response to position commands is desired. The ability of a control synthesis approach to handle the
trade-offs between robustness, performance, and gain scheduling with the least possible conservatism
is thus critical for such a system. For example, if the gain-scheduling parameters are allowed to vary
infinitely quickly, closed-loop performance and robustness will suffer. If the uncertainty structure of the
design model is not considered, it will be impossible to find a controller which meets design objectives.
These trade-offs are studied and addressed in this section.

SECAFLEX is a two-link flexible planar manipulator driven by geared DC motors, used as a labora-
tory platform for control-structure interaction experiments at CERT-ONERA in Toulouse, France. The
two flexible members are homogeneous beams. There is a concentrated mass at the elbow due to the DC
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motor and a concentrated mass at the tip of the second beam which is the payload. The modeling of the
manipulator has been studied extensively [28]. A simple drawing of the two-link manipulator is shown
in Figure 1.

Figure 1: Two-Link Flexible Manipulator

f1 and @, are the shoulder and elbow joint angles respectively. 7 and 7, are the corresponding control
torques. The second-order form of the manipulator equations of motion are,

M(6,)i(1) + Di(t) + Kq(t) = Fu(t) (36)

where M is the inertia matrix, D is the damping matrix, and K is the stiffness matrix. u(¢) is the input
vector, u = (7 TQ)T. Due to the variable geometry of the system, the inertia matrix is a function of
the second joint angle, #;. This dependence causes significant changes in the response of the system to
input torques over the range of possible configurations, ; € [0, 7] (rad.). If we consider an output vector,
y = (6; 65)7, then we can define the transfer function from u to y as G(s,03). With the parameter 6,
frozen in time, Figure 2 illustrates the variation of the manipulator dynamics with geometry by showing
the singular values of G(s, ;) at three different values of ;.

= ) " 2
10 10 10 10 10
frequency (rad/s)

Figure 2: 0;(G(jw,b;)) for Different Manipulator Geometries
2 = 0: solid; @ = 7: dashed; 6 = 7: dotted .

The numerical values which define this system are as follows. The dependence of the inertia matrix
on 6y can be expressed as,

M(0;) = M(7/2) + cos(02)[M(7/2) — M(7)], (37)
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where

34.7077 9.7246 23.6398 5.9114 17.0296 0.8856 9.7776 0.8430
9.7246 9.8783 9.7246 5.9114 0.8856 9.8783 4.7016 5.9114
M(n/2)= , M(m)= ,
23.6398 9.7246 17.5711 5.9114 9.7776  4.7016 7.5249 3.0311
5.9114 5.9114 5.9114 3.7233 0.8430 5.9114 3.0311 3.7233
(38)
and the damping, stiffness, and control effectiveness matrices are respectively
D = diag{0,0,0.09,0.05}, K = diag{0,0,89.1473,45.6434}, F = l ém ] . (39)
2x2
The manipulator equations of motion can be rewritten in first order LFT form in 65 [29],
. 0 1 0
M= | o, 1K —M(8y)-1D ] 20+ l M(6)"'F ] ) (40)

To provide closed-loop command tracking, a simple weighted minimization of the sensitivity function
is used. A frequency dependent weight, W,, penalizes the error, e, between angular position commands,
w1y, we, and the system response, y. By forcing this weighted sensitivity function to be less than unity, the
complementary sensitivity function approaches identity at low frequencies, thus providing good command
tracking.

In order to account for uncertainties in high frequency dynamics, an additive uncertainty model is
incorporated into the synthesis model. The additive uncertainty weight is formulated by considering the
difference between the full-order geometry dependent model, G(s,6;), and some reduced order design
model, G.(s,8;), of lower order but still dependent on manipulator geometry. Consider Wy, the additive
uncertainty weighting function and Ay, a complex uncertainty block, scaled such that ||Af||o, < 1. We
can define the error between the full-order and reduced-order models as E(s, 6;),

E(5702) = G(8702) - GT(5702) (41)
The additive uncertainty weight must then provide a frequency domain bound on this error, that is,

|Wi(jw)| > max Omaz(E(jw, 62)), Vw € [0, o0] (42)

The LPV design model has the form (2) and is built by combining the above performance and
robustness formulations into a single multi-objective synthesis model, Figure 3.

T
TJL 91 ) N 4»21
Y 0 2% o W9 [,2
G (8) e
R< I
o WE(S) |22,
Up -7 7777~
U0 K(8,)

Figure 3: Synthesis Model
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The design weights used for the following examples are

_ A(s+.1)?
77 (s + 100)?

0.1075(s + 1.066)
(s + 0.03)

IQXQ, Wp = IQXQ . (43)

It should be noted here that, in the manipulator example, § = #; is not an independently evolving
external parameter, it is a state of the system. By treating 63 as an external parameter, we are actually
immersing the “quasi-linear” dynamics (40) into the larger class of LPV dynamics (30). Therefore, in
guarantying stability and performance for a class of parameter trajectories (through bounds on 6y and
92), we ignore the fact that the trajectories themselves are defined by the plant dynamics. The result is
thus a degree of conservatism in the design. The resulting controller is in the class of nonlinear controllers
since 6 := 63 is here a sub-vector of the measurement y := (64, HQ)T. It is usually referred to as a scheduled
on the plant output controller [30]. It captures the nonlinearity of the plant (40) in #;. The controller
matrices (Ax, Bi,Ck, Dk ) are instantaneously updated with respect to the plant’s state 6, as described
in Section 2.

6.2 Numerical examples

Different cases have been investigated which highlight the merits and some of the concerns in using the
gain-scheduling methodologies detailed in Sections 2 to 5. Comparisons with existing gain-scheduling
techniques are also given.

Case #1: In this first case, the two-block structure associated with robustness and performance is
ignored. The basic and projected techniques are applied with both X and Y depending on 6.

X(02) := Xo+cos(02) X1, Y(02):=Yy+ cos(8;)Y;.

As discussed earlier, this amounts to assuming that the scheduled variable 83 is frozen in time. The
corresponding 7 levels are compared with the LFT gain-scheduling technique in [8], a technique that
puts no bound on the parameter variation rates. The results are presented in Table 2. Surprisingly, all
techniques give the same result. The achieved value of 7 is actually a lower bound that can be checked by
performing an H., synthesis on a nominal model (6, = 7). Therefore, if the structure of the problem is
ignored, the techniques in this paper or [7, 8] may offer no advantages over existing LFT gain-scheduling
techniques.

us

Basic Technique with X (f2) and Y (65) 3.82
Projected Technique with X (6;) and Y (02) | 3.82
LFT Technique in [8] 3.82

Table 2: Performance comparisons () with ignored structure.

Case #2: In this second case, the problem’s uncertainty structure is explicitly taken into ac-
count. The performance and robustness objectives are relaxed by introducing a fixed scaling § :=
diag(0.5e-3 I3x2, I2x2), found by performing a standard p synthesis with constant scaling on the nominal
plant (62 = 7). The application of gain-scheduling techniques to this scaled problem leads to the bound,
v = 0.58. Results are presented in Table 3 for different selections of the Lyapunov variables X and Y
and assuming 6, fixed in time (6, = 0).

Both the basic and projected techniques guarantee the same performance bound for all admissible
values of #;, provided that both X and Y depend on 65. A slight degradation occurs when the dependence
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on 65 is restricted to X, but the design is still acceptable. Conversely, when Y only depends on 65, both
techniques appear very conservative. As predicted in Section 3, the selections of columns 2 and 3 are not
equivalent and both must be tested to reduce conservatism. The designs in column 4 use fixed X and Y
matrices and thus yield much more conservative answers. The corresponding value, v = 380.60, was also
obtained using the LFT technique in [8]. The consequences of this discussion is threefold.

e Ignoring the uncertainty structure introduces undesirable limitations on the power of advanced
gain-scheduling techniques. One must compromise between robustness/performance requirements
and gain-scheduling objectives in order to fully benefit from such techniques.

e Tradeoffs can be systematically handled through the use of scalings. Good initial guesses for such
scalings can often be found on the basis of a nominal system issued from the LPV plant.

e The basic and the projected techniques give about the same results, the first one being preferable
in a real-time implementation perspective.

Y X(@Q), Y(@Q) X(ag), YO Xo, Y(HQ) Xo, Yo
Basic Technique 0.58 0.95 25.51 380.60
Projected Technique 0.58 0.95 25.35 380.60

Table 3: Performance Comparisons of Basic and Projected Techniques (0 =0)

Case #3: We investigate here the effects of a bound on the rate of variation of 8, on the achiev-
able robustness/performance level with the projected synthesis technique. The scaling S is as defined
previously, and we assume symmetric bounds,

|02| < .

It is intuitively clear that increasing the bound on the variation of 6 degrades both robustness and
performance. For our manipulator system a realistic bound is 100 deg./sec. As can be observed in Figure
4 which describes 7 as a function of «, the proposed techniques perform well for variations of up to an
order of magnitude greater than those expected.

10°

2
10

gamma
=
o

0
10 G

10

10° 10° 10* 10°
bound on the rate of variations deg./sec.
Figure 4: Performance level v vs. bound on the rate of variations
*: value of v for unbounded derivatives,
o: value of v for frozen parameter.

Case #4: In this last case, the iterative schemes proposed in Section 5 are used to further improve
robustness and performance. We exploit the scheme based on the matrix inequalities (33), (35), and (14).
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Recall that such schemes take advantage of parameter-dependent scalings. According to the definition of
Sa in (29), the scaling assumes here the special form

5_1(02) = Eo + COS(OQ)El .

The Lyapunov variables have been selected in the form X = Xg + cos(63)X; and Y = Y. Practical
validity of the controller is thus ensured from the analysis in Section 3. The evolution of vy during the
alternate iterations is depicted in Figure 5. Convergence required 12 elementary steps as described in
Section 5 and led to a best v value of 0.30. This is obviously the best design among those attempted.
The result in Figure 5 was achieved with the projected technique and the characterizations given in (33)
and (35) for the scaling computation. The resulting scaling matrix is

3.3631, 0 0.0741, 0

-1 I
§76) = 0.02012]+COS(92)[ 0 24l

Finally, using the above scaling, we recomputed the gain-scheduled controller with the basic technique.
The same value, v = 0.30, was obtained. Since it is of a simpler form and provides satisfactory perfor-
mance, this last gain-scheduled controller is used in the subsequent analysis and simulations.

0 2 4 6 8 10 12
iterations

Figure 5: Evolution of v vs. alternate iterations

6.3 Frequency and time-domain validations

In this section, the best-v controller from case #4 is analyzed. In Figure 2 we saw how the manipulator
dynamics changed with 65. It is now interesting to examine how the resulting gain-scheduled controller
varies with manipulator geometry. Figure 6 shows the singular values of the underlying LTI controllers
K (s,0;) at three different values of ;.
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10

107 107" 10° 10" 10°
freauency (rad/s)

Figure 6: 0;(K(jw,#;)) for Different Manipulator Geometries
2 = 0: solid; 6y = : dashed; 6y = m: dotted .

We see that the gain-scheduled controller evolves as physically expected, applying higher gains when
the manipulator inertias are greater (f; = 0) and reduced gains when the inertias are smaller (6, = 7).
Notice that at frequencies above 10 rad/sec, both the manipulator system and the controller are relatively
independent of the parameter.

Extensive nonlinear simulations of the response of the closed-loop system to various commands have
been performed. For the sake of brevity, we will only present one of these. The high frequency flexible
modes that were removed from the synthesis model are reintroduced in the simulation model. With
initial conditions of #;(0) = 0 and #,(0) = 0, a step command of 180 degrees in both angles is given.
This manoeuver was chosen to take the manipulator through the entire range of possible dynamics as
quickly as possible. The angular responses and corresponding control inputs are depicted in Figure 7.
The rise time (3.5 seconds), settling time (5 seconds), and overshoot (< %5) are markedly superior to
those observed using either robust LTI controllers or heuristically motivated gain-scheduling approaches
[29]. The manoeuver is completed without violating the limits on control authority, |71| < 100N /m and
|72] < 20N /m.

7 Conclusions

Advanced gain-scheduling design approaches for LPV systems have been presented with emphasis on
the practical goals of reduced computational burden and ease of implementation. Two complementary
techniques for the calculation of such controllers have been investigated which, when used together,
achieve these two objectives. The methodology is completed with a new scaling technique that takes
into account the uncertainty structure of multi-objective synthesis problems. The challenging problem of
the control of a two-link flexible manipulator is introduced in this context and used to demonstrate the
validity of the theoretical solutions.

Appendix A

Proof of Lemma 5.1: The system governed by (30) and (26)-(28) is stable whenever there exists a
quadratic Lyapunov function V(z,8) = 27 P(8)z such that P(8) > 0 and

d

—V(z.0 44
Ly(e.0) < 0. (a4)
for all admissible trajectories z(t), w(t), z(t), 8(t) and A(t).
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The signals w and z related by (26)-(28) satisfy the quadratic constraints

T [/5 . —“r’g(e)] [w] 20, vt20, (45)

where S is in Sa and may depend on §. Therefore, stability is ensured whenever (44) holds for all
trajectories (1), 6(¢) and any pair (w(t), 2(t)) characterized by (45). By a S-procedure argument [31, 32],
this is guaranteed whenever

~

“~

w

d
EV(x, 0) — ywl Sw+ 47127852 < 0.

This expression can be rewritten in the form
2(Az + Bw) Pz + 2T Pz + v~ Y(Cz + Dw)TS(Cx + Dw) — ywl Sw < 0,

which is nothing else than the quadratic form condition associated with the matrix inequality in (31).
This completes the proof of the lemma. [ |
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